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We theoretically investigate the Fulde-Ferrell-Larkin-Ovchinnikov state by using the microscopic quasiclas-
sical Eilenberger equation. The Pauli paramagnetic effects and the orbital depairing effects due to vortices are
treated on an equal footing for three-dimensional spherical Fermi surface model and s-wave pairing. The field
evolution of the Larkin-Ovchinnikov (LO) state is studied in detail, such as the H -T phase diagram, spatial
structures of the order parameter, the paramagnetic moment, and the internal field. Field dependences of various
thermodynamic quantities—the paramagnetic moment, entropy, and the zero-energy density of states—are
calculated. Those quantities are shown to start quickly growing upon entering the LO state. We also evaluate
the wavelength of the LO modulation, the flux line lattice form factors for small-angle neutron scattering, and
the NMR spectra to facilitate the identification of the LO state. Two cases of strong and intermediate Pauli
paramagnetic effect are studied comparatively. The possibility of the LO phase in Sr2RuO4, CeCoIn5, CeCu2Si2,
and the organic superconductors is critically examined and crucial experiments to identify it are proposed.
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I. INTRODUCTION

In 1964, Fulde and Ferrell (FF) [1] and Larkin and Ovchin-
nikov (LO) [2] proposed a theoretical possibility of a spatially
modulated superconducting state [3] under the Zeeman effect.
Since then, there have been many works focusing on the
realization of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state both theoretically and experimentally. Yet there is no
well-accepted material where the FFLO state is realized.

In the FFLO state, the superconducting order parameter in
the singlet pairing, such as s-wave or d-wave pairing, exhibits
a spatial modulation [3]. Under the population imbalance of
up- and down-spin species of Cooper pairs, it is expected
that the FFLO state is the most possible state to emerge
[4,5]. The population imbalance is brought about either by its
preparation in cold neutral atom gases [6–8] or by application
of an external field in the charged particle case through the
Pauli paramagnetic effect.

*Present address: Department of Physics, Kwansei Gakuin Univer-
sity, Sanda, Hyogo 669-1337, Japan.

One of the reasons for the difficulties in realizing the
FFLO state in a superconductor may come from the lack
of theoretical investigations which fully take into account
both the Pauli paramagnetic effect and the flux line effect
on an equal footing. The simultaneous consideration of the
two depairing effects, paramagnetic depairing in the former
and orbital depairing in the latter, is a difficult task because
the two kinds of spatial modulations—one due to the FFLO
state and the other to flux line lattice—must be handled
simultaneously. It is often the case [9–13] only to consider
the Pauli paramagnetic effect by neglecting the latter effect,
including the original works by Fulde and Ferrell [1] and
Larkin and Ovchinnikov [2]. In those studies the s-wave [9,10]
and d-wave [11–13] pairing cases are treated. The attempts
to simultaneously consider the two effects are limited to the
so-called Ginzburg-Landau (GL) region near Hc2 [14–16].
Thus we need more extensive studies which cover the whole
region of T and H . This is one of the main purposes of our
present paper.

The LO state with periodically modulated amplitude of the
order parameter is far more difficult to describe due to the so-
called solitonic spatial variation with infinitely many higher
harmonics of the Fourier component of the order parameter
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in general. This is handled exactly and analytically [10] only
in the absence of the orbital depairing. The LO state is so
computationally demanding, but it is stabler than the FF state
where only the phase is modulated in the order parameter
[10]. Thus we consider the LO state in this paper. There are
two possible modulation directions with respect to the applied
magnetic field: the modulation is along the field direction, or
perpendicular to it. In this paper, we consider the former LO
state which is expected to be stabler than the latter LO state
physically.

Thus the main purpose of this paper is to provide fun-
damental theoretical information on the physical properties
of the LO states. In particular, we study how the field evo-
lutions of various observables are, including thermodynamic
quantities, such as the entropy, the zero-energy density of
states (DOS) measured by low-temperature specific heat ex-
periment, and magnetization changes. We also calculate the
flux line lattice (FLL) form factors measured by small-angle
neutron scattering (SANS), and the nuclear magnetic reso-
nance (NMR) spectrum in the LO state.

For that purpose, to obtain the magnetic field H depen-
dence of the LO states by advancing our previous study [17],
we solve the microscopic Eilenberger equation fully self-
consistently in three-dimensional (3D) space of vortex and
LO modulation [17], and find the free energy minimum with
respect to the LO period L. The orbital depairing and Pauli
paramagnetic depairing are treated on an equal footing here.
The phase diagram in the H-T plane is constructed where the
Abrikosov phase and the LO phase are competing, and we
examine the behaviors of the various observables mentioned
above. In this paper, we compare two cases of strong and
intermediate Pauli paramagnetic effect.

Our basic strategy is to study the canonical field-dependent
properties of the LO states for a spherical Fermi surface model
and s-wave pairing. The corresponding 3D calculation for the
FF state [9] and full self-consistent analytic theory for a quasi-
one-dimensional (quasi-1D) case [10] have been performed
before without vortices. Here we extend their calculations
to take into account the vortex effects. The effects of the
d-wave pairing on the LO state within the same Eilenberger
framework were reported [17].

There are several important and outstanding experimental
results to suggest that the LO state remains unexplored in
detail because of the lack of appropriate theoretical methods
to describe further detailed behaviors of the LO state. For
example:

(1) NMR experiments on CeCoIn5 where the resonance
spectra exhibit a characteristic signature and change when
entering the high field LO state [18–20]. And specific heat
studies on CeCoIn5 for H ‖ ab exhibit a characteristic first-
order transition [21]. Neutron experiments [22,23] detect
anomalous magnetism, the so-called Q phase in the high field
region for H ‖ ab.

(2) Small-angle neutron-scattering experiments have been
done for CeCoIn5 of H ‖ c [24,25] where the FLL form
factor |F100(H )| increases toward Hc2 contrary to the ordinary
type II superconductors which exhibit a rapid decrease as H
increases. Just before Hc2, |F100(H )| sharply drops to zero.

(3) In κ-(BEDT-TTF)2Cu(NCS)2, Mayaffre et al. [26] find
a sharp increase of T −1

1 as a function of H and T near and just

below Hc2 when entering the high field phase, suggesting the
LO state in this quasi-2D superconductor.

(4) However, in CeCu2Si2 [27] a similar T −1
1 enhancement

phenomenon is reported. In our opinion it is unrelated to the
LO, although the authors claim it is because of the reasons
given in Ref. [28]. Thus it is obvious that we definitely need a
careful theoretical study to firmly identify the LO state, which
is able to check various aspects of the LO signatures, not only
a single phenomenon such as the T −1

1 enhancement, but also
the consistency with other phenomena associated with the LO
state to avoid further confusion.

(5) Sr2RuO4 was a prime candidate for a chiral p-wave
superconductor [29,30], but recent various theoretical and
experimental studies [31–33] indicate now that it is most
likely to be a spin-singlet superconductor. The system well
satisfies the necessary conditions for the LO state to appear.
Namely, it is superclean in that (a) the mean free path l must
be longer than the periodicity L of the LO state, which is typ-
ically an order of 100ξ with ξ coherence length (see later for
details), that is, l � L. (b) Favorably, it is low dimensional,
and (c) has a strong Pauli paramagnetic effect to avoid the
orbital depairing. Thus this is enough reason to investigate
the LO state in this material, which is true for other ma-
terials, CeCoIn5 and κ-(BEDT-TTF)2Cu(NCS)2, but not for
CeCu2Si2 which is known to be a barely clean system, namely,
l ∼ ξ and three-dimensional electronic structure, although the
Pauli paramagnetic effect is sufficiently strong [28].

