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Interplay of Fermi velocities and healing lengths in two-band superconductors
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By numerically solving the Bogoliubov–de Gennes equations for the single vortex state in a two-band
superconductor, we demonstrate that the disparity between the healing lengths of two contributing condensates
is strongly affected by the band Fermi velocities, even in the presence of the magnetic field and far beyond
the regime of nearly zero Josephson-like coupling between bands. Changing the ratio of the band Fermi
velocities alters the temperature dependence of the condensate lengths and significantly shifts parameters of
the “length-scales locking” regime at which the two characteristic lengths approach one another.
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I. INTRODUCTION

Characteristic length scales associated with different con-
tributing condensates constitute one of the cornerstone fea-
tures of multiband superconductors. Multiple condensates in
one system interfere, which results in unconventional coherent
phenomena [1]. Effects of such interference are most pro-
nounced when the spatial lengths of the contributing conden-
sates are notably different. Various definitions of such lengths
are in use, including those related to the gap function slope in
the vortex core [2,3], the maximum density of the supercurrent
[4], the radius of a cylinder containing energy equal to the
condensation energy [5,6], or the healing length along which
the condensate reaches 60%–80% (there are different choices)
of its bulk value [7–9]. All such definitions produce similar
results (except of the slope definition that fails at nearly zero
temperatures due to the Kramer-Pesch collapse [10,11]) and
either of them can be employed to characterize the condensate
spatial scales.

Since the 1970s it is well known [12] that the spatial
lengths of different band condensates in multiband materials
are the same in the Ginzburg-Landau (GL) domain, see also
Refs. [13–18]. However, using the perturbative expansion of
the microscopic equations in the small deviation from the
critical temperature Tc to one order beyond the GL theory
(extended GL), one finds that the band-dependent condensate
lengths can be different [9,17,18]. This conclusion was con-
firmed by numerically solving the two-band Bogoliubov–de
Gennes (BdG) equations [8]. Moreover, it was also demon-
strated [8] that the condensate characteristic length associated
with a weaker band notably increases when approaching the
critical temperature of this band taken as a separate supercon-
ductor (the hidden critical point). As the length of the stronger
band condensate remains unaffected in this case, one can get
an increased difference between the two lengths governed
by the hidden criticality. On the other hand, the condensate
lengths for sufficiently strong interband couplings tend to be
nearly the same, as demonstrated in Refs. [9,19]. This can
possibly explain the recent scanning tunneling microscopy

measurements [20] and can be referred to as the “length-scales
locking” [19].

Though the disparity between the condensate lengths is
more pronounced for weaker interband couplings, the length-
scales locking regime can be shifted toward larger values of
the interband couplings. Indeed, it was recently shown within
the extended GL formalism [9] that the difference between the
condensate healing lengths in a two-band superconductor is
very sensitive to the ratio of the band Fermi velocities vFi (i =
1, 2) which varies within a wide range, see, for example,
Table I illustrating some experimental results. Furthermore,
this ratio can be altered by doping in superconductors [21],
changing the topology of the Fermi surface [22], engineer-
ing the interface of the system [23], applying the pressure
[24,27], and changing the characteristic size of nanoscale
superconductors via the quantum-size effects [28–33]. As the
impact of the Fermi velocities on the condensate lengths was
investigated by means of the extended GL formalism and
in the absence of the magnetic effects, it is of importance
to compliment the conclusions of Ref. [9] by investigating
temperatures far below Tc and including the magnetic field.

In this work we explore the interplay between the band
Fermi velocities and the condensate healing lengths by numer-
ically solving the two-band BdG equations for a single vortex
solution in the entire range of the temperatures below Tc. As
the local magnetic field is not neglected, the BdG equations
are supplemented by Ampere’s law introducing an additional
magnetic coupling between the contributing condensates. The
special attention is also given to the effect of the hidden
criticality at which the disparity between the healing lengths
is most pronounced.

The paper is organized as follows. In Sec. II we outline the
formalism of the BdG equations for a single-vortex state in a
two-band condensate. The numerical results and related dis-
cussions are given in Sec. III including three subsections. The
first subsection presents results for the zero temperature T =
0 and zero external field H = 0. Here one can find the healing
lengths ξ1 and ξ2 as functions of the Fermi velocities ratio
vF2/vF1 and the interband coupling g12. For illustration, we
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TABLE I. The band Fermi velocities vF1 and vF2 of two-band
superconductors in the units of 105 m/s. The indices 1 and 2
correspond to the stronger and weaker bands, respectively.

Material vF1 vF2 vF2/vF1 Ref.

