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The three-band d-p model is investigated by means of a variational Monte Carlo (VMC) method with the BCS-
like wave-function supplemented by the Gutzwiller and Jastrow correlators. The VMC optimization leads to a
d-wave superconducting state with a characteristic domelike shape of the order parameter for hole doping δ �
0.4, in good agreement with the experimental observations. Also, the off-diagonal pair-pair correlation functions,
calculated within VMC, vindicates the results obtained very recently within the diagrammatic expansion of the
Gutzwiller wave function method [cf. Zegrodnik, Biborski, Fidrysiak, and Spałek, Phys. Rev. B 99, 104511
(2019)]. Subsequently, the nature of the d-wave pairing is investigated by means of recently proposed minimal-
size real-space d-wave pairing operators [Moreo and Dagotto, Phys. Rev. B 100, 214502 (2019)]. An emergence
of the long-range superconducting ordering for both d and p orbitals is reported by analyzing the corresponding
off-diagonal pair-pair correlation functions. The dominant character of d-wave pairing on d orbitals is confirmed.
Additionally, the trial wave function is used to investigate the magnetic properties of the system. The analysis
of spin-spin correlation functions is carried out and shows antiferromagnetic q = (π, π ), short-range order, as
expected. For the sake of completeness, the charge gap has been estimated, which for the parent compound takes
the value �CG ≈ 1.78 ± 0.51 eV, and agrees with values reported experimentally for the cuprates.
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I. INTRODUCTION

The unconventional superconductivity discovered in
copper-based compounds by Bednorz and Müller in 1986
is still under intensive debate [1]. This class of systems is
difficult to handle realistically by means of the most popular
quantum chemistry method, i.e., density functional theory
(DFT), due to the fact that the electron-electron interac-
tions play a crucial role in the resulting physical properties.
As electronic correlations cannot be described consistently
within any known mean-field formalism (e.g., double counting
problem in DFT methods), simplified models capturing the
essentials of electronic structure are required. The application
of the cannonical single-band models used for recaption of the
correlated systems (Hubbard and t-J models [2,3]) allowed
for the reproduction of both the Mott insulating phase at
half-filling and the superconducting state for the electron-
and hole- doped cases. In such approaches, the initial multi-
band problem (d-p model) is mapped onto a single-band
picture in which the Zhang-Rice singlets [4] play the role
of quasiparticles. It is believed that many of the unusual
properties of the cuprates arise from the electronic degrees
of freedom of the copper-oxygen planes, which are common
for the whole cuprate family. Although the mentioned models
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allow us to reproduce the selected fundamental features of
the cuprates, other subtle phenomena such as charge(spin)-
density-waves or nematicity appearance may directly emerge
from the interplay between d and p orbitals [5]. However,
the question of the minimal model which captures the cuprate
physics to a satisfactory extent still remains an open issue and
ongoing research of both single and multiband approaches
is in place. In this respect, it is worth noting that the de-
scription of the mentioned ordered phases within the single
band picture has recently led to some interesting results [6–9].
Nevertheless, microscopic insight into the pairing between
d-d , p-d , and p-p channels can lead to better understanding
of the superconducting state [10], as suggested by some of
the experimental observations [11,12]. Therefore, it is natural
to consider a more realistic model in which the unit cell
consists of one d orbital and two p orbitals. Regardless of
the number of bands considered, the exact ground state for
Hubbard-type Hamiltonians (excluding selected 1d cases) is
not known. Therefore, approximate methods are to be used in
its diagonalization procedure. Whereas exact diagonalization
(ED) techniques provide an accurate numerical solution, they
are limited to small systems, which essentially cannot give
answers related to the presence of the long-range electronic
correlations. The state-of-art density matrix renormalization
group method, though computationally demanding, has been
profitably exploited for studying both charge order as well
as pairing in strongly correlated model systems [6,7]. The
determinant Monte Carlo (DMC) calculations, despite the
infamous sign problem, are promising for the description of
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the cuprates [13]. However, the paired state has not been
explicitly included in such analysis. Another choice is the
application of variational methods which may be considered
as well balanced in view of their complexity and reliability
of the obtained results. Therefore, a properly constructed
trial wave function allows us to gain insight into the nature
of the ground state of the particular correlated electronic
system [14].