The plan of this paper is as follows. We first introduce our
formulation based on the microscopic quasiclassical Eilen-
berger framework [34] in Sec. II. This formulation is valid
for ξkF � 1 with kF the Fermi wave number, which is well
satisfied for the materials of interest. The LO phase diagram
in the H vs T plane is determined in Sec. III. The spatial
structure of the LO state is examined in Sec. IV. The field
evolutions of thermodynamic quantities mentioned above are
presented in Sec. V. Those are accessible by a variety of
experimental methods. The FLL form factors with various
indices and NMR spectra are calculated in Sects. VI and VII,
respectively. Throughout this paper, we treat the two cases
μ = 5 and μ = 2 comparatively, corresponding to the strong
and intermediate Pauli paramagnetic effect cases where μ is
a measure of the strength of the Zeeman effect, related to the
so-called Maki parameter αMaki through μ = 2αMaki, which
is defined by αMaki = √

2Horb
c2 /Hp with Horb

c2 being the orbital
limiting upper critical field and Hp the Pauli limiting critical
field [3]. In Sect. VIII, we critically examine each candidate
material for the possible realization of the LO state in light
of the present calculation and propose further experiments to
firmly establish and identify the LO state. We devote the last
section to our conclusions. A part of the present results is
reported in Ref. [35].

II. FORMULATION FOR EILENBERGER THEORY

We calculate the 3D spatial structure of the vortex lattice
state by using the quasiclassical Eilenberger theory in the
clean limit [36–39], assuming that the order parameter mod-
ulates along the magnetic field direction in the LO state. The
Pauli paramagnetic effects are included through the Zeeman
term μBB(r), where B(r) is the flux density of the internal
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field and μB is a renormalized Bohr magneton. The quasiclas-
sical Green’s functions g(ωn + iμB, k, r), f (ωn + iμB, k, r),
and f †(ωn + iμB, k, r) are calculated in the vortex lattice
state by the Eilenberger equations [17,36–40]

{ωn + iμB + ṽ · (∇ + iA)} f = �g,

{ωn + iμB − ṽ · (∇ − iA)} f † = �∗g, (1)

where g = (1 − f f †)1/2, Reg > 0, ṽ = v/vF0, and the Pauli
parameter μ = μBB0/πkBTc. k is the relative momentum of
the Cooper pair, and r is the center-of-mass coordinate of the
pair. v is the Fermi velocity and vF0 = 〈v2〉1/2

k where 〈· · · 〉k
indicates the Fermi surface average. An isotropic spherical
Fermi surface is considered in this study. We assume that
a magnetic field is applied to the z axis. The Eilenberger
units R0 = h̄vF0/2πkBTc for lengths and B0 = h̄c/2|e|R2

0 for
magnetic fields are used [17,40]. The order parameter � and
the Matsubara frequency ωn are normalized in units of πkBTc.

As for self-consistent conditions, the order parameter is
calculated by

�(r) = g0N0T
∑

0<ωn�ωcut

〈 f + f †∗〉k (2)

with (g0N0)−1 = ln T + 2T
∑

0<ωn�ωcut
ω−1

n . We use ωcut =
20kBTc. B = ∇ × A with the vector potential A = 1

2 B̄ × r +
a and B̄ = (0, 0, B̄). B̄ is the averaged flux density of the
internal field, and 〈∇ × a〉r = 0. The spatial variation of the
internal field ∇ × a is self-consistently determined by

∇ × (∇ × a) = ∇ × Mpara (r) − 2T

κ2

∑
0<ωn

〈ṽ Im g〉k, (3)

where we consider both the contribution of the paramagnetic
moment and the diamagnetic contribution of supercurrent in
the second term. Thus from Eq. (3) the paramagnetic moment
with Mpara (r) = [0, 0, Mpara (r)] is given by [17,41]

Mpara (r) = M0

(
B(r)

B̄
− 2T

μB̄

∑
0<ωn

〈Im g〉k

)
. (4)

Namely, the paramagnetic moment consists of the normal-
state part in the first term and the compensation part by the su-
perconducting state in the second term. The normal-state para-
magnetic moment M0 = (μ/κ )2B̄, κ = B0/πkBTc

√
8πN0,

and N0 is the DOS at the Fermi energy in the normal state.
We set the GL parameter κ = 102. Using the spatial averaged
value Mpara = 〈Mpara (r)〉r, the normalized paramagnetic sus-
ceptibility is given by χspin = Mpara/M0.

In the Eilenberger theory, the Gibbs free energy is given by
[42]

F = 〈
κ2|B(r) − H|2 − μ2|B(r)|2〉r
+ T

∑
|ωn|<ωcut

〈
Re

〈
g − 1

g + 1
(� f † + �∗ f )

〉
k

〉
r

. (5)

〈· · · 〉r indicates the spatial average within a unit cell of the
vortex lattice. The entropy in the superconducting state, given

by Ss(T ) = Sn(T ) − ∂F/∂T , is obtained as [42]

Ss(T )

Sn(Tc)
= T − 3

2

∑
0<ωn<ωcut

Re

〈〈
g0N0(� f † + �∗ f )

− 2
� f † + �∗ f

g + 1
− 4ωn(g − 1)

〉
k

〉
r

, (6)

where Sn is the entropy in the normal state.
We obtain the relation of B̄ and the external field H as

H =
(

1 − μ2

κ2

)(
B̄ + 1

B̄
〈(B(r) − B̄)2〉r

)

+ T

κ2B̄

∑
0<ωn

〈〈
μB(r)Im{g} + 1

2
Re

{
( f †� + f �∗)g

g + 1

}

+ωnRe{g − 1}
〉

k

〉
r

(7)

from Doria-Gubernatis-Rainer scaling [41,43]. In the param-
eters used in our calculation, |B̄ − H | < 10−4B0. The mag-
netization is calculated as M = B̄ − H , which includes the
paramagnetic component Mpara in addition to the diamagnetic
contributions.

In the self-consistent Eilenberger theory, we solve Eq. (1)
and Eqs. (2)–(4) alternately, and obtain self-consistent solu-
tions of �(r), A(r), and quasiclassical Green’s functions with
ωn, as in previous works [17,40] under a given unit cell of the
triangular vortex lattice. Using the self-consistent solutions,
we evaluate the free energy in Eq. (5), the entropy in Eq. (6),
and the external field in Eq. (7).

For the LO state, �(r) has periodic oscillation of the period
L along the z axis of the vortex line, in addition to the vortex
lattice structure in the xy plane. The unit cell of the vortex
lattice is given by (x, y) = u1(r1 − r2) + u2r2 with −0.5 �
ui � 0.5 (i = 1, 2). r1 = (cx, 0, 0) and r2 = (cx/2, cy, 0) with
cxcyB̄ = φ0 and the flux quantum φ0. As the unit cell size of
the vortex lattice is determined by B̄ ∼ H , we can estimate
the H dependence of the LO states in our calculation of the
vortex lattice. We use μ = 5 and μ = 2 as representative
cases of strong and intermediate Pauli paramagnetic effect,
respectively.