2H-NbS2 3.1 0.155 0.05 [24]
Ba0.85K0.15Fe2As2 – – 0.10a [25]
Ba0.6K0.4Fe2As2 – – 0.95 [25]
MgB2 4.4 8.2 1.86 [26]
2H-NbSe2 0.55 10 18.2 [27]

aExtracted from the upper critical field Hc2, with H parallel to the c
axis.

also show how the healing lengths are extracted from the spa-
tially dependent gap functions. The results for T �= 0 and H =
0 are discussed in the second subsection. Here we investigate
the healing lengths as functions of T for different parameters
vF2/vF1 and g12. In the third subsection we discuss the results
for T �= 0 and H �= 0. Conclusions are given in Sec. IV.

II. FORMALISM

To investigate how the spatial scales of the partial band
condensates in a two-band superconductor are sensitive to the
band Fermi velocities, a single vortex solution of the two-band
BdG equations is considered in a cylinder with the vortex
line parallel to the z axis of this cylinder. We utilize the
standard microscopic model of a two-band superconductor
[34,35] with the conventional s-wave pairing in both bands,
controlled by the symmetric coupling matrix gii′ (i, i′ = 1, 2).
The intraband couplings g11 and g22 are chosen so that the
critical temperature of band 1, taken as a separate supercon-
ductor, is larger than the critical temperature in the decoupled
band 2, i.e., we have a stronger band 1 and weaker band 2.
The two condensates are coupled through the Josephson-like
transfer of Cooper pairs controlled by g12. The parabolic
single-particle energy dispersion is assumed for charge car-
riers in both bands. For our calculation we choose quasi-two-
dimensional (2D) bands, as multiband materials often exhibit
quasi-2D Fermi surfaces, see, e.g., Ref. [36]. An external
magnetic field is applied along the z axis of the cylinder
while the dependence of the quasi-2D band dispersions on
the z projection of the single-particle momentum is minor and
neglected in our calculations. The superconductor is in the
clean limit.

The corresponding BdG equations read [8,37]
[

Ĥei �i(r)
�∗

i (r) −Ĥ∗
e,i

][
uiν (r)
viν (r)

]
= Eiν

[
uiν (r)
viν (r)

]
, (1)

where uiν (r) and viν (r) are the electronlike and holelike
wave functions associated with band i (ν is the set of the
relevant quantum numbers); Eiν and �i(r) are the correspond-
ing quasiparticle energy and the spatial pair potential (gap
function); and the single-particle Hamiltonian for the charge
carriers in band i is given by

Ĥe,i(r) = − h̄2D2

2mi
− μi, (2)

with mi the electron band mass, μi = miv
2
Fi/2 is the chemical

potential measured from the lower edge of the corresponding
band, D = ∇ − i e

h̄cA, and A(r) is the vector potential.
As the problem is solved in a self-consistent manner, the

band gap functions and the vector potential depend on the
solutions of Eqs. (1) as

�i(r) =
∑
i′ν

gii′ ui′ν (r)v∗
i′ν (r)[1 − 2 f (Ei′ν )] (3)

and

∇ × ∇ × A(r) = 4π

c
j(r), (4)

where f (Ei′ν ) is the Fermi-Dirac distribution and the super-
current density is given by

j(r) =
∑
i′ν

eh̄

2mi′i
{ f (Ei′ν ) u∗

i′ν (r)Dui′ν (r)

+ [1 − f (Ei′ν )] vi′ν (r)Dv∗
i′ν (r) − H.c.}. (5)

The summation in Eqs. (3) and (5) goes over the quasiparticle
states with positive energies. In addition, Eq. (3) includes only
the states for which the averaged single-electron energy taken
at zero field [32] 〈Ĥe,i〉|A=0 falls into the range [−h̄ωD, h̄ωD],
with ωD the Debye frequency assumed the same for both
contributing bands. Similar results (with deviations of about
1%–2%) can be obtained when selecting Eiν < h̄ωD in Eq. (3),
see, e.g., Ref. [3].

The Josephson-like coupling between the two contributing
bands is not explicitly present in the Bogoliubov–de Gennes
Eqs. (1), appearing in the self-consistency gap equation (3).
The magnetic coupling between the condensates manifests
itself through the presence in Eqs. (1) of the vector potential
that is related to both contributing condensates by means
of Ampere’s law [Eq. (4)]. We remark that to go beyond
the adopted model, the pairing of electrons from different
bands should be taken into consideration, i.e., in addition to
the transfer of the Cooper pairs from one band to another,
one accounts for an extra coupling through the interband
Cooper pairs, including one electron from band 1 and another
from band 2, see, e.g., Ref. [38]. In this case the coupling
between bands appears in the Bogoliubov–de Gennes equa-
tions [38,39]. However, in most cases the interband pairing is
suppressed due to incommensurability of the Fermi momenta
in different bands and can be neglected.