Encouraged by the results for the superconducting and ne-
matic states obtained by means of the diagrammatic expansion
of the Gutwziller wave function (DE-GWF method) approach
for the three-band d-p model [15,16], we have decided to
characterize the superconducting properties, particularly in
view of the spatial dependence of the correlation functions
(CFs) obtained by means of the variational Monte Carlo
(VMC) calculation scheme. Numerous studies regarding this
topic have been carried out [13,16–25], related to both normal
and superconducting states. Here, we extend the analysis
of the superconducting (SC) state with explicit calculations
of the minimal-size real-space d-wave pairing operators
(MSPOs) proposed very recently by Moreo and Dagotto [10].
To the best of our knowledge, their equal-time CFs have not
been analyzed so far. We also supplement our analysis of the
variational ansatz for the paired state within the d-p model
with intersite Jastrow-type correlators.

In the next section, we describe the model and sketch the
method. Subsequently, in Sec. III we present the characteris-
tics of the d-wave superconducting phase for the hole-doped
case by means of the standard investigation, i.e., by analyzing
the CFs for the d-wave pairing between holes residing on the
NN d orbitals. Subsequently, we continue our analysis of the
CFs defined for the MSPOs, consisting of a proper combina-
tion of the d-p and p-p pairing amplitudes. In Sec. IV, we
also provide the spin-spin CFs and show the development
of the short-range antiferromagnetic (AF) order, as well as
determine the value of the charge transfer gap. We conclude
our results in the last section.

II. THREE-BAND d-p MODEL AND METHOD

We consider the three-band d-p model described by the
Hamiltonian

Ĥ =
∑

〈il, jl ′〉
t ll ′
i j ĉ†

ilσ ĉ jl ′σ +
∑

il

εl n̂il +
∑

il

Ul n̂il↑n̂il↓, (1)

where ĉ†
ilσ (ĉilσ ) are creation (anihilation) fermionic operators

acting on orbital l ∈ {dx2−y2 , px, py} related to ith unit cell.
As in our previous works [15,16], hoppings are limited to the
NN orbitals (cf. Fig. 1). The values of hopping amplitudes
t ll ′
i j as well as atomic energy levels are set to tpp = 0.49 eV,

tpd = 1.13 eV, εp = −3.57 eV, and εd = 0, which are typical
values for the cuprates [3]. The repulsive intraorbital Hubbard
interactions are Upx = Upy = 4.1 eV and Udx2−y2 = 10.3 eV for
oxygen and copper orbitals, respectively. This set of mi-
croscopic parameters was utilized recently in our DE-GWF
solution [16] and their values are similar to those applied by
Kung et al. [13].

As mentioned, we employ VMC approach in this study.
This method exhibits both advantages as well as drawbacks
which are common for the whole family of variational

FIG. 1. The hopping parameters included in three-band d-p
model described by Hamiltonian defined in Eq. (1). Central orbital
is dx2−y2 , states for to the copper atom whereas, remaining one are
the oxygen px/py orbitals.

methods. Particularly, the proper choice of wave-function
ansatz is crucial to obtain reasonable output. Thus, one can-
not expect to obtain properties of the system which are not
encoded in the variational wave function since the solution is
narrowed to the subspace in the Hilbert space. Therefore, the
specific form of the wave function should be carefully chosen.
This issue does not appear in the determinant quantum Monte
Carlo (DQMC), which in principle (disregarding controllable
approximations) provides an exact solution for the nonzero
temperature. However, DQMC suffers from the infamous sign
problem and is more complex from the algebraic perspective.
It must be stressed that the variational wave function in the
VMC approach can be formulated in the manner which en-
sures reasonable computational costs and flexibility which is
necessary to describe correlated system in many cases. Also,
one of the main advantages of VMC in the context of strongly
correlated systems is its universality, e.g., long-range interac-
tions, as well as three- and four-center two-body terms which
can be encompassed almost effortlessly when the dose of
generality is applied during the process of code development.