When we calculate the electronic state, we solve Eq. (1)
with iωn → E + iη. In the calculation we use �(r), A(r),
and B(r) which are obtained from the above self-consistent
calculation. η is an infinitesimal constant. From the quasiclas-
sical Green’s function of real energy E , the DOS is given by
N (E ) = [N+1(E ) + N−1(E )]/2 with

Nσ (E ) = N0Re〈〈g(ωn + iσμB, k, r)|iωn→E+iη
〉
k〉r (8)

with σ = +1 (−1) for the up- (down-) spin component. We
study the H dependence of the Sommerfeld coefficient γ (H )
of the low-temperature specific heat. This is given by the
normalized zero-energy DOS as γ (H ) = N (E = 0)/N0.

III. PHASE DIAGRAM

Before studying the thermodynamic quantities in the LO
state mentioned above, we evaluate the phase diagram of the
LO state, and the stable LO period L as a function of H .
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FIG. 1. (a) and (c) Free energies F of the LO states with different wave numbers L and Abrikosov state relative to the normal state as a
function of H for μ = 5 and μ = 2, respectively, at T = 0.1Tc. With increasing H toward Hc2, the LO states with shorter spatial periodicity
L indicated by different color bars are stabilized successively. (b) and (d) Phase diagrams for LO in the H -T plane for μ = 5 and μ = 2,
respectively. H is normalized by Hc2 at T = 0.1Tc. The upper red region is the LO phase where the vortex lattice state with the LO modulation
along the field direction is stabilized. The blue regions in the lower fields correspond to the Abrikosov vortex lattice state without the LO
modulation. The boundary HLO is second-order transition. Hc2 is first-order transition for H > Hcr , while it is second-order transition for
H < Hcr . Lines are guides for the eyes.

The Gibbs free energy in Eq. (5) is calculated from self-
consistent solutions of Eq. (2) for the LO states with various
LO wavelength L normalized by R0. We compare them to find
the most stable state under a given H and T .

Figures 1(a) for μ = 5 and 1(c) for μ = 2 exhibit the
resulting successive changes of F and L at T/Tc = 0.1. At
around H = Hc2 the LO state with the shortest wavelength
is stabilized, which is L ∼ 17 for μ = 5 and L ∼ 23 for
μ = 2. Note that the length unit R0 is roughly equal to the
coherence length ξ0. As H decreases, L becomes longer and
longer. Eventually the free energy of the LO state becomes
comparable with that of the Abrikosov state where the LO
modulation along the field direction is absent. The envelope
of the free energies of the LO state approaches that of the
Abrikosov state, such that the two curves seem to merge
tangentially, namely, at the meeting point the tangents of
the two curves coincide with each other. As seen later, the
thermodynamic quantities exhibit sharp kink behaviors at HLO

reminiscent of first-order transition, but we think it second
order because of those free energy behaviors. While our
calculations are done for discretized L, these results suggest
second-order-like transition at HLO [16] and the continuous L

change as a function of H in the LO state HLO < H < Hc2,
similar to the results of a previous analytic LO theory [10].
HLO is the transition field from the Abrikosov vortex state to
the LO state.

We also notice here that as seen from Figs. 1(a) and 1(c)
the Abrikosov state shows the first-order transition if the LO
state is absent. Then the LO states enhance the upper critical
field Hc2 substantially. The superconducting state survives to
higher fields by creating the LO states. The enhancement is
larger for μ = 5 than for μ = 2.

In Figs. 1(b) for μ = 5, and 1(d) for μ = 2, we show the
resulting phase diagrams in the H-T plane. Those are obtained
by repeating the LO calculations as a function of H at different
temperatures T/Tc = 0.1, 0.15, 0.2, and 0.25 for μ = 5, and
T/Tc = 0.1 and 0.2 for μ = 2. We show the critical point
(Tcr, Hcr) in Figs. 1(b) and 1(d) where Hcr is determined by
solving the equation for Hc2. The transition at Hc2 to the
normal state is first order at H > Hcr.

It is seen that in the strong paramagnetic case μ = 5 in
Fig. 1(b), the LO phase appears only near Hc2, and HLO

increases on lowering T in this typical example of an isotropic
Fermi sphere. As for the μ = 2 case in Fig. 1(d), the basic
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features of the phase diagram are essentially the same as μ =
5 except that the LO phase shrinks and becomes narrower. The
LO region in the H-T plane is given by HLO/Hc2 = 0.973 for
μ = 5 at T/Tc = 0.1, which depends on the μ value, namely,
HLO/Hc2 = 0.991 for μ = 2 at T/Tc = 0.1. To obtain a wider
LO region, we have to consider the contribution of a realistic
Fermi surface shape such as a quasi-2D shape [17] for better
nesting condition, or multiband effect [44,45].

Those phase diagrams are different from those for the
Zeeman depairing without the orbital depairing [10] and also
for the neutral Fermi superfluids with spin imbalance [5]. In
the former case Hc2 of the LO phase shifts to much higher
fields, while a much wider LO phase is obtained in the latter
case.

We notice the canonical phase diagram [10], consisting of
the second-order line at higher T , which bifurcates into two
second-order lines at lower T in the theory without consider-
ing first-order transition. In the present calculation, we show
how the phase diagram changes in the presence of first-order
transition. The bifurcation point is known as the tricritical
point, the so-called Lifshitz point HLifshitz [10,46]. According
to the canonical phase diagram [10,46], it is expected that Hcr

should coincide with the end point of the HLO line, namely,
the LO phase starts from Hcr. However, we note that within
our numerics, it is not determined whether or not the LO state
extends to Hcr. It is known that TLO/Tc2 = 0.56 in the limit
of μ → ∞. Thus we understand that the μ = 5 case almost
approaches the strong Pauli paramagnetic effect limit because
Tcr ∼ 0.48Tc2 and the μ = 2 case is intermediate because
Tcr ∼ 0.38Tc2.

Here we mention a related theory [47] on the phase di-
agram of the FF state with a different approximation for
the same 3D Fermi surface model. Similar to our approach,
Ref. [47] has exploited the Gorkov Green’s function theory
in the quasiclassical approximation. Both theories have used
nonperturbative methods of solution, with Ref. [47] present-
ing a direct analytical solution of Gorkov’s equations, whereas
here a numerical solution of the corresponding Eilenberger
equation is performed. Reference [47] finds a second-order
phase transition from the FF state to the normal state, and a
first-order transition from the FF state to the Abrikosov state.
The conclusion differs from ours for reasons unknown to us.
We speculate that it might be due to the difference between
FF and LO states, in addition to the difference of material
parameters used in the calculations.

IV. SPATIAL STRUCTURE OF THE LO STATE

We investigate the three-dimensional spatial structures of
various quantities in the LO states. Figure 2(a) displays the
spatial profiles of the order parameter �(x, z) whose sign
alternates along the z direction. At z = 0 the order parameter
amplitude vanishes where the paramagnetic moment Mpara (r)
builds up in addition to the vortex core at x = 0 as shown
in Fig. 2(b). The LO nodal kink forms a sheet of the para-
magnetic moments perpendicular to the field. The magnetic
induction field Bz is large along the vortex core at x = 0 and
suppressed at the domain wall of the LO at z = 0. These Bz

distributions indicate the confinement of Bz at the vortex core
is weak at the LO nodal line.