Considering a single vortex oriented along the z direction,
we follow the previous studies of a single vortex solution
within the single-band [3,40,41] and two-band BdG equations
[8,37]. Due to the cylindrical geometry, we can write

�i(r) = �i(ρ)e−iθ (6)

and

uiν (r) = 1√
2πL

ui jm(ρ)ei(m− 1
2 )θeikzz,

viν (r) = 1√
2πL

vi jm(ρ)ei(m+ 1
2 )θeikzz, (7)

where ρ, θ , and z are the cylindrical coordinates, L is the unit
cell of the periodic boundary conditions in the z direction,
and ν = { j, m, kz} with j the radial quantum number, m the
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azimuthal quantum number being half an odd integer, and
kz the wave number in the z direction. As mentioned above,
the dependencies of the quasi-2D band dispersions on kz are
neglected and so the wave functions uiν (r) and viν (r) are not
dependent on kz either.

For the chosen gauge and symmetry, A(r) = Aθ (ρ)eθ , with
eθ the azimuthal unit vector. The two boundary conditions for
Aθ (ρ) are set as: (1) the magnetic field approaches the external
one Hez far away from the cylinder; and (2) the magnetic field
is finite at the origin of the coordinates (the vortex center). The
latter assumes Aθ (0) = 0 to avoid the divergence of the field.
In addition, the transverse quantum confinement requires the
boundary conditions ui jm(ρ = R) = 0 and vi jm(ρ = R) = 0,
where R is the radius of the cylinder.

To represent the BdG equations in the matrix form, we
expand the radial parts of the particlelike and holelike wave
functions ui jm(ρ) and vi jm(ρ) in terms of the normalized
Bessel functions of the first kind:

φ
(±)
im (ρ) =

√
2

RJ(m+1)± 1
2
(αi,m± 1

2
)
Jm± 1

2

(
αi,m± 1

2

ρ

R

)
, (8)

where superscripts “−” and “+” are for u and v functions,
respectively, and αi,η is the ith zero of the corresponding
Bessel function, i.e., Jη(αi,η ) = 0. The expansion writes

ui jm(ρ) =
N∑

i=1

ci j j′mφ
(−)
j′m (ρ),

vi jm(ρ) =
N∑

i=1

di j j′mφ
(+)
j′m (ρ), (9)

where N should be chosen sufficiently large to capture the
essential features of the vortex solution. As a result, the BdG
equations are reduced to the matrix (2N × 2N) equation with
the eigenvectors given by {ci j j′m} (upper half of the column)
and {di j j′m} (lower half). Then the numerical solution of the
problem is calculated in the self-consistent manner. First, we
choose some initial gap functions �i(ρ) and vector potential
Aθ (ρ) and find the corresponding eigenvalues and eigenstates
of the matrix BdG equations. Second, we use the obtained
sets {ci j j′m} and {di j j′m} and the related quasiparticle energies
Ei jm to calculate the new position dependent gaps and vector
potential by means of the Eqs. (3)–(5), (7), and (9). Third,
the BdG equations are solved again with the calculated gap
functions and vector potential. The procedure is repeated until
the convergence.

Below the effective band-dependent electron masses mi

are set to the free electron mass me, for simplicity. The
intraband couplings are chosen such that g11N1 = 0.3 and
g22N2 = 0.24, where Ni is the normal density of states (DOS)
per spin projection of band i. In the case of interest N1 = N2 =
(me/2π h̄2L)

∑
kz

θ (kmax − |kz|), with θ (kmax − |kz|) the step
function and kmax the maximal wave number in the z direction.
One can estimate kmax = π/az, where az is the corresponding
lattice constant. Then, using the periodic boundary conditions
for the motion in the z direction, one gets (1/L)

∑
kz

θ (kmax −
kz ) ∼ 1/az. Keeping in mind typical values for the lattice
constant, one concludes that 1/az is of the order of 1–3 nm−1.
For our calculations we choose N1 = N2 = Ñme/2π h̄2, with

Ñ = 1 nm−1 (similarly to Ref. [3]). Notice that this choice
and also the use of mi = me do not influence our conclusions
because any changes in Ni result simply in the renormalization
of the intraband couplings g11 and g22, as we keep the same
dimensionless couplings g11N1 and g22N2. Notice that the
chosen values for the intraband couplings are in the typical
range for multiband materials, see Ref. [42] and references
therein. The interband coupling g12 is varied in our study, in
order to investigate effects of the interaction between the two
contributing condensates.