Our many-body trial wave-function is taken in the follow-
ing manner [14,26]:

|�T 〉 ≡ P̂GP̂J L̂Sz
tot
L̂Ne |�0〉, (2)

where P̂G is the Gutzwiller-type correlator given in the form

P̂G ≡ exp

[
−

∑
l

gl

∑
i

n̂il↑n̂il↓

]
, (3)

with gpx = gpy due to the equivalency of the oxygen orbitals.
The interorbital correlations are captured by the symmetric
Jastrow density-density correlator:

P̂J ≡ exp

⎡
⎣−

∑
il, jl ′

λil, jl ′ n̂il n̂ jl ′

⎤
⎦. (4)

Both {gl} and {λil, jl ′ } are the subsets of variational parameters.
When performing calculations for the z component of the total
spin, we set Sz

tot = 0 and constant number of electrons Ne, as
well as the projectors L̂Sz

tot
and L̂Ne are applied during sam-
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pling procedure. The noninteracting part |�0〉 is constructed
from eigenstates of the BCS variational Hamiltonian Ĥeff

defined as

Ĥeff =
∑

〈il, jl ′〉
t̃ l l ′
i j ĉ†

ilσ ĉ jl ′σ +
∑

il

(ε̃l − μ̃)n̂il

+
∑
il, jl ′

�̃ll ′
i j ĉ†

il↑ĉ†
jl ′↓ + H.c. (5)

Note that parameters with tildes are different than those in
the noninteracting part of the d-p Hamiltonian [Eq. (1)] as
they are considered as variational parameters to be optimized.
More precisely, the above effective Hamiltonian defines the
uncorrelated wave function |�0〉. The choice of both the
hopping terms and the pairing amplitudes is thus identical to
our DE-GWF study [16], i.e., it allows for the emergence of d-
wave pairing. It is worth mentionging that during preliminary
studies we have analyzed both d- and s-wave pairing scenarios
within the DE-GWF approach, and, the d-wave turned out
to be the stable one. Therefore, we have �dd

i+ax, j = −�dd
i, j+ay

,
where ax/ay = a refers to the nearest neighbor (NN) d orbital
in x and y directions, respectively. The diagonalization of
Hamiltonian Eq. (5), which in turn allows us to compose the
many-electron part |�0〉, is divided into two stages. First, the
following transformation of creation (anihilation) operators
is applied. The spin-down sector is converted to the hole
picture, i.e., ĉ†

il,↓ → f̂il,↓ and ĉil,↓ → f̂ †
il,↓. Whereas the spin-

up-sector operators are subject to the identity transformation,
i.e., ĉ†

il,↑(ĉil,↑) → f̂ †
il,↑( f̂il,↑). The spin-down-sector transfor-

mation leads to the form of variational Hamiltonian, which
can be directly diagonalized [14], by finding (numerically) the
unitary transformation for the N-orbital system.

In effect, |�0〉 is defined in the standard manner, namely,

|�0〉{t̃ l l′
i j ,ε̃l ,μ̃,�̃ll′

il } =
p=ñ∏
p=1

γ̂ †
p |0̃〉, (6)

where |0̃〉 is the vacuum state for operators γ̂ †
p ( γ̂p) repre-

senting quasiparticles for which the variational Hamiltonian
Ĥeff can be written in the diagonal form. Note that index
p = 1, 2, ...ñ runs over first ñ single-particle eigenstates of
the variational Hamiltonian with ñ = N + ∑

il (n̂il↑ − n̂il↓),
resulting directly from the particle-hole transformation for
the down spins. The sampling procedure is executed in the
standard manner. Configurations representing the distribution
of ñ particles among N orbitals, {|x〉}, are sampled by means
of the Metropolis-Hastings [14] algorithm according to the
probability density ρ(x) ∝ |〈x|�T 〉|2. Physical quantities re-
lated to operators {Ô} are estimated as an average of their
so-called local values [14] Oloc(x),