FIG. 2. Three-dimensional spatial profiles of (a) the order param-
eter |�(x, z)| normalized by the maximum value |�(x = 0.5cx, z =
0.25L)|, (b) paramagnetic moment Mpara (x, z)/M0, and (c) induction
field Bz(x, z) normalized by Bc2(T/Tc = 0.1). T/Tc = 0.1, L = 75,
H = 0.973Hc2, and μ = 5. The nodal planes are situated at z/L =
−0.5, 0, +0.5 and the vortex center at x = 0. The profiles are dis-
played in one unit cell, −0.5 � x/cx � 0.5 and −0.5 � z/L � 0.5.

The paramagnetic moment becomes strongly confined to
the kink position as H approaches HLO from the above. This
is seen also from Fig. 3 more clearly. These features of
the three-dimensional LO spatial structure can be probed by
SANS experiment or NMR experiment.

Figure 3 shows the cross-sectional views of the normalized
wave forms of the order parameter �(x = ±0.5cx, z) (a) and
paramagnetic moment Mpara (x = ±0.5cx, z) (b) in LO states
along the field direction outside of the vortex core region
where x = ±0.5cx are midpoints between nearest-neighbor
vortices. It is seen that a simple sinusoidal modulation wave
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FIG. 3. Cross-sectional views of (a) the order parameter �(x =
±0.5cx, z) normalized by the maximum value |�(x = 0.5cx, z =
0.25L)|, and (b) paramagnetic moment Mpara (x = ±0.5cx, z)/M0 for
various wave numbers L along field direction z outside of the vortex
core region at x = ±0.5cx and y = 0. T/Tc = 0.1 and μ = 5.

form for L = 17 stabilized near Hc2 continuously deforms
into an antiphase kink form, or solitonic wave form as H
approaches the HLO line, at which L diverges [10,46]. In other
words, near the HLO boundary, the sign change or π phase
shift of the order parameter occurs sharply. For the longer
L near HLO due to the excess normal electrons Mpara (r) is
confined in a narrow spatial region along the kink position
as clearly seen from Fig. 3(b). For shorter L approaching Hc2,
Mpara (r) is changed to a sinusoidal wave form. These changes
of the LO structure reflect the behaviors of FLL form factors
and NMR spectra, as discussed later.

V. FIELD EVOLUTIONS OF THERMODYNAMIC
QUANTITIES

Thermodynamic quantities, such as magnetization curve
Mpara (H ) and the Sommerfeld coefficient γ (H ) under the
Pauli paramagnetic effect in the Abrikosov state, are evaluated
in previous studies [48–51]. Here we continue those into the
LO state, which takes over the Abrikosov phase in higher
fields.

A. Magnetization

Figures 4(a) and 4(e) show magnetization curve M =
B̄ − H at T = 0.1Tc for μ = 5 and μ = 2, respectively. The
magnetization M includes paramagnetic and diamagnetic con-
tributions. As seen in the insets, M < 0 at low H as the dia-
magnetic contribution is dominant. If the Pauli paramagnetic
effect is absent, M → 0 when H → Hc2. However, in the
presence of the Pauli paramagnetic effect, M becomes positive
at high fields since the paramagnetic component Mpara be-
comes dominant. Due to the larger paramagnetic contribution,
M is larger for μ = 5, compared with that for μ = 2. In the
Abrikosov state below H < HLO, M monotonically increases
with a slow slope. When the Abrikosov state is changed to the
LO state at H > HLO, we see a rapid increase of M. In Fig. 4,
we plot data points for some L near free energy minimum.
The continuous curves are drawn as a guide for the eyes. On
the curves, the diverging slope at HLO is gradually changed
to a slower slope both for μ = 5 and μ = 2. In the narrow
field region HLO < H < Hc2, M increases toward the normal
state value M0 at H > Hc2. The increase is larger for larger
μ. We see a small jump of M at Hc2. Although we expect a
large jump of M at Hc2 in the Abrikosov state if the LO state
is absent, the jump is smeared by the increase of M due to the
presence of the LO state at HLO < H < Hc2.

B. Paramagnetic susceptibility

The H dependence of the normalized paramagnetic sus-
ceptibility χspin = Mpara/M0 is presented in Figs. 4(b) and
4(f) for μ = 5 and μ = 2, respectively. The extrapolation of
lines for χspin in the Abrikosov state toward higher H until
χspin = 1 suggests the orbital limit of Hc2. The higher Hc2

of the orbital limit is suppressed by the Pauli paramagnetic
effect, and χspin shows jump at the first-order Hc2 transition,
as shown in Figs. 4(b) and 4(f). The jump is larger for larger
μ. Since the dominant contribution of M comes from the
paramagnetic part Mpara at high fields, Mpara in Figs. 4(b) and
4(f) shows similar behavior to M in Figs. 4(a) and 4(e) in the
LO state. χspin also shows a large increase in the LO state at
HLO < H < Hc2, and a small jump to χspin = 1 at Hc2. In the
LO state, χspin changes from 0.37 at HLO to 0.86 at Hc2 for
μ = 5 in Fig. 4(b) and from 0.6 to 0.9 for μ = 2 in Fig. 4(f).

C. Entropy

The H dependence of entropy Ss(T )/Sn(Tc) is presented in
Figs. 4(c) and 4(g) for μ = 5 and μ = 2, respectively. These
behaviors show similar H dependence as in χspin in Figs. 4(b)
and 4(f). The entropy also shows a rapid increase in the LO
state at HLO < H < Hc2, and a small jump to the normal-state
value 0.1 at Hc2. In the LO state, Ss(T )/Sn(Tc) changes from
0.035 to 0.084 for μ = 5 in Fig. 4(c), and from 0.065 to 0.092
for μ = 2 in Fig. 4(g). Quantitatively, Ss(T )/Sn(Tc) is smaller
by a factor of about 0.1 (= T/Tc). Compared with χspin, Ss

shows a small enhancement near HLO in the Abrikosov state
as seen in the insets.

D. Zero-energy DOS

Figures 4(d) and 4(h) show the H dependence of the
zero-energy DOS N (E = 0), which also shows similar
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FIG. 4. (a) and (e) Magnetic field H dependence of magnetization M = B − H , (b) and (f) paramagnetic susceptibility χspin = Mpara/M0,
(c) and (g) entropy Ss(T )/Sn(Tc ), and (d) and (h) zero-energy DOS γ = N (E = 0)/N0. The left panels (a)–(d) are for μ = 5, and right panels
(e)–(h) for μ = 2. T = 0.1Tc. Insets in the upper three panels show the overall features in a wide range of H from low fields. Data points are
plotted for L near the free energy minimum, with color presented in the lowest panels. Continuous curves are drawn as a guide for the eyes.
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behavior to that of χspin and Ss in the above panels in Fig. 4.
The thermodynamic quantity also strongly increases with
almost diverging slopes at HLO. In the LO state, N (E = 0)/N0

changes from 0.42 to 0.82 for μ = 5 in Fig. 4(d), and from
0.69 to 0.91 for μ = 2 in Fig. 4(h). The specific heat C is
obtained by the derivative of Ss(T ) as

C = T
∂Ss

∂T
. (9)

We note here that in the low-temperature limit C is evaluated
as (

C

T

)
T →0

=
(

∂Ss

∂T

)
T →0

= Ss(T ) − Ss(0)

T − 0
= Ss(T )

T
, (10)

that is, the Sommerfeld coefficient γ (H ) = C/T is directly
related to the entropy,

γ (H ) = Ss(H )

T
(11)

at the low T limit. We roughly confirm this relation from
the numerical results of Ss(H ) and γ (H ) at T = 0.1Tc in
Fig. 4. The small deviations between them come from the
effects of finite T . We also approximately confirm the relation
χspin(H ) ∼ γ (H ) in Fig. 4. This relation is confirmed also in
the LO state in addition to the Abrikosov state, which was
proved for the latter state in previous studies [40,48,49]. Al-
though the calculation of χspin(H ) is performed by Matsubara
frequency ωn, in the formulation of real energy E , χspin(H )
comes from the average of the DOS in the energy range |E | <

μH at low T . Thus, we have the relation χspin(H ) = γ (H )
in the limit of weak Pauli paramagnetic effect, μ → 0, and
low T . When μ is large, the deviation may appear between
χspin(H ) and γ (H ).

