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Spherically symmetric formation of localized vortex tangle around a heat source in superfluid 4He
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We study the dynamical process of the vortex tangle development under a spherically symmetric thermal
counterflow around a heat source submerged into a bulk superfluid 4He. We reveal a peculiar vortex dynamics
that is unique to this geometry, which is greatly diverse from the vortex dynamics in a homogeneous counterflow.
Two types of heater are considered here, namely, a spherical heater with a solid wall and a pointlike heater. In both
cases, a spherical vortex tangle is formed surrounding the heater. The mechanism of vortex tangle development
in the vicinity of a solid wall is strongly governed by the Donnelly-Glaberson instability; while, far away from
the heater or around a point heater, the mechanism is governed by the dynamics of polarized vortex loops in
radial counterflow. The decay process of such localized vortex tangles is also investigated and is compared with
that of homogeneous vortex tangles.
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I. INTRODUCTION

The superfluid 4He has an extremely high thermal conduc-
tivity and acts as an excellent coolant in experiments con-
ducted at extremely low temperatures [1,2]. The high thermal
conductivity reflects the two-fluid nature of the superfluid
4He. At 0 K, the macroscopic quantum effect governs the
entire fluid and forms a ground state without any entropy. The
type of flows allowed in such a system is either a potential
flow or a circulatory flow around a filamentary topological
defect with a quantized circulation, i.e., a quantized vortex. On
the other hand, at a finite temperature, the thermal excitations
in the system form a viscous fluid with nonzero entropy s,
resulting in a so-called normal fluid [3,4].

The highly effective thermal transport is achieved by the
normal fluid with velocity vn proportional to the heat flux q
from a heat source per unit area, expressed as

q = ρvnσT, (1)

where ρ is the density of the fluid and σ ≡ s/ρV is the specific
entropy that is dependent on the temperature T . We consider
a long closed pipe of cross-sectional area A with a heater of
heating power W installed near one end and filled up with
superfluid 4He. The normal-fluid component is driven from
the hot end to the cold end, while the superfluid component
is driven in the opposite direction to conserve the total mass
of the fluid in the pipe. The relative velocity vns = |vn − vs|
between the two fluids is thus given by

vns = 1

ρsσT

W

A
, (2)

where ρs is the density of the superfluid component. While
the heating power W is smaller than some critical value Wc,
the relative velocity vns increases linearly with W . A series
of milestone experiments pioneered by Vinen, in the late
1950s [5–8] showed that the heating power dependence is

significantly modified above the critical power Wc [9–12].
It was concluded that the modification results from the for-
mation of a quantized vortex tangle, which is identified as
a turbulent state of the superfluid component or quantum
turbulence [13–16]. Since the core of a quantized vortex of
radius a ∼ 1 Å scatters the thermal excitations that constitute
the normal-fluid component, a vortex filament effectively feels
the mutual friction acting on it, which allows the energy
transport between the normal fluid and the vortices. The
kinetic energy stored in a vortex filament per unit length is
roughly estimated as ε ∼ ρsκ

2/4π with quantized circulation
κ = h/mHe ≈ 10−3 cm2/s, where h is Planck’s constant and
mHe is the mass of a 4He atom. This indicates that the energy
transfer to the vortices results in the increase in the total
length or/and the length density of a vortex tangle. With a
fully developed vortex tangle, where the vortex growth rate
and the decay rate are balanced, the effective heat transport
mediated by the normal fluid is disturbed, and its effective
thermal conductivity drops significantly.

The sudden drop in the thermal conductivity in the vicinity
of a hot spot created in a superfluid 4He is a serious challenge
in experiments because it may quench the entire system and
prevent the fluid from working as an efficient coolant. It is,
therefore, important to understand how a vortex tangle evolves
near a heater under a nonuniform thermal counterflow profile.
Furthermore, understanding the dynamical process of vortex
tangle propagation under such a counterflow would provide
insights on the “lost energy” in the micro big-bang experiment
in Grenoble [17,18], as well as the “peculiar motions” of
micron-sized particles trapped on the superfluid 4He surface
[19,20]. The majority of preceding experimental [21–26] and
numerical [27–36] studies mainly addressed the properties of
steady vortex tangles in a thermal counterflow in a narrow
channel. However, the tangle formation processes in different
thermal counterflow profiles have rarely been studied until
the recent numerical works carried out by Varga [37] and
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Sergeev et al. [38]. In this paper, we present the results of
our numerical simulation on the investigation of localized
inhomogeneous vortex tangles formed around a spherical heat
source immersed in the superfluid. The decay process of such
localized vortex tangles is also compared with the homoge-
neous ones in terms of the phenomenological parameter χ2 in
the Vinen’s equation [7].