To have different Fermi velocities vF1 and vF2, we choose
different μ1 and μ2. For the stronger band we adopt μ1 =
30 meV, based on conservative estimates of the Fermi energy
in emergent multiband superconductors, see, e.g., Ref. [43].
The chemical potential relative to the lower edge of the weaker
band μ2 is varied in our calculations so that the ratio of the
band Fermi velocities vF2/vF1 is altered by this variation.

To avoid effects of quantum confinement, the radius R
of the cylinder should be chosen sufficiently large. When
taking the Debye frequency as h̄ωD = 15 meV (in the range
of conventional values, see, e.g., Ref. [44]), one finds that for
the zero temperature the healing lengths ξ1 and ξ2 are not
sensitive to the cylinder radius for R � 100 nm. For exam-
ple, the calculations yield ξ1 = 19.2 nm and ξ2 = 29.3 nm
when employing g12 = 0.05g11 and vF2/vF1 = 1 for T, H =
0. Then, choosing R = 300 nm, we safely have R > ξ1,2 up
to the temperatures T ≈ 0.99Tc. Since the healing lengths
increase with the temperature approximately as [44] ∝ τ−1/2,
with τ = 1 − T/Tc, they approach R at T ≈ 0.99Tc. Only in
this case ξ1 and ξ2 are affected by the geometry of the sample.

We also note that the presence of the boundary condi-
tions ui jm(ρ = R) = 0 and vi jm(ρ = R) = 0 introduces an
additional condensate length near the boundary. Indeed, here
�i(ρ) exhibits a series of the Friedel-like oscillations [45–47]
with the period of a half of the band-dependent Fermi wave-
length λFi/2. For the chosen parameters we have λF1/2 =
1.1 nm and λF2 ∼ λF1. One sees that λF1,2/2 is much smaller
than ξ1,2 and the presence of the Friedel-like oscillations can
in no way distort our results.

III. RESULTS AND DISCUSSION

In this section we discuss the results of numerically solv-
ing the BdG equations for a single vortex in the two-band
superconducting condensate within the model outlined in the
previous section.

Before the discussion, we need to stress that the case of the
zero external field H = 0 does not assume the absence of any
magnetic effects. The local field B is always nonzero in the
vortex core and the magnetic coupling between the two band
condensates is present even for H = 0 due to Ampere’s law
given by Eq. (4). (Obviously, its impact on the healing lengths
can be neglected only in deep type II.) Then, the question
arises which boundary conditions for the magnetic field far
beyond the vortex core we should use to obtain relevant
information about the condensate healing lengths in the mixed
state. We recall that for a single-vortex solution in bulk we
have B → 0 at infinity, see, e.g., Ref. [42]. Furthermore, near
the lower critical field Hc1, an Abrikosov lattice exhibits a
significant distance separating neighboring vortices so that the
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FIG. 1. The single vortex solution for vF2/vF1 = 1 and g12 =
0.05g11 at T = 0 and H = 0: (a) �i(ρ ) versus ρ for two bands i =
1, 2, (b) the normalized gap functions �i(ρ )/�i,bulk as functions of
ρ, and (c) the quasiparticle energies Eiν = Ei jm versus the azimuthal
quantum number m.

single-vortex state is a good approximation for such a dilute
lattice. In this case the local field B is indeed exponentially
small between vortices, being far smaller than the external
field. Clearly to describe this case, the boundary condition
B → H = 0 should be applied far beyond the vortex core in
our calculations.

Near the upper critical field Hc2 the local field B approaches
the external magnetic field between vortices in the vortex
matter. We can model this situation by invoking the boundary
condition B → H �= 0 far beyond the vortex core. However,
it is necessary to keep in mind that the healing lengths for
the single-vortex state can deviate from the corresponding
lengths in a dense Abrikosov lattice appearing close to Hc2.
Below we investigate both H = 0 and H �= 0. We expect that
the former case gives the healing lengths in the two-band
superconductor near the lower critical field while the latter
case is more suitable to consider the mixed state near the upper
critical field.

A. Zero T and H = 0

Our starting point is the case T, H = 0. First we discuss
how the healing lengths are extracted from the numerical
results. Figure 1(a) demonstrates the position dependent gap
functions �1(ρ) and �2(ρ) calculated for g12 = 0.05g11 and
vF2/vF1 = 1. Figure 1(b) shows the same gap functions but
normalized by their bulk values �i,bulk. This panel of Fig. 1
also illustrates the procedure of extracting the related healing
lengths. For convenience of the reader, the corresponding
quasiparticle spectrum Eiν = Ei jm is shown as a function of
the azimuthal quantum number m in Fig. 1(c) (the data for
band 1 are given by circles while band 2 is represented by the
triangles).