As is seen above, we confirmed that thermodynamic quan-
tities of magnetization, paramagnetic susceptibility, entropy,
and low-temperature specific heat exhibit basically similar be-
haviors as a function of H . Namely, as H increases, the almost
linear and monotonic increase suddenly shows a sharp rise at
H = HLO exhibiting a kink feature, but the thermodynamic
quantities are continuous. Thus it is of second-order transition.
This feature nicely corresponds to that in the analytic solutions
[10,46], where at the tricritical Lifshitz point L diverges from
the above.

Although it is difficult to check whether it is a second- or
first-order transition, it is believed to be second order, judging
from the analytic solutions [10,46]. However, it often happens
that the actual experiments show the first-order transition
because of other degrees of freedom such as phonons or lattice
deformation involved. As for the phase transition at Hc2, the
rise terminates at H = Hc2 abruptly via first-order-like jump.

Comparing the two cases for μ = 5 (left column) and
μ = 2 (right column) in Fig. 4, it is seen that the former has a
wider LO region than the latter. Otherwise, the two cases are
quite similar, meaning that the qualitative features of the LO
phase are independent of the μ parameter and thus universal.
As μ decreases, the LO phase fades out from the H-T plane.
Note that the critical μ is known to be μcr = 0.5. Those
thermodynamic quantities are expected to be measured by a
variety of experiments, such as the specific heat at low T di-
rectly probes N (0) and entropy. The paramagnetic moment is

measured directly by a magnetization experiment, which was
conducted in CeCoIn5, giving similar overall characteristics
[52] shown in Figs. 4(a) and 4(e) or by a SANS experiment
through diffraction of the spatial variation of magnetization
profile [53].

VI. FLL FORM FACTORS

A. Period L(H ) in the LO state

We first show the field evolution of the period L or the
wave number q = 2π/L of the LO state before discussing
the FLL form factors. As shown in Fig. 5(a) for μ = 5 and
Fig. 5(e) for μ = 2, the wave number q of the stable LO
state continuously varies with H . Starting with q = 0 at H =
HLO where the LO period is infinity, q rises sharply whose
tangent is almost diverging. Thus L becomes finite quickly.
The antiphase solitonic wave form changes into a sinusoidal
one upon increasing H [see also Fig. 3(a)]. This behavior
is similar to that seen in the exact solution (see Fig. 9 in
Ref. [10]), implying that the LO physics along the parallel
direction exemplified here is common and universal, which
was also pointed out in Ref. [15]. Comparing with the two
cases μ = 5 in Fig. 5(a) and μ = 2 in Fig. 5(e) the q(H )
variation is somewhat rounded in μ = 2.

B. Fundamental form factor F100

The FLL form factor is an important quantity that can be
directly measured by SANS experiment. The form factors Fhkl

with h, k, and l being integers are Fourier components of
internal field B(r) in our calculation [17]. The fundamental
Bragg spots F100 for the vortex lattice is shown in Fig. 5(b)
for μ = 5 and Fig. 5(f) for μ = 2 as a function of H . The
intensity |F100|2 increases in the Abrikosov state as seen from
the insets in Figs. 5(b) and 5(f). This is because Mpara (r)
accumulates at the vortex core to increase B(r) locally. This
feature is already shown theoretically [40] and observed in
various paramagnetically enhanced superconductors, such as
in TmNi2B2C [53] and CeCoIn5 [24]. While the increase of
|F100|2 as a function of H is greater for μ = 5 of the strong
Pauli paramagnetic effect case, for the intermediate case μ =
2, |F100|2 shows a decrease at higher fields after the increase
at lower fields.

As shown in the main panels of Figs. 5(b) and 5(f), the
intensity of |F100|2 suddenly decreases upon entering the
LO phase and keeps dropping quickly, almost exponentially.
(Notice the T = 50 mK data in Fig. 1 of Ref. [25].) This is
because Bz(r) is not enhanced at the vortex core on the LO
nodal plane as seen from Fig. 2(c). This contribution decreases
|F100|2, which is the average along the z axis. Comparing
with the two cases μ = 5 in Fig. 5(b) and μ = 2 in Fig. 5(f),
the |F100|2 variation in the LO state is somewhat rounded
in μ = 2, similarly to the q(H ) behavior in Figs. 5(a) and
5(e). This indicates that the decrease of |F100|2 in the LO
state is related to q(H ) = 2π/L, i.e., the volume weight of
the LO nodal sheet in the superconductor. The other Bragg
spots Fhk0 (h, k integers) are associated with the vortex lattice,
which characterize the detailed magnetic field distribution in
the mixed state of a superconductor.
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FIG. 5. Field evolutions of various quantities at T/Tc = 0.1 for μ = 5 (left column) and μ = 2 (right column). (a) and (e) LO wave number
q = 2π/L. (b) and (f) Form factor |F100|2. Inset shows the overall variation. (c) and (g) Form factor |F102|2. (d) and (h) Form factor |F104|2. Data
points are plotted for L near the free energy minimum, with color presented in the lowest panels. Continuous curves are drawn as a guide for
the eyes.

C. Form factors F102 and F104 associated with LO state

The observation of extra spots F10n (n = 2, 4, . . .) is crucial
to prove the existence of the LO phase. In Figs. 5(c) and 5(g)
we show |F102|2, which is the superspot associated with the
LO modulation along the field direction. |F102|2 rises sharply
at H = HLO. After taking a maximum in the middle of the
LO phase, it slowly decreases toward Hc2. Note that |F102|2
behaves similarly for both μ = 5 and μ = 2 cases. Thus

the results may not be sensitive to the μ value and generic.
The best chance to observe the |F102|2 superspot is in the
middle field region inside the LO phase. The relative intensity
|F102|2/|F100|2 = 1/10–1/20 in both μ = 5 and μ = 2. It is
possible to detect the F102 spot because |F100|2 is enhanced by
the Pauli paramagnetic effect even near Hc2.

The higher-order spot |F104|2 is also shown in Figs. 5(d)
and 5(h). It takes a maximum just near HLO. Since the
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magnitude of |F104|2 is further reduced compared with |F102|2
and is one order of magnitude smaller than |F102|2, it might
be difficult to detect |F104|2. The μ parameter dependence of
those form factors is qualitatively the same, only differing
quantitatively.