We suppose a small number of remnant vortices in the
system and simulate their time evolution based on the vortex
filament model (VFM) under a spherically symmetric steady
thermal counterflow. In the simulations, vortices are allowed
to reconnect to the spherical wall of the heater, so that a role
of a solid boundary in the real experiments can be investi-
gated. Also, in this numerical study, we suppose a steady
thermal counterflow, i.e., a fixed normal-fluid flow profile
is prescribed, and disturbances in its profile are neglected.
The feedback on the normal-fluid profile due to the vortices
through the mutual friction is not discussed as it is beyond the
scope of this paper.

The paper is organized as follows. In Sec. II, we briefly
introduce our numerical scheme and the overview of single
vortex dynamics. In Sec. III, we present the results of VFM
simulations and discuss the dynamical processes of the tangle
development around a spherically symmetric thermal coun-
terflow. The heat source is assumed to have a solid wall to
which vortices can connect, and we also present the analysis
of the structure of the vortex tangle. The heater discussed in
Sec. IV is pointlike, and we investigate the vortex evolution at
some distance apart from the heat source. Further, we discuss
the characteristics of the decay process of the localized vortex
tangles. Finally, the summary is presented in Sec. V.

II. DYNAMICS OF VORTICES

A. Numerical method: vortex filament model

The motion of a quantized vortex follows the local super-
fluid flow, as described by Helmholtz’s theorems. Taking into
account the temperature-dependent mutual frictions, α and α′,
the equation of motion of a vortex segment at s(ξ ) is [27]

ds(ξ, t )

dt
= vs + αs′(ξ ) × vns − α′s′(ξ ) × [s′(ξ ) × vns],

(3)

with

vs = vs,ind + vs,BS and vn = vn,ind. (4)

Here, ξ is the arc-length parametrization of the vortex fila-
ments, and s′(ξ ) is the unit normal vector along the vortex
filament at ξ , and vs,ind and vn,ind refer to the velocity fields
thermally excited by the heater. The superfluid velocity vs,BS

includes velocity contribution from all the vortices, and is
written in the form of Biot-Savart integral;

vs,BS = κ

4π

∫
L

s′(ξ ) × (s(ξ0) − s(ξ ))

|s(ξ0) − s(ξ )|3 dξ

= vs,loc + vs,nonloc. (5)

The divergence of the integral in the right-hand side of Eq. (5)
as ξ → ξ0 can be avoided by separating it into two terms, a
localized induction velocity vs,loc ≈ βs′ × s′′ and a nonlocal

L

R = 1/|s (ξ)|

s(ξ)
p = 1

R
[μ

m
]

L [μm] L [μm]

]s/mc[]s/mc[

(a)

(b) (c)

FIG. 1. (a) Schematics of a spherical heater and a vortex ring of
radius R separated by a distance L. In the absence of the heater, the
vortex travels in the direction of s′ × s′′. The heater tends to “pull” the
vortex toward it. (b) and (c) The vector field representation of Eq. (8)
at T = 1.6 K with p = 0 and p = 1, respectively (color online). The
color indicates the magnitude of the flow

√
L̇2 + Ṙ2 at each location.

contribution vs,nonloc, where β = (κ/4π ) ln(R/a) and s′′ is the
second derivative of s(ξ ) with respect to ξ . The interaction
between the normal fluid and the vortices takes place through
vns = vn − vs in the mutual friction terms in Eq. (3). By
discretizing the vortices in line segments of a suitable reso-
lution �ξ , we solve the integrodifferential equation. Also, the
time-integration is calculated with a suitable time resolution
�t , adopting the fourth-order Runge-Kutta scheme.

To simulate a realistic spherical heater onto which vortices
can be trapped, calculation of vortex dynamics is subjected
to a spherical solid boundary condition. The condition can be
satisfied by finding a boundary induced velocity field vs,b such
that

(vs,BS + vs,b) · n̂ = 0 (6)

holds at the surface of the sphere of radius r0. Here, n̂ is
the unit normal vector on the surface. Since the velocity vs,b

satisfies the system of equations

∇ × vs,b = 0,

∇ · vs,b = 0, (7)

we can solve Eq. (7) in terms of the associated Legendre
polynomials [27].