In Figs. 1(a) and 1(b) one can see fast spatial oscillations
with the period λFi/2 inside the vortex core, similarly to
the single-band case [41]. As vF2/vF1 = 1, the period of
such oscillations is the same for both contributing bands.
Their appearance in low-temperature clean superconductors

FIG. 2. The healing lengths ξ1 and ξ2 as functions of vF2/vF1

at T, H = 0, as calculated for g12 = 0.05g11 (a) and 0.3g11 (b). The
corresponding ratio ξ2/ξ1 versus vF2/vF1 for the weaker (c) and
larger (d) interband couplings.

is related to the Kramer-Pesch collapse [10,11] of the vortex
core. In this case each condensate exhibits two spatial scales:
the short (anomalous) one is governed by λFi/2 and another
is related to the condensate healing lengths ξi. At zero tem-
perature one cannot extract ξi from the gap function slope
affected by the anomalous spatial scale. However, the short
scale oscillations exist only at nearly zero temperatures and
are washed out above 0.1Tc. For larger temperatures all the
definitions of the condensate characteristic length, mentioned
in the Introduction, produce similar results. In our work,
to extract the band-dependent healing lengths, we adopt the
criterion �i(ρ = ξi ) = 0.8�i,bulk, see Fig. 1(b) and Ref. [8].

In Fig. 1(c) one sees the bound (in-gap) quasiparticle states
for each band that are responsible for the deviations of �i(ρ)
from its bulk value and, thus, control the condensate healing
lengths ξi.

In Figs. 2(a) and 2(b) the dependence of ξ1 and ξ2 on the
Fermi velocities ratio vF2/vF1 is shown for two values of
the interband coupling g12 = 0.05g11 and g12 = 0.3g11. One
can see that the both healing lengths increase with vF2/vF1.
However, ξ2 is much more sensitive to the value of this ratio.
In particular, when vF2/vF1 goes from 1 to 5 in Fig. 2(a), ξ2

increases by a factor of 6. At the same time ξ1 changes only
by 10%. The explanation is that the Fermi velocity of band
2 is varied in our calculations while vF1 is kept constant. For
nearly decoupled bands one expects that approximately ξi ∝
vFi, which was confirmed by the previous calculations within
the extended GL approach [9]. Though this relation is not
strictly applicable for finite interband couplings, ξ2 remains
more sensitive to changes of vF2/vF1 unless g12 approaches
g11 (see below). In Fig. 2(b) one can see that the increase of
ξ2 becomes less pronounced as compared to Fig. 2(a) while
the increase of ξ1 becomes much more notable: when vF2/vF1

varies from 1 to 5, ξ2 enlarges by a factor of 3, whereas
ξ2 increases by a factor of 2. It means that at g12 = 0.3g11

the lengths ξ1 and ξ2 are significantly closer to each other
than for the case g12 = 0.05g11. This is further illustrated in
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FIG. 3. The condensate healing lengths ξ1 and ξ2 versus the
relative interband coupling g12/g11 at T, H = 0 for vF2/vF1 = 1 (a),
vF2/vF1 = 2 (b), vF2/vF1 = 3 (c), and vF2/vF1 = 5 (d).

Figs. 2(c) and 2(d) where the ratio ξ2/ξ1 is shown versus
vF2/vF1 for the same two values of the interband coupling.
As seen, when vF2/vF1 reaches 5 for the case g12 = 0.05g11,
the ratio ξ2/ξ1 approaches 6. For g12 = 0.3g11 we obtain less
disparity between the healing lengths, namely, ξ2/ξ1 ≈ 1.5
when vF2/vF1 reaches 5.

The dependence of the healing lengths ξ1 and ξ2 on g12 is
also very sensitive to the value of vF2/vF1. This is seen from
Fig. 3, which demonstrates ξi (i = 1, 2) as functions of the
ratio g12/g11 for vF2/vF1 = 1 (a), 2 (b), 3 (c), and 5 (d) (solid
circles correspond to band 1, whereas stars are given for band
2). One can see in all panels that ξ2 drops significantly with
increasing the interband coupling while ξ1 remains almost
unaltered. We note that this feature qualitatively agrees with
the results of Ref. [19] obtained by numerically solving the
Eilenberger equations.