〈Ô〉 ≈ 1

M

M∑
m=1

〈xm|Ô|�T 〉
〈xm|�T 〉 ≡

M∑
m=1

Oloc(xm), (7)

with |xm〉 generated with respect to the probability density
ρ(x). In particular, the expectation value of the system energy,
i.e., 〈Ĥ〉 can be computed for a given set of variational
parameters. At least two commonly exploited strategies for
the wave-function optimization exist: variance optimization
and energy optimization. Sorella et al. elaborated the ef-

ficient procedure—stochastic reconfiguration (SR) method
[14], which benefits in simultaneous optimization steps for the
whole set of variational parameters. We have implemented the
SR-based approach in our self-developed code (also recently
used in a different context [27]) as it is regarded as the state-
of-art method in the field of interest [26].

III. RESULTS

In our computations, the system is represented by the
square cluster containing L × L = 64 unit cells, each con-
sisting of one d orbital and two p orbitals (px and py). This
results in 64 copper and 128 oxygen atoms represented by
appropriate orbitals. For the sake of clarity, we define doping
parameter δ,

δ ≡ 5 − Ne

L2
, (8)

i.e., the parent compound refers to δ = 0 with five electrons
per CuO2 complex, and δ > 0 corresponds to the hole-doped
complex with Ne < 5. We assume Sz

tot = 0; therefore minimal
doping resolution is �δ=2/64 = 0.03125. The trial wave
function is minimized with respect to the set of variational
parameters by means of the SR method, and probed averages
〈Ô〉 are sampled within M ∝ 107 Monte-Carlo (MC) steps.
Also, since VMC operates in the real-space representation and
the considered cluster is finite, we apply periodic boundary
conditions.

A. Superconducting correlations

Within the VMC approach, the superconducting proper-
ties of the system are typically determined by analyzing the
appropriate anomalous CFs (equal-time two-body Green’s
functions). However, the choice of CF is not unique and
one may find a particular form more suitable than another
in the given methodological context [10]. First, we analyze
the pairing between two d-d holes by means of standard
equal-time CFs [10,18,19,28] commonly used in the analysis
of superconducting states in real space. This part is regarded
as validation of the applied method in view of our earlier
DE-GWF solution [16]. Next, we have applied the recently
proposed [10] MSPOs by means of their spatial dependency
of CFs, to determine the d-wave pairing properties within
the three-band d-p model. Specifically, these pairing opera-
tors refer to the possibility of intra-p Cooper pair formation
[10,23,29].

1. Standard correlation functions

To inspect fundamental superconducting properties, as
well as to compare the results obtained by means of VMC
with those of DE-GWF solutions, we first analyzed the spatial
dependence of standard off-diagonal pair-pair CFs for d-d
pairs, which is defined as

Ddd
αβ (R) ≡ 1

L2

∑
r

〈�̂†
α (r + R)�̂β (r)〉, (9)

with α, β ∈ {x, y} and

�̂†
α (r) ≡ 1√

2
(ĉ†

i(r)d↑ĉ†
j(r+aα )d↓ − ĉ†

i(r)d↓ĉ†
j(r+aα )d↑). (10)
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FIG. 2. Schematic representation of exemplary d-d pair-pair
terms present in the correlation functions defined in Eq. (9).