B. Motion of a vortex ring in spherical thermal counterflow

For the sake of clarity in the later discussion, we shall
consider a single vortex ring traveling toward and away from
a point heater immersed into a superfluid 4He bath at T =
1.6 K as shown in Fig. 1(a). The heater is a sphere of radius
a = 100 μm, around which we prescribe the spherical thermal
counterflow such that the relative velocity between normal
fluid and superfluid at some distance r from the center of
the heater is vns(r) = 1

ρsσT
W

4πr2 r̂. This can be obtained by
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replacing the area A in Eq. (2) with 4πr2. We consider Eq. (3)
for this case. By ignoring the nonlocal term in Eq. (5), the
superfluid velocity vs in Eq. (4) becomes

vs ≈ βs′ × s′′ − ρn

ρs

v0

L2 + R2
r̂, (8)

where v0 ≡ W/4πρσT , and L is the distance between the
centers of the heater and the vortex ring. Substituting Eq. (8)
into Eq. (3), one obtains a system of differential equations for
the distance L and the vortex radius R

L̇ ≈ (−1)p β

R
− ρn

ρ

v0

L2 + R2
cosθ − (−1)p αv0

L2 + R2
sinθ, (9a)

Ṙ ≈ −ρn

ρ

v0

L2 + R2
sinθ − α

[
β

R
− (−1)p v0

L2 + R2
cosθ

]
, (9b)

where θ = tan−1(R/L) and the terms with α′ are neglected.
In Eq. (8), p is a parameter indicating the direction of the
ring propagation; p = 0 if the orientation of the vortex, i.e.,
s′ × s′′, is radially outward, and p = 1 if that is radially
inward. Figures 1(b) and 1(c) show Eq. (8) as vector fields
(L̇(L, R), Ṙ(L, R)) with p = 0 and p = 1, respectively, at T =
1.6 K. The trajectory of a vortex can be obtained by drawing a
smooth stream line parallel to the vector at each point from
an arbitrary initial point (L0, R0) in the coordinate. In the
case with p = 1, a vortex of any radius R shrinks itself to
vanish at some distance L away or “collides with” the heater
at L = 100 μm with time. On the other hand, when p = 0, a
vortex could grow in size (i.e., Ṙ � 0) depending on its initial
values, R0 and L0. For L � R, one may further approximate
Eq. (9b) to obtain the condition for a vortex ring to grow:

Ṙ ≈ −α
β

R
+ v0

L2
� 0, (10)

or, equivalently, R � αβ

v0
L2, where αβ

v0
∼ O(10−5) μm−1.

Thus, roughly speaking, for a given distance L, if radius R
is large enough to satisfy the condition, it can grow, but the
approximations in Eq. (10) may no longer be valid at some
point as R grows.

Though in a highly developed vortex tangle, this simple
single-loop analysis may not hold without modification, we
can learn from this analysis that the orientation of each vortex
ring that constitutes the tangle tends to orient itself in the
outward direction. In preceding studies with a simple channel
flow geometry, the homogeneity or/and isotropy of the vortex
orientations are often assumed, which allows us to derive
Vinen’s equation which predicts the time evolution of a vortex
line density [7]. However, in the present study there is no
guarantee that the same equation holds because the vortex
orientations are polarized.

III. VORTEX TANGLE NEAR A SPHERICAL HEATER

A. Development of a vortex tangle

A sphere of a radius r0 = 0.1 mm is immersed in a bulk
superfluid 4He. The length of each vortex segment �ξ is set
to be within the range 1 ∼ 2 × 10−2 mm. Now, the sphere is
assumed to be heated homogeneously and sets up a steady

thermal counterflow profile of the form

vns = vns,0
r2

0

r2
r̂, (11)

where vns,0 is the magnitude of the relative counterflow ve-
locity at the surface r = r0. In reality there should exist a
“thermal boundary layer” with finite thickness where the two
fluids are accelerated and the profile in Eq. (11) is not valid
in the vicinity of the heater, as it is reported in Refs. [25,26].
However, we ignore such effect in this study, assuming the
width of the layer is much less than the particle radius r0.