The dependence of the healing lengths on the interband
coupling is further illustrated in Fig. 4(a), where the ratio
ξ2/ξ1 is shown versus g12/g11 for vF2/vF1 = 1, 2, 3, and
5. The difference between ξ1 and ξ2 is more significant for
a larger ratio of the band Fermi velocities and for lower
values of the Josephson coupling. When g12/g11 is sufficiently
large, the two healing lengths approach each other, which is

FIG. 4. (a) The ratio ξ2/ξ1 as a function of g12/g11 at T, H = 0,
as calculated for vF2/vF1 = 1, 2, 3, and 5. (b) The length-scales
locking interband coupling g∗

12 in units of g11 versus vF2/vF1; the
chosen criterion of the locking is taken as |ξ2 − ξ1|/ξ1 � 0.1 for
g12 > g∗

12.

known as “length-scales locking,” see Ref. [19]. This regime
reflects the fact that the multiband phenomena are washed
out for sufficiently large interband couplings. In this case
partial condensates in multiband materials become so strongly
coupled that their properties are not distinguished any more.
Let us introduce the length-scales locking interband coupling
g∗

12 adopting the criterion |ξ2 − ξ1|/ξ1 � 0.1 for g12 > g∗
12.

(Notice that qualitative conclusions are not sensitive to the
particular value in the right-hand side of the inequality for the
difference between the two healing lengths.) The dependence
of g∗

12 on vF2/vF1 is illustrated in Fig. 4(b). One finds that
g∗

12 rapidly increases with vF2/vF1 for vF2 < 4vF1 while ap-
proaching a saturation for vF2 � 5vF1. The saturation occurs
for g∗

12 ≈ 0.8g11, which is far beyond the regime of nearly
decoupled bands.

Based on the results given in Fig. 4(b), it is also possible
to introduce the length-scales locking Fermi velocity ratio v∗,
below which the difference between ξ1 and ξ2 is negligible.
For example, adopting again the locking criterion as |ξ2 −
ξ1|/ξ1 � 0.1, we find that v∗ ≈ 2.0 for g12 = 0.5g11 while
v∗ ≈ 5.0 for g12 = 0.8g11.

B. Finite T and zero H

Let us now discuss how the temperature dependence of the
band healing lengths is affected by the ratio vF2/vF1. Here the
calculations are performed for the same interband couplings
as in the previous subsection, the external magnetic field is
zero.

In Figs. 5(a)–5(d) one can see the healing lengths ξ1 and
ξ2 as functions of the temperature T for g12 = 0.05g11 and
vF2/vF1 = 1, 2, 3, and 5. As can be expected from our
consideration in the previous subsection, ξ1 (circles) exhibits
minor variations when passing from (a) to (d) while ξ2 (stars)
changes significantly. The reason is mentioned in the discus-
sion of Figs. 2–4: vF2 is varied in the calculations while vF1 is
kept constant. The new feature present in the results of Fig. 5
is the nonmonotonic dependence of ξ2 on T , clearly seen in
the results for vF2/vF1 = 2 (b), 3 (c), and 5 (d). This is the
effect of the hidden criticality [8] manifesting itself near Tc2 =
3.06 K, where Tci is the critical temperature of the decoupled
band i. For band 2, taken as a separate superconductor, the
healing length ξ2 increases toward infinity when T → Tc2.
Though this increase is smoothed and significantly affected
by the presence of the interband interactions, its signatures
survive at nonzero couplings g12. In particular, one observes
the plateaus in the temperature dependence of ξ2 in vicinity
of Tc2 in Figs. 5(b) and 5(c). In Fig. 5(d) such a plateau
disappears in favor of a small but well pronounced peak with
the position shifted down to T = 1 K.

The presence of the hidden criticality is also reflected in the
healing lengths ratio ξ2/ξ1 given versus T in Fig. 5(e) for the
same parameters as in Figs. 5(a)–5(d). The ratio ξ2/ξ1 exhibits
a maximum for all given values of the Fermi velocities ratio
vF2/vF1 = 1, 2, 3, and 5. The larger is vF2/vF1, the higher
is the maximal value of ξ2/ξ1. For example, the maximum
ξ2/ξ1 for vF2/vF1 = 5 is by a factor of 3 larger than that for
vF2/vF1 = 1. In agreement with the shift down in tempera-
tures of the ξ2 peak in Fig. 5(d), the peak of ξ2/ξ1 is also
shifted to lower temperatures when increasing vF2/vF1. One
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FIG. 5. The healing lengths ξ1 and ξ2 as functions of the tem-
perature (H = 0) at g12 = 0.05g11, calculated for vF2/vF1 = 1 (a),
vF2/vF1 = 2 (b), vF2/vF1 = 3 (c), and vF2/vF1 = 5 (d). (e) The
corresponding ratio ξ2/ξ1.

can also see that ξ2/ξ1 tends to 1 as T approaches Tc, which
is the previously discussed length-scales locking regime near
Tc ≈ 10 K, see Refs. [12–18]. For larger values of the ratio
vF2/vF1, one obtains higher locking temperatures T ∗. The
dependence of T ∗ on vF2/vF1 and g12 is discussed below,
at the end of this subsection. Thus, as seen from Fig. 5,
the disparity between ξ1 and ξ2 is the most pronounced for
T � Tc2 and the maximal value of ξ2/ξ1 is governed by the
hidden criticality.