From Figs. 5(c) and 5(d) for μ = 5, with increasing H from
HLO, the ratio |F102/F104|2 is evaluated as 1.3 × 10−12/1.0 ×
10−12 = 1.3 for L = 200, 6.8 × 10−12/3.2 × 10−12 = 2.1 for
L = 70, and 1.3 × 10−11/1.1 × 10−12 = 12 for L = 35. From
Figs. 5(g) and 5(h) for μ = 2, the ratio |F102/F104|2 is 2.8 ×
10−13/2.4 × 10−13 = 1.2 for L = 200, 1.5 × 10−12/5.4 ×
10−13 = 2.8 for L = 75, and 2.2 × 10−12/1.6 × 10−13 = 14
for L = 40. For both μ = 5 and μ = 2, the ratio |F102/F104|2
rapidly increases from 1 at H > HLO. At higher H , as F104 be-
comes negligible, Bz distribution becomes a sinusoidal wave
of F102 along the z direction.

VII. NMR SPECTRUM

In this section we examine the NMR spectrum which is
also crucial to identify the LO state. Choosing probed nuclei
that have different hyperfine coupling constants, we can mea-
sure the field distributions inside a superconductor [17]. When
the hyperfine coupling is strong enough, the paramagnetic
distribution Mpara (r) is probed by NMR experiment. In the
weak hyperfine coupling case the magnetic induction B(r) in
the whole system is detected by NMR. In the mixed state
of ordinary superconductors it yields the so-called Redfield
pattern. Here we analyze the field evolution of the NMR
spectra for both strong and weak hyperfine coupling cases.
For the former we evaluate the distribution P(M ) by using the
stable LO state determined at each field. And for the latter the
distribution P(B) is calculated.

A. Paramagnetic distribution spectrum P(M)

We start with the strong hyperfine coupling constant
case, which effectively probes the paramagnetic distribution
Mpara (r) in the system. The distribution P(M ) is given by

P(M ) = 〈
δ
(
M − Mpara (r)

)〉
r, (12)

i.e., the volume counting for each M. Figure 6(a) shows the
spectral evolutions of the distribution P(M ).

Since in the Abrikosov state the paramagnetic moment
is confined exclusively at the vortex cores, the single peak
appears at the saddle point (S) position in the NMR spectrum.
In the LO phase, Mpara (r), which comes from excess electrons
at the nodal sheets, accumulates near the normal state (N)
position M/M0 = 1. The peak near the N position becomes
dominant toward Hc2, because the increasing excess unpaired
quasiparticles appear at the LO nodal sheets as described
above. It is noticed that just near H = HLO two peaks with
nearly equal height appear in the NMR spectrum in P(M ),
and the noticeable spectral weight is seen at the higher Mpara

region. In addition to those characteristics, the spectral weight
extends to higher values beyond M0 near N positions. This
comes from the increase of the domain wall contributions in
the LO state as discussed below. Those features are important
to characterize the spectra near the N position in the LO state
as will be seen shortly in the last section.

FIG. 6. NMR spectra P(M ) in the LO state. (a) Applied field H
evolution of internal field distribution P(M ). μ = 5 and T/Tc = 0.1.
Horizontal baselines for each spectrum are shifted by H/Hc2, which
is indicated on the right axis. (b) The z resolved the paramagnetic
moment Mpara distribution P(M ). Inset shows the order parameter
profile as a function of z where color codes correspond to those in the
main figure. (c) and (d) Density plots of paramagnetic moment Mpara

at the antinodal plane z = 0.25L and at the nodal plane z = 0.5L,
respectively. T/Tc = 0.1, L = 75, H = 0.973Hc2, and μ = 5 for (b),
(c), and (d).

The appearance of the double peaks at the S and near the
N positions gives unambiguous evidence of the LO state. It
may be possible to extract the wavelength L in the LO state
by carefully examining the spectral evolution data because
the spectral weights at S and N evolve continuously and
gradually. In order to understand the physical meanings of
those spectra P(M ) in Fig. 6(a) more deeply, we examine
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the z-resolved P(M ) shown in Fig. 6(b). There the bulk
superconducting contribution at the S point comes exclusively
from the maximum position near z = 0.25L of the order
parameter amplitude. The normal contribution near the N
point arises from the nodal plane at the middle z = 0.5L. The
spectral distribution continuously evolves, depending on the
order parameter spatial variation. The prominent double horn
structure is a hallmark of the LO state and the spectral weights
at the S and N points change, reflecting the field evolution
of the LO state. Thus we can extract the information on the
detailed LO spatial structure by carefully measuring the NMR
spectrum.

As shown in Figs. 6(c) and 6(d) the cross-sectional views
of the M profile at the antinodal plane and nodal plane, respec-
tively, are displayed. Comparing those two cross-sectional
views, it is seen that the vortex core contrast relative to the
background is far clearer at the antinodal plane than that at
the nodal plane. This is because the latter contrast is blurred
by normal quasiparticles accumulated at the nodal plane.
Note that the color range is 1.0 < M/M0 < 1.18 in Fig. 6(d),
while 0.1 < M/M0 < 1.1 in Fig. 6(c). We point out here that
according to the recent scanning tunneling microscopy (STM)
measurement [54] on FeSe, which is a candidate material for
the LO, under the perpendicular field to the surface the vortex
images become suddenly invisible and bluer when entering
the possible LO phase. This phenomenon can be understood in
the following: At the surface where STM probes the electronic
structure the nodal sheets are likely pinned there because
of energetic consideration, thus as shown in Figs. 6(b) and
6(c) the contrast at the nodal sheet is by far lower than that
at the antinodal plane. Since the paramagnetic moment is
proportional to the DOS N (E = 0), we anticipate that the
same is happening for STM zero-bias images.

B. Magnetic induction distribution spectrum P(B)

Next we study the weak hyperfine coupling constant case,
which probes effectively the magnetic induction distribution
P(B) in the whole system. The distribution P(B) is given by

P(B) = 〈δ(B − B(r))〉r. (13)

It is also important to observe the characteristic change
of P(B) as shown in Fig. 7(a). Note that P(B) is probed, for
example, at In(1) in CeCoIn5 [20]. The double peak structure
can be seen from Fig. 7(a) in the LO phase at H > HLO, where
the N peak appears near B ∼ H in the spectrum. Viewing the
whole spectral shape in Fig. 7(a), the N position is situated
near the S position in P(B), compared with P(M ) in Fig. 6(a).
In the lower field of the Abrikosov state, the usual Redfield
pattern is reproduced as seen from Fig. 7(a). Thus the double
peak structure at the N and S positions in P(B) is a hallmark
of the LO state. As H increases the relative spectral weight
changes and eventually the spectral weight at N dominates
the whole spectrum toward Hc2, which is shown in Fig. 7(a).
Those eminent features of the NMR spectra in P(B) can be
useful and indispensable spectroscopic methods for identify-
ing the LO state. Furthermore, it may be possible to extract the
details of the LO state, such as the LO periodicity, by carefully
examining those spectra.

FIG. 7. NMR spectra P(B) in the LO state. (a) Applied field H
evolution of internal field distribution P(B). μ = 5 and T/Tc = 0.1.
Horizontal baselines for each spectrum are shifted by H/Hc2, which
is indicated on the right axis. (b) The z-resolved internal field B dis-
tribution P(B). Inset shows the order parameter profile as a function
of z where color codes correspond to those in the main figure. (c) and
(d) Density plots of internal field B at the antinodal plane z = 0.25L
and at the nodal plane z = 0.5L, respectively. T/Tc = 0.1, L = 75,
H = 0.973Hc2, and μ = 5 for (b), (c), and (d).