Figure 2 shows the time evolution of six seed vortices
symmetrically placed near a heater (see also Ref. [39] for the
corresponding animation). In the simulation, we set the tem-
perature of the system to be T = 1.3 K and the counterflow
velocity to be vns,0 = 100 cm/s. Out of the six vortices, four
are initially reconnected onto the spherical surface. An end
of the vortex line reconnected to the heater surface is bent
in order to meet the boundary condition of Eq. (6), i.e., the
vortex segment at the surface needs to be perpendicular to the
surface so that the vertical velocity component vanishes where
they meet on the surface. As we discussed in Sec. II B, under
a radial counterflow, the orientation of vortices are selected
in a way that they tend to induce velocity away from the
heater, which seems to explain a spiral-shape structure formed
near the vortex-surface intersection (see Fig. 3). The rapid
growth of the tangle due to the spiral-shaped structure is also
understood as the manifestation of the Donnelly-Glaberson
(DG) instability [4,40,41]. In the vicinity of the heater surface,
the magnitude of the counterflow is strong, which makes the
vortex lines unstable and excites Kelvin waves along them.
Again, the Kelvin waves with outward orientation are likely
to be amplified; while the others tend to vanish because of
the converging counterflow. This growth mechanism driven
by DG instability would not hold for vortices that traveled far
enough from the heater because the counterflow magnitude
drops as 1/r2. We discuss the vortex tangle growth mechanism
out of the DG instability regime in Sec. IV.

B. Radial vortex line density

The vortex line density of the tangle as a function of the
radius is plotted in Fig. 4. A single curve in the plot shows
the radial vortex line density (RVLD) at time t in the entire
tangle, and the change in color (blue → red) indicates the
lapse of time (early → late). Although the maximum RVLD
has an upper bound due to the numerical limitation (Lmax ∼
�ξ−2), the tangle seems to grow unboundedly, as long as
some vortices are kept reconnected onto the heater surface at
r = r0(= 0.1 mm).

With time, a bottleneck appears in RVLD near the heater,
which may be understood as follows: The vortices in the
tangle are constantly pulled toward the center of the heater by
its induced superfluid velocity vs,ind. At the same time, a free
vortex ring travels approximately with a localized induction
velocity vs,loc in Eq. (5), which is inversely proportional to the
local curvature radius. Therefore a smaller radius of a vortex
ring results in a stronger resistance to the counter flow that
pulls it toward the heater. In the vicinity of the surface, only
a few vortices can survive in the strong counterflow, while
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(a) (d)(c)(b)

FIG. 2. [(a)–(d)] Snapshots of development of a vortex tangle (blue filaments) around a heat source of radius 0.1 mm (the red sphere) at
t = 0.0, 2.0, 4.0, and 6.0 ms, respectively. A cube of length 1 mm is drawn as a reference in each panel.

others are ‘sucked’ into the heater. On the other hand, the
counterflow becomes weaker as 1/r2, and more and more
vortices can overcome the pull as they go farther away from
the heater.

IV. VORTEX TANGLE AROUND A POINT HEATER

In Sec. III, we have considered the case where the initial
seed vortices are placed relatively close to the heater, and
some of them are reconnected onto it. In this section, however,
we treat the heater as a point in order to investigate the tangle
development process far away from it, assuming no vortices
are trapped on the heater.

A. Development of a tangle

Supposing a heater placed at the origin is pointlike, we
ignore the boundary condition of Eq. (6), but the radius of
the heater is set to be r0 = 0.1 mm to obtain the counterflow
velocity profile according to Eq. (11). The vortex resolution is
�ξ ∼ 0.5 × 10−2 mm for this simulation. By placing several
seed vortices we investigated their development into a vortex
tangle, and its dependence on the counterflow magnitude vns

and the temperature T .

(a) (d)

(h)(g)(f)

(c)(b)

(e)

FIG. 3. [(a)–(h)] Magnified snapshots of the development of the
same vortex tangle. They are taken every after �t = 0.2 ms from
t = 4.0 ms. Spiral structures are likely to be excited on an edge of a
vortex filament that reconnects the heater surface.