Now we investigate the healing lengths ξ1 and ξ2 for
the significantly larger interband coupling g12 = 0.3g11. The
corresponding temperature dependent results for ξ1, ξ2, and
ξ2/ξ1 are shown in Fig. 6 for the same values of vF2/vF1

as in Fig. 5. One can see that for vF2/vF1 = 1, 2, and 3 the
healing lengths ξ1 and ξ2 are nearly the same for the whole
temperature range T < Tc (Tc ≈ 15 K for this value of g12).
For example, when taking the length-scales locking criterion
as |ξ2 − ξ1| � 0.1ξ1, one finds that for vF2/vF1 = 1, bands 1
and 2 are in the locking regime for all temperatures below
Tc. This agrees with the previous conclusion of Ref. [8] that
the effect of the hidden criticality is weakened due to the inter-
band interactions. However, even at the chosen large interband
coupling, the signature of the hidden criticality appears again
when the band Fermi velocity vF2 exceeds 3–4 vF1. One can
see in Fig. 6(e) that the dependence of ξ2/ξ1 exhibits a flat
maximum, similarly to the case illustrated in Fig. 5(e). Hence,
for the interband coupling g12 = 0.3g11 the maximum in ξ2/ξ1

is switched on/off by increasing/decreasing the band Fermi
velocities ratio. Though the difference between ξ1 and ξ2 is

FIG. 6. The same as in Fig. 5, but for the stronger interband
coupling g12 = 0.3g11.

much less pronounced for g12 = 0.3g11 as compared to the
results for g12 = 0.05g11, it is far not negligible. In particular,
the maximum of ξ2/ξ1 for vF2/vF1 = 5 in Fig. 6(e) is by
a factor of 4 smaller than that in Fig. 5(e). However, the
corresponding difference between ξ1 and ξ2 in Fig. 6(e) is still
notable, being about 50%.

The last point we address in this subsection is the effect
of the band Fermi velocities on the locking temperature T ∗.
As the locking criterion we again choose |ξ2 − ξ1| = 0.1ξ1

but now for T > T ∗. The dependence of T ∗ on vF2/vF1 is
shown in Fig. 7 for the interband couplings g12 = 0.05g11 and
0.3g11. In Fig. 7(a) T ∗ is given in K while the ratio T ∗/Tc is
demonstrated in Fig. 7(b). We recall that Tc is not sensitive
to the band Fermi velocities and Tc ≈ 10 K and ≈15 K for
g12 = 0.05g11 and g12 = 0.3g11, respectively. As is seen from

FIG. 7. The length-scales locking temperature T ∗ (a) and the
ratio T ∗/Tc (b) as functions of vF2/vF1 for the interband couplings
g12 = 0.05g11 and 0.3g11.
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FIG. 8. Healing lengths ξ1 and ξ2 as functions of H for
vF2/vF1 = 1 (a), vF2/vF1 = 2 (b), vF2/vF1 = 3 (c), and vF2/vF1 = 5
(d), calculated at g12 = 0.05g11 and T = 3 K. (e) The corresponding
ratio ξ2/ξ1.

Fig. 7, T ∗ increases with vF2/vF1 for either g12 = 0.05g11 or
0.3g11. This is due to the fact that the increase of vF2/vF1

enlarges the difference between ξ1 and ξ2 at low temperatures,
as follows from Figs. 2–4. As a result, ξ1 and ξ2 approach each
other at larger temperatures, so that T ∗ goes closer to Tc when
vF2 increases. Notice that the intersection of the two curves
in Fig. 7(a) should not lead to any confusion. This does not
mean that the locking regime is the same for both interband
couplings at the point of the intersection. In particular, this
is seen from Fig. 7(b) where the ratio T ∗/Tc is given versus
vF2/vF1. One can see that T ∗/Tc is reduced for g12 = 0.3g11,
i.e., the corresponding locking regime is more pronounced,
occupying the larger temperature domain in units of Tc.