As shown in Fig. 7(b) the double peak structure is analyzed
by decomposing the spectral weight into the z-resolved P(B).
The peak of the S position comes from the contributions of
the antinodal parts around z/L = 0.25, while that of the N
position comes from the LO nodal sheet at z/L = 0.5 as seen
in the inset of Fig. 7(b).

The cross-sectional views at the antinodal and nodal posi-
tions are displayed in Figs. 7(c) and 7(d), respectively. It is
seen by comparing the scales that the contrast of the spectral
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weight at the antinodal plane in Fig. 7(c) is far more visible
than at the nodal plane in Fig. 7(d). This is the same as in the
P(M ) case mentioned above.

VIII. DISCUSSIONS

Having calculated various physical properties of the stable
LO states in detail, we now examine the possible experi-
ments to identify the LO phase in several candidate materials,
SrRuO4, CeCoIn5, CeCu2Si2, and the organic superconduc-
tors (BEDT-TTF)2X in light of the present theory.

A. Sr2RuO4

Sr2RuO4 was a prime candidate of the chiral p-wave su-
perconductor. Much attention was focused on this symmetry.
However, recent trends include the following: (1) first-order
transition at Hab

c2 ‖ ab found by the magnetocaloric effect
[55], specific heat [56], and magnetization experiments [32];
(2) the intrinsic anisotropy 60 observed by SANS [57,58]
as a vortex lattice deformation indicates that Hc2 anisotropy
Hab

c2 /Hc
c2 = 20 is a suppressed value by the Pauli paramagnetic

effect; (3) the absence of the split transition under uniaxial
stresses [59], expected for chiral p-wave pairing belonging to
a two-dimensional irreducible representation; and finally (4)
the renewed Knight shift experiment [33] detects a decrease of
the spin susceptibility below Tc for H ‖ ab. This demonstrates
that the original results [60,61], which were one of the most
important pieces of “evidence” for the spin-triplet pairing
scenario, are in error due to heating effects by NMR pulses.
This result is confirmed by the original researcher [62]. All
recent results unambiguously point to the spin-singlet pairing
under the strong Pauli effects. Therefore, it is quite reasonable
to expect the LO state to realize in this “superclean” material.
Moreover, its quasi-two-dimensional electronic structure is
also favorable for it. Here we examine its possibility in light
of the present calculations.

(a) According to the specific heat experiment data [63,64],
γ (H ) at lower T exhibits an anomaly just before the first-order
jump at Hab

c2 = 1.5 T where almost linear and monotonous
γ (H ) in H deviates upwardly around H = 1.2 T at T =
0.13 K [64]. This behavior is similar to Figs. 4(d) and 4(h).
Thus we can identify HLO ∼ 1.2 T at that T .

(b) The ultrahigh resolution magnetostriction experiment
[65] is performed and detects two successive anomalies as
a function of H at low T , corresponding to HLO and Hc2.
The two first-order lines HLO and Hc2 merge at HLifshitz =
1.2 T and TLifshitz = 0.8 K, which should be the tricritical
Lifshitz point. Thus the constructed phase diagram is consis-
tent with our Figs. 1(b) and 1(d) qualitatively. Note that the
angle-resolved specific heat measurement [66] also detects
the anomalous oscillation sign change at higher H regions,
signaling the LO phase.

(c) One of the most direct visualizations of the LO state
is to use STM measurement under parallel fields. As shown
in Fig. 2 (also see Fig. 6 in Ref. [17]), the nodal plane can
be imaged as a distinctive stripe structure near the zero-bias
energy region in STM-STS (scanning tunneling spectroscopy)
experiments. This stripe image is best observed under an
applied field parallel to the surface of the ab plane where

the vortices lie near the surface. The estimated stripe distance
varies, depending on the field strength as seen from Figs. 1(a)
and 1(c), typically L = 20ξ ∼ 200 nm with ξ ∼ 10 nm. Since
in this STM parallel configuration the vortex lattices are
successfully imaged before in 2H-NbSe2 [67–69], this can be
a feasible experiment on Sr2RuO4 in which STM experiment
is done [70].

(d) According to the recent 17O-NMR experiment [71], the
NMR spectrum is split at around H = 1.35 T and T = 0.07 K
for the in-plane field. This double horn spectrum is akin to
our result shown in Fig. 6. The corresponding H-T region
also coincides roughly with the LO phase diagram given by
Kittaka et al. [63].

(e) The q-vector direction of the LO state is anticipated
in Sr2RuO4 as follows: There are three bands α, β, and γ .
The first two have squared cross-sectional shapes in the ab
plane, while the γ Fermi surface is somewhat rounded. The
best nesting for the LO phase is that the q vector points to the
(110) direction rather than (100) because the (110) direction
nests two sides of the squared Fermi surface simultaneously
and is more advantageous than (100). This can be confirmed
by calculating the superconducting susceptibility based on a
first-principles band calculation [72]. Since the q vector is
fixed to either (110) or (110) under the in-plane H , it happens
that when rotating H in the ab plane a switching phenomenon
from (110) or (110) may be observed, similar to that observed
in CeCoIn5 [73,74].

(f) The SANS experiments on Sr2RuO4 done so far [57,58]
only probe the transverse component relative to the field di-
rection nearly applied to the ab plane. The Pauli paramagnetic
effect manifests itself in the longitudinal component which
is discussed above. Thus the existing data do not provide us
the information on the LO state. In principle, it is possible
to perform the SANS experiment to see the longitudinal
component. At present the low neutron flux intensity and/or
the uniformity of the applied magnetic field [75] prevent us
from observing it.

B. CeCoIn5

The heavy-fermion superconductor CeCoIn5 is one of the
prime candidates for realizing the LO state. Many experi-
mental and theoretical works have been already devoted to
studying it in this respect and accumulated several important
clues for the LO state. Here in the light of the present theory,
we examine its possibility and propose further experimental
and theoretical verifications toward this end.

CeCoIn5 is known for a superconductor with strong Pauli
paramagnetic effect because of the strong Hc2 suppression
[76], the first-order transitions at Hc2 both for H ‖ ab and
H ‖ c observed by specific heat [21], and magnetization [52]
measurements. This system is favorable for the LO state since
the coherence length is short (ξ ab = 8.2 nm and ξ c = 3.5
nm) due to heavy effective mass compared to the mean free
path l ∼ 1000 nm, thus it is a clean system, and the Maki
parameter μ ∼ 10 is large enough. Thus it is legitimate to seek
the LO state in this material. Since for H ‖ ab, the situation is
complicated by the existence of the so-called Q phase [22,73],
which is a mixture of the antiferromagnetism and LO state, we
mainly focus on the simpler case of H ‖ c.
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1. NMR

We first discuss the NMR experiments on CeCoIn5 [19,20].
The observed double peak structure of In(2a) of the NMR
spectra for H ‖ c and for H ‖ ab is remarkably similar to our
Fig. 6(a) (see the spectral evolutions in Fig. 1 of Ref. [19]
and Fig. 2 of Ref. [20]). The proposed phase diagram of
the LO state for H ‖ c is also similar to our Figs. 1(b)
and 1(d) where HLO/Hc2 ∼ 0.975 for μ = 5 compared with
HLO/Hc2 = 4.7 T/4.95 T ∼ 0.95 at low temperatures for H ‖
c [19]. As mentioned before the value of HLO/Hc2 depends on
μ, but the topological shape of the LO phase diagram is hardly
changed as compared with Fig. 1(b) for μ = 5 and Fig. 1(d)
for μ = 2. In this connection, for H ‖ ab the proposed phase
diagram (see Fig. 3 of Ref. [20]) is quite modified because of
the presence of the existing spin-density wave (SDW) whose
origin is debated. Generally heavy-fermion superconductors
have a tendency to SDW instability [77,78].