Function i(r) maps the position of the center of the given
orbital d onto the index i. Vectors aα are given as

ax =
(

a
0

)
, ay =

(
0
a

)
, (11)

where a is the lattice parameter. The functions defined in
Eq. (9) describe the spatial distribution of anomalous pair-
pair correlations, where each pair consists of two d orbitals
separated by the lattice constant a in x or y directions (cf.
Fig. 2). Note that as we analyze pure d-wave pairing, the
relation Ddd

αβ (R) = Ddd
βα (R) holds. It also should be mentioned

that maximal distance refers to Rmax = ( L
2 , L

2 ) as we apply
the periodic boundary conditions to the system. In Fig. 3,
we present the spatial dependence of Ddd

αβ for the selected
direction R ‖ x. It comes out that Ddd

αα ≈ −Ddd
αβ within the

limit of attainable distance. Moreover, the values for |R| �
2a approach saturation, though for the high doping regime,
correlations do not decay to zero (within the statistical error
∝ 10−3). However, in the accessible maximal distance, we
obtain very good agreement when compared to our recent
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FIG. 3. Correlation functions defined in Eq. (9), for the three
representative hole dopings and with R parallel to x direction.
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FIG. 4. Superconducting order parameter DRmax , the line is guide
for the eye.

analysis [16]. In Fig. 4, we present a superconducting order
parameter for the d-wave-pairing defined as

DRmax ≡
∑
αβ

(−1)1−δαβ Ddd
αβ (R = Rmax ). (12)

We obtain a qualitative agreement when compared to the
DE-GWF solution [16], namely, the maximal amplitude of the
order parameter appears at δ ≈ 0.15 − 0.2. As already men-
tioned, the nonzero amplitude is present for each considered
doping. This fact is due to a slow convergence of variational
parameters in the high hole-doping regime and/or related
to the limited cluster dimension. Contrary to the DE-GWF
solution, we find it less problematic to optimize wave function
for δ in the vicinity of the parent compound. In spite of
D(δ = 0) > 0, an abrupt decrease of the order parameter for
δ � 0.1 occurs and the obtained values of the order parameter
form the domelike shape as a function of δ, characteristic of
the cuprate family. We compare both methods quantitatively
by computing the expectation values of NN (i, j) d-orbital
pairs, namely,

�dd ≡ 〈ĉ†
id↑ĉ†

jd↓〉, (13)

which is the measure of the superconducting order in the
infinite system size, i.e., when

|〈ĉ†
i(r)d↑ĉ†

j(r+a)d↓〉|2 ≈ lim
|R|→∞

〈�̂†(r + R)�̂(r)〉. (14)

The comparison of �dd for both methods shows that DE-
GWF and VMC provide quantitatively similar results (cf.
Fig. 5), as expected, since both approaches have been supplied
with the similar form of variational ansatz. It also suggests
that the presence of Jastrow terms in our wave function does
not affect the solution, at least in view of d-wave pairing on d
orbitals. The discrepancies appearing for higher hole doping
are possibly caused by the presence of the finite-size effects
[30] which are absent in the DE-GWF solution (excluding
diagrams summations radius in the real space) or optimiza-
tion issues, as mentioned above. We also observe nonzero
pairing amplitudes for δ = 0. We estimated previously [16]
that Ud � 13 eV possibly leads to the full reduction of
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FIG. 5. The comparison of �dd (δ) between DE-GWF [16] and
VMC approaches. The microscopic parameters are listed in Sec. II.

d-wave pairing for the parent compound. The comparison of
the results obtained from both methods validates the solution
procured for the assumed form of the wave-function ansatz.
However, characteristics related to the magnetic properties, as
well as estimation of charge gap (CG) value (presented in the
following subsections) may suggest that the adopted form of
the variational state allows us to reproduce the main features
of the three-band d − p model.

2. Minimal-size real-space d-wave pairing operator
correlation functions

Moreo and Dagotto [10] emphasize that the local d-wave
operators can provide a more suitable description of the paired
holes in cuprates. Their arguments are based on the recent
experimental observation of a surprisingly small real-space
extension [12] of the Cooper pairs. They also analyze this
issue in view of the p − p Cooper pair formation within the
single plaquette. In this paper, we compute the MSPO CFs in
the framework of the VMC method.