C. Finite T and finite H

Now, let us investigate the healing lengths ξ1 and ξ2 for
H �= 0. Figures 8(a)–8(d) demonstrate ξ1 and ξ2 as functions
of H calculated for the different ratios vF2/vF1 = 1, 2, 3, and
5 at g12 = 0.05g11 and T = 3 K. When increasing the external
magnetic field, the suppression of the band-dependent gap
functions starts near the surface of the cylinder. The region of
the suppressed condensate expands and the maximal value of
�i(ρ) (i.e., �i,bulk) decreases (the condensate is zero at ρ = 0
and at ρ = R). This decrease corresponds to the suppression
of the condensate between the densely distributed vortices
in the bulk vortex matter near the upper critical field. We
recall (see the discussion in the beginning of Sec. III) that

FIG. 9. The same as in Fig. 8 but for the interband coupling g12 =
0.3g11.

the boundary condition B → H �= 0 is suitable to study the
healing lengths only in the vicinity of Hc2.

From Fig. 8, one can see that the healing lengths are sig-
nificantly different for H → 0 but this difference disappears
when increasing the external field. Both ξ1 and ξ2 monoton-
ically decrease with an increase of H for all values of the
band Fermi velocities ratio, which agrees with the results of
Ref. [19]. However, ξ1 is only slightly dependent on H while
the decrease of ξ2 is very pronounced. Notice that the isolated
vortex also shrinks with increasing the external field, see, e.g.,
Ref. [48].

At high fields, the system approaches the locking regime,
which is clearly seen from Fig. 8(e). When using the locking
criterion as |ξ2 − ξ1|/ξ1 � 0.1, one obtains H∗ = 0.27 Hc2,
where Hc2 = 0.33 T. The external field at which the vortex so-
lution disappears is interpreted here as the upper critical field.
As the boundary condition with a nonzero external field can
be relevant only near Hc2 (see the discussion in the beginning
of Sec. III), one can hardly rely upon the obtained value of H∗.
However, we are able to conclude that near the upper critical
field the healing lengths are the same for both contributing
condensates notwithstanding the value of vF2/vF1.

In Fig. 9 we show ξ1 and ξ2 versus H at the same
temperature and values of vF2/vF1 as in Fig. 8 but for the
interband coupling g12 = 0.3g11. By examining the data in
Figs. 9(a)–9(d), we find the same qualitative behavior of the
band healing lengths as previously seen in Fig. 8. Namely, the
band characteristic lengths decrease with increasing H and
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the disparity between ξ1 and ξ2 becomes more pronounced
for larger values of vF2/vF1 (at relatively low fields) and less
notable for larger H . The quantitative results are, of course,
different as compared to the case of the weak interband
coupling. In particular, by taking the length-locking criterion
as |ξ2 − ξ1|/ξ1 � 0.1, we find that the band length scales for
vF2/vF1 = 1 are locked for all magnetic fields. However, tak-
ing vF2/vF1 = 2, 3 and 5, we find that the ratio ξ2/ξ1 becomes
smaller than 1.1 for H > H∗ = 0.2 Hc2, with Hc2 = 2.7 T.

Reasonably enough, larger interband couplings shift the
locking magnetic field down (as compared to Hc2). However,
we stress again that the boundary condition with a finite exter-
nal field can be useful only to investigate the healing lengths
near Hc2. In the vicinity of Hc2 the both healing lengths appear
to be the same, irrespective of the particular value of g12.

IV. CONCLUSIONS

We have studied the effect of the band Fermi velocities
on the healing lengths in a two-band superconductor by nu-
merically solving the Bogoliubov–de Gennes equation for a
single-vortex solution. Our results demonstrate that near the
lower critical field the healing lengths of the two contributing
condensates can be significantly different for sufficiently large
values of the ratio of the band Fermi velocities vF2/vF1. This
occurs far beyond the regime of nearly decoupled bands, at
the interband couplings up to g12 ∼ g11, g22. The most pro-
nounced difference between the healing lengths is observed
in the vicinity of or below the hidden critical temperature.
The length-scales locking regime takes place near the upper
critical field and/or near the critical temperature.

Our study is connected with the long discussion about the
possibility to have two coupled condensates with significantly
different spatial profiles in the presence of the magnetic
effects. Our work clearly demonstrates this possibility for a
wide range of the physical parameters. The presence of dif-
ferent healing lengths can significantly change the magnetic
response of multiband superconductors as compared to that of
single-band ones. For example, it is known that the switching
between superconductivity types I and II occurs through the
finite intertype domain in the κ-T plane (κ is the Ginzburg-
Landau parameter), see, e.g., Refs. [49,50]. It has been proved
[42,51] that this domain significantly enlarges in two-band
and multiband superconductors (with respect to the single-
band case) if the healing lengths of different contributing
condensates are significantly different. Our present study is
a solid compliment to these previous investigations based on
the perturbation theory in the vicinity of Tc. We confirm that
multiband materials with significantly different band Fermi
velocities are most promising in searching for unconventional
superconducting magnetic properties because of the presence
of multiple condensates governed by different spatial scales.
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