A typical time-evolution process is summarized in Fig. 5.
The panels (a)–(e) in Fig. 5 show the snapshots of the simula-
tion (see Ref. [39] for the corresponding animation). A single
dot in the panels (f)–(j) of Fig. 5 shows a vortex loop in the
tangle corresponding to the moments when the snapshots (a)–
(e) are taken (see Ref. [39] for the corresponding animation).
The horizontal and vertical axes in the panels (f)–(j) represent
the radial distance d of a vortex loop, defined as the average
distance between the origin and each vortex segment within a
single loop, and the size R of the loop is defined as the average
distance between each vortex segment and the center of the
loop. In terms of the lengths defined in Fig. 1(a), the radius
distance d is expressed as

√
L2 + R2. The color of the dot in

the panels indicates the loop polarization D, which is defined
as

D = r̂ ·
∮

a loop
s′(ξ ) × s′′(ξ )dξ/N , (12)

where r̂ is the unit radial vector at the center of the loop, and
N is a properly chosen numerical factor that normalizes the
integral. The vortex loops with D ≈ 1 travel radially outward
and are colored in red; while, the ones with D ≈ −1 travel
radially inward and are colored in blue. It turns out that the
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FIG. 4. Radial vortex line density (RVLD) L. A single curve
plots RVLD of the tangle at some time t . r is the radial distance from
the center of the heater of radius r0 = 0.1 mm.
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FIG. 5. [(a)–(e)] Snapshots of vortices that grow to be a vortex tangle around the point heater. The parameters, vns and T are set to be
50 cm/s and 1.9 K, respectively. [(f)–(j)] Vortex size distribution in the tangle at corresponding time (color online). Each dot in the plots
represents a vortex loop with some size R (vertical axis) at some distance d (horizontal axis) with some orientation indicated by the loop
polarization D (color from red to blue). See Eq. (12) and the text for the definition of D.

small number of initial vortex loops grows swiftly. The loops
quickly form a spherical tangle surrounding the point heater.
The tangle front propagates radially outward, as it leaves a
hollow region inside the tangle. Solid slopes of roughly d =
R are drawn for reference in Figs. 5(f)–5(j). Apparently, the
maximum loop size Rmax appears in the vicinity of the slopes
at each panel, which indicates that the value of Rmax can be
used as a good measure of the radius of the tangle.

The existence of the large vortex loops of size comparable
to the tangle size with polarization D ≈ 0 seems to play the
key role for the tangle front propagation. Such large loops
frequently collide with each other and emit small vortices with
random orientations. The orientations, however, are polarized
because of the radial thermal counterflow. As we have seen in
Sec. II, small vortices with inward orientation shrink, while
ones with outward orientation can survive for longer time.
Therefore, if the radii of outward vortices are small enough
to overcome the counterflow that tries to suck them into the
heater, then the radius of the vortex tangle can grow, which
would explain the monotonous growth in radius of the tangle
with a hollow inside. This tangle front propagation process
driven by small outward vortices can be observed at the
outmost region of the tangle in Figs. 5(h), 5(i) and 5(j). Also,
see Ref. [39].

The tangle front propagates radially outward against the
superfluid velocity vs,ind induced by the point heater. The
relative counterflow profile vns at the tangle front Rf is given
by Eq. (11), equating r = Rf. Assuming that the conservation
of mass is valid locally, the velocity vs,ind can be obtained
from the following relation:

ρsvs,ind(Rf ) + ρnvn,ind(Rf ) = 0, (13)

where vn,ind − vs,ind = vns. Since a vortex ring of radius R
travels with velocity vs ∼ β/R, the only vortex loops with
radius Rc < β/vs,ind(Rf ) can travel against the counterflow
and gradually expand the “edge” of the tangle, while the other
vortices are presumably well-confined within the region of
radius Rf.

B. Total vortex line length (TVLL) and decay process

When it comes to the study of the homogeneous vortex
tangles, the vortex line density (VLD) L is the quantity that
is uniquely determined experimentally and computationally
and is frequently used to analyze the nature of the tangles.
However, in the case of the localized inhomogeneous vortex
tangles, there remains some arbitrariness in the value of L
depending on the scheme to estimate the volume V occupied
by the vortex lines in the tangle. The maximum value of
spatially independent VLD L may be achieved if the volume
V is estimated by the box-counting method, i.e., dicing up
the computational space into cubes with suitable lengths, we
count the number of the cubes that contain the (segments of)
vortices and calculate the total volume VBC. If we take the
lengths of the cubes to be the average vortex loop size, then
L = l/VBC, where l is the total vortex line length (TVLL),
gives the VLD averaged over the volume. On the other hand,
since most of the vortices in the tangle are localized in a
sphere of volume Vloc = 4πR3

f /3, the minimum value of L
is achieved when we let the volume V be a constant such
that V > Vloc for all time. Then the TVLL l in this case is
essentially the same as the VLD L, which is the quantity we
shall mainly discuss in this section.