All four MSPOs preserve d-wave symmetry. The intrasite
p-orbital pair correlation operator is defined as

�̂
†
D0(r) ≡

∑
μ

γμĉ†
i(r+aμ/2)↑ĉ†

i(r+aμ/2)↓, (15)

where γμ = sgn(μ). The analysis of time evolution of �̂
†
D0

(i.e., Heisenberg equation −i d�̂
†
D0

dt = [Ĥ , �̂
†
D0]) also provides

other pairing operators in the systematic and elegant manner.
Namely, the d-p pairing operator is given as

�̂
†
Dpd (r) ≡

∑
μ,σ

fσ γμαi(r),μĉ†
i(r)σ ĉ†

i(r+aμ/2)σ , (16)

where μ ∈ {±x,±y}, and f (σ ) = sgn(σ ) with sgn(σ ) =
−sgn(σ ), and αi(r),μ = ±1, consistent with the d-p hopping
sign convention (cf. Fig. 1). The other two MSPOs of intra-p
type, �̂†

Dpp and �̂
†
Dplaq, are also obtainable in such a procedure

and are defined as

�̂
†
Dpp(r) ≡

∑
μ,σ

fσ γμĉ†
i(r+aμ/2)σ ĉ†

i(r−aμ/2)σ (17)

FIG. 6. Pairing operators provided in Ref. [10] for which the
correlation functions have been computed. Cooper pairs are assigned
by connecting lines (excluding D0 for which pair occupies single p
orbital). Relative phases signs are marked by colors.

and

�̂
†
Dplaq(r) ≡

∑
μ,σ

fσ γμĉ†
i(r+aμ/2)σ ĉ†

i(r+aμ+aμ/2)σ , (18)

where μ ⊥ μ. A schematic representation of the above op-
erators is shown in Fig. 6. It should be noted that these
operators are not independent by construction. Also, if the
ground state reflects the d-wave superconductivity, simulta-
neous emergence of all the long-range orderings encoded
in Eqs.(15)–(18) is expected. This important feature can be
utilized for the characterization of the system ground state.
We define the CFs of these pairing operators in the standard
manner case [cf. Eq. (9)], i.e.,

DDτ (R) ≡ 1

L2

∑
r

〈�̂†
Dτ (r + r)�̂Dτ (r)〉, (19)

where τ ∈ {0, pd, pp, plaq}.
In Figs. 7(a)–7(d), we present spatial dependency of MSPO

CFs for the representative set of dopings. Disregarding fluc-
tuations originating both from sampling and optimization
effects, we observe the saturation of their values within the
relatively short distance, i.e., R ≈ (3a, 0). Furthermore, all
amplitudes fit the picture resulting from standard analysis.
Namely, the highest amplitude for the most distant pair cor-
responds to δ ≈ 0.2, i.e., the optimal doping. Importantly, for
the parent compound, we obtain a nearly vanishing value of
DD0 [cf. Fig. 7(a)]. The residual nonzero values for DD0 and
DDpd at high hole dopings are present, nevertheless they are
significantly smaller than for δ ≈ 0.2.

It is reasonable to compare the above amplitudes with the
dominant d-d gap. The order parameter defined in Eq. (12)
is normalized by (1/

√
2)2 factor, what is not the case for
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FIG. 7. Spatial dependence of the correlation functions DD0(R),
DDpd (R), DDpp(R), and DDplaq(R) for three representative dopings.
The amplitude for δ ≈ 0.22 dominates with increasing |R| when
compared to that for parent compound and high doping cases, as
expected.

the MSPO CFs. Therefore, DDdd ≡ 2 × DRmax should be com-
pared to DDτ at the (4a, 4a) distance. This results in the
ratio DDdd/DDpd being ≈6 for δ ≈ 0.2, which is in a good
agreement with results obtained from DE-GWF approach
[16]. Thus d-d pairing can indeed be regarded as the dominant
one for the considered form of the variational state.

In Fig. 8, we present the values of all MSPO CFs for the
maximal attainable R = (4a, 4a) as a function of hole doping.
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FIG. 8. The DDτ values as function of hole doping obtained for
the maximally distanced pairing operators, i.e., R = (L/