We also point out that the observed Mpara (H ) (see Fig. 4
of Ref. [20]), which shows a strong rise at the onset of the
LO state, is again very similar to our results in Figs. 4(c) and
4(f). Therefore, judging from those features, the spectral shape
and the field evolution of Mpara (H ), we conclude that in the
high fields for H ‖ c the genuine LO phase is realized in this
system.

2. Entropy and specific heat

In order to confirm this identification, we consider other
thermodynamic measurements. Tokiwa et al. [79] measured
the specific heat and the magnetocaloric effect and found a
kink in the entropy dS(H )/dH at H ∼ 4.4 T of T = 0.2 K,
which coincides with the expected LO phase diagram. How-
ever, the calculated S(H ) behaviors shown in Figs. 4(c) and
4(g) are not reproduced precisely. This origin is not known at
this moment.

3. SANS

White et al. [25] performed the SANS experiment for H ‖
c and studied the vortex lattice structure in this system. Apart
from interesting vortex lattice symmetry changes as a function
of H , they observe the fundamental form factor F100(H )
(see Fig. 1 in Ref. [25]), which is favorably compared with
the insets of Figs. 5(b) and 5(f). Namely, F100(H ) gradually
increases and suddenly drops just before Hc2, which should
be contrasted with the ordinary type-II superconductors with
the monotonous and exponential decrease of F100(H ).

So far, the detailed SANS observation inside the LO phase
is not done yet. There is no data for other form factors to
be compared, in particular F102(H ) of Figs. 5(c) and 5(g),
which are a hallmark of the LO state. Here we point out the
feasibility to observe F102(H ) in this system. According to
our calculations shown in Fig. 5, the anticipated intensity of
|F102|2 is one or two orders of magnitude smaller than |F100|2.
We emphasize that this intensity is already covered by the
|F100|2 observation [25], meaning that |F102|2 can be detected
by the present facility and is quite feasible. Thus we challenge
SANS experimentalists to perform it in order to establish the
LO state unambiguously.

4. STM

One of the most difficult tasks for STM experiment is to
prepare a high-quality surface, which is not always possible,
depending on materials. CeCoIn5 is fortunate because the
STM-STS measurements are already performed [80,81] and
are guaranteed to prepare a good surface. Then we propose
the same parallel field STM-STS measurement to observe the
nodal stripe structure associated with the LO state discussed
earlier. Since judging from the amplitude of the paramagnetic
moment jump at Hc2 the thermodynamic signature of the
LO state in CeCoIn5 is far clearer than that in Sr2RuO4, we
understand that CeCoIn5 is the best candidate for confirming
the LO state by STM-STS too.

C. CeCu2Si2

Kitagawa et al. [27] have performed NMR measurements
on CeCu2Si2 and found that 1/T T1 as a function of H en-
hances just near Hc2. Since 1/T T1 ∝ N (E = 0)2, this behav-
ior is similar to that of the LO phase shown in Figs. 4(d) and
4(h). This lets the authors claim the evidence for the LO state.
It is true that this system is under strong Pauli paramagnetic
effect because of the severe Hc2 suppression observed. How-
ever, in view of high residual resistance at lower T , meaning
that the mean free path is short and of multiband nature, the
LO interpretation must be cautious. In fact, we argue [28] that
the absence of the first-order transition at Hc2 in this system
can be understood in terms of the interplay of multibands,
which otherwise hides the first-order transition expected for
a single band. We also point out that the zero-energy DOS
N (E = 0) can be enhanced more than the normal DOS at high
H , which could explain the enhanced 1/T T1 phenomenon.
Indeed this is observed in the specific heat experiment [82].
This is consistent with the STM observation [83] too. Thus
we conclude that there is no evidence for the LO state in
CeCu2Si2.

D. (BEDT-TTF)2X

The organic superconductors (BEDT-TTF)2X [X =
Cu(NCS)2 [26,84–87] and SF5CH2CF2SO3 [88,89]] are ideal
candidates for the LO state. The first-order phase transition
at Hc2 is observed by the specific heat [84] and magnetic
torque [85] measurements in X = Cu(NCS)2. Agosta et al.
[87] measured the field-dependent specific heat and found a
sharp increase of it similar to our Figs. 4(d) and 4(h) where
at the onset field HLO, the phase transition is found to be of
first order with hysteresis. This behavior is also backed up
by a NMR experiment [26] where 1/T T1 as a function of
H enhances just near Hc2. The phase diagram obtained [87]
with the enhanced Hc2 and wider LO region is somewhat
different from those in Figs. 1(b) and 1(d). This difference
may come from the different vortex nature in this organic
superconductor. It is the Josephson-type vortex without a
vortex core, and only the phase is winding around. Thus the
orbital depairing effect is less severe here, stabilizing the
LO at higher fields compared with our case. Since no one
succeeded in microscopically describing the Josephson vortex
nature, it is difficult to reproduce the LO phase diagram. The
situation may be more akin to the cases without orbital
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depairing. In fact, according to Machida and Nakanishi
[10], the phase diagram with diverging Hc2 is similar to that
obtained experimentally [87], although the divergence itself
is an artifact due to quasi-1D band modeling, but the tendency
captures the essential point.

As for X = SF5CH2CF2SO3, the phase diagram is ob-
tained [88], which is similar to our Figs. 1(b) and 1(d),
but the LO region is much wider than ours. The estimated
LO wavelength [89] normalized by the coherence length is
2.2–13.1, which is somewhat shorter than our estimate in
Figs. 5(a) and 5(e).

IX. CONCLUSION

We quantitatively explore the field evolution of the LO
states for the typical and canonical example of 3D Fermi
sphere and s-wave pairing, by self-consistently solving the
microscopic Eilenberger equation in the 3D space of the
vortex lattice and the LO modulation along the field direction.
Our calculation, which is reliable in the quantitative level,
fully considers the Pauli paramagnetic and orbital depairing
effects simultaneously. In order to facilitate the identification
of the LO state by experiments, we estimate the H-T phase di-
agram, NMR spectrum, FLL form factors by SANS, and other
thermodynamic quantities, such as paramagnetic moment,

entropy, and zero-energy density of states as a function of the
magnetic field in FFLO vortex states. We compare the two
cases of strong and intermediate Pauli paramagnetic effect.
We also discuss several candidate materials in the light of the
present theory.

There are several issues that are not covered here: the
effects of Fermi surface dimensionality; 3D versus 2D
where magnetic field direction relative to the Fermi surface
anisotropy becomes important [90], leading to a different
phase diagram and different nature of the phase transitions.
This remark is particularly true for Sr2RuO4, CeCoIn5, and
(BEDT-TTF)2Cu(NCS)2 as these materials are known to have
quasi-2D Fermi surfaces. Here we confined ourselves to the
LO state, but the FF state [47] is left untouched.
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