Figure 6(a) shows the profile of the TVLL l as a function
of time. Initially, l (t ) grows rapidly within the region of radius
Rf. As we have discussed in Sec. IV A, in the initial growing
stage, there are number of large vortex loops of the order of
the tangle size. Since a large vortex loop cannot travel against
the thermal counterflow, those with large radii or small local
curvatures are essentially enclosed in the spherical region,
inside of which vortices grow in length via mutual friction and
in number because of the repeated reconnections. However,
the growth rate decreases, and the total length l (t ) finds its
maximum value lmax. In the case of T = 1.8 K and vns,0 =
30 cm/s, the tangle grows up to lmax ≈ 15 cm at time t ≈ 4 s,
after having some fluctuation around the maximum value for
about a few seconds. Then, it finally starts to decay gradually.
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FIG. 6. (a) Total vortex line length (TVLL) l as function of time
t for T = 1.8 K and vns,0 = 30 cm/s. The solid circle represents the
maximum length lmax. (b) TVLL peaks lmax as function of T and
vns,0 (color online). The radii and the depth of the circle’s face-color
represent the maximum length lmax and the time it takes to reach the
length at each point in the parameter space (T, vns,0 ), respectively.
However, at (T, vns,0 ) = (2.1, 20) and (2.1, 10), l (t ) tends to grow
unboundedly with time, so the radii do not reflect the actual vortex
line length.

The dependence of lmax on T and vns,0, is summarized
in Fig. 6(b). The radii of the circles are proportional to the
values of lmax at (T, vns,0), and the thickness of the circle color
indicates the time it takes to reach lmax.

Below T ≈ 2.0 K, the TVLL profile l (t ) has a plateau
for several seconds after a swift growth, during which the
maximum value lmax is attained. Above T � 2.1 K, on the
other hand, the tangle behaves differently since the value of
the mutual friction coefficient α′ becomes negative. If T �
2.1 K, there is a critical velocity vc, between vns,0 = 20 cm/s
and 30 cm/s, that determines whether a tangle can develop or
not.

Above the critical velocity vc, the tangle may not be
formed; while, below vc, the tangle tends to grow unbound-
edly. Aside from the “gradual decay” while the heater is
on, we have also investigated the “free decay” turning off
the heater suddenly during the tangle development process.
Figure 7(a) plots 1/l as a function of time t . The broken curve
represents the“gradual decay” where the heater is kept on. At
time tfree indicated by the solid circles on the 1/l plot, the
point heater is turned off, and the time evolutions of the tangle
for time t > tfree are simulated. The solid branches departing

t [s]

1/
l
[
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−
1
]

t [s]
2π κ

1 L
[
ar

b.
un

it
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χ2
≈ 3.79
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(b)

FIG. 7. (a) Comparison between “gradual decay” and “free de-
cay.” The system is kept at T = 1.8 K, and the relative velocity
before turning of the heater is vns,0 = 30 cm/s. (b) Normalized 1/l
plots for both gradual and free decay. The TVLL l is normalized by
the volume VBC.

from the broken curve represent the results of the “free decay”
simulations. After turning off the heater, the TVLL l tends
to decay inversely proportional to time for several seconds
as it is indicated by the straight lines in Fig. 7(a). What this
indicates is that the form of the decay term coincides with that
of Vinen’s equation (VE) [7](

dL
dt

)
decay

= −χ2
κ

2π
L2 (14)

that describes the time evolution of a homogeneous VLD L,
where χ2 is a phenomenological parameter of order unity.
Substituting L = l/VBC into Eq. (14), we obtain

dl

dt
− l

VBC

dVBC

dt
= − χ2

VBC

κ

2π
l2. (15)

Since the computational result shows that the second term in
the left hand side of Eq. (15) is smaller than the first term by
over an order of magnitude, we ignore the second term. Then,
Eq. (15) has a simple solution of the form

1

l
= 1

l0
+ χ2

VBC

κ

2π
t, (16)

where l0 is the initial TVLL at t = tfree. Since L = l/VBC, the
value of χ2 can be found as a slope by rescaling the vertical
axis 1/l to be (2π/κ )(1/L). Rescaling all the “gradual decay”
and “free decay” profiles in Fig. 7(a), it turns out that all
curves tends to collapse onto a single line of the slope χ2 ≈
3.79, as we can see in Fig. 7(b). Considering the fact that the
experimental value of χ2 in a homogeneous vortex tangle is
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of order unity, the value we obtained here with the localized
vortex tangle may not be unreasonable, although the value of
χ2 seems to be sensitive to the volume V occupied by the
vortex loops. Here, we have applied the box-counting method
to estimate the volume VBC. However, the way of estimating
the occupied volume is not unique, and there remains some
uncertainty in the determination of the value of χ2 in the lo-
calized vortex tangles. Also, the approximation which allows
us to obtain Eq. (16) only holds for sufficiently short time
after turning off the heater, since the average distance among
the vortices becomes larger than the average vortex loop size,
which leads to the underestimation of the volume occupied by
the vortices. The consequence of this effect can be observed
in Fig. 7(b), i.e., the VLD L is overestimated, and the solid
curves tend to drop below the broken curve whose slope is
roughly χ2 ≈ 3.79 after following it for at least a few second.

V. SUMMARY AND DISCUSSION

We performed simulations based on VFM in order to in-
vestigate the evolution of a vortex tangle around a spherically
symmetric thermal counterflow in superfluid 4He. For the
spherically symmetric heat source, we considered two types
of heaters. One is a sphere with solid boundary on which
vortices can connect, and the other is a point-like heater. In
both the cases, only the steady thermal counterflow profile is
prescribed and any modulations in the normal-fluid profile are
not considered in this work.

Our simulations with a spherical heater reveal that a spher-
ical vortex tangle is developed around it. Under a strong
radial counterflow, the orientation of vortex loops tends to be
polarized and they increase in size. When some vortices are
connected to the solid wall of the heater, the tangle seems
to grow unboundedly, forming a spiral-shape structure on
vortex filaments. The spiral structure may be identified as
Kelvin waves that are excited on the filaments due to the
thermal counterflow (DG instability). The unbounded growth
in vortex line would eventually lead our simulation to violate
our assumption, namely, the disturbance in the normal fluid
profile is no longer negligible. In the vicinity of the heater, our
current numerical scheme is, thus, only valid for simulating
the early stages of the vortex tangle development, where radial
vortex line density (RVLD) is L � 105 cm−2. If the normal

fluid is greatly blocked by a thick wall of vortex tangle of L �
108 cm−2, then a non-negligible temperature gradient may be
accumulated within the tangle, as pointed out in the recent
work by Sergeev et al. [38].

The simulations with a point-like heater resolve problem
of the unbounded growth. Since the radial counterflow drops
as 1/r2, the vortex creation via DG instability becomes less
dominant as vortices get farther away from the heat source.
Again, a spherical vortex tangle is formed around the point
heater, but in this case, a hollow region is left inside the tangle,
as the tangle front propagates radially outward. The tangle
development seems to have two phases; the production phase
and the decay phase. During the production phase, vortices
are more or less confined in a small region of radius Rf. Thus
the vortex loops in the tangle grow swiftly not only in lengths
via mutual friction, but also in number because they repeat-
edly reconnect with each other within the region. However,
the growth is balanced by the decay due to the mutual friction,
and the TVLL finds its maximum value. During the decay
period the number of small vortices in the tangle increases,
and more vortices are able to “escape” the region of radius
Rf, overcoming the counterflow. Since the extra dissipation of
vortex loop reduces the number of reconnections, the tangle
starts to decay, which is what we call the “gradual decay.”
If we turn off the point heater during the tangle development
process, the tangle decays freely. We call such a decay process
the “free decay” in contrast to the “gradual decay.” From the
computational results we are able to extract the information of
the decay constant χ2, although the value has an uncertainty
since the volume that contains the vortices can be chosen
somewhat arbitrarily.

In the present study, the normal-fluid profile is kept steady,
however, such an assumption may not hold in the thermal
boundary layer in the vicinity of the heater surface, or in a
highly dense vortex tangle as we have discussed. We would
like to address these issues in the future work by coupling the
normal-fluid dynamics to VFM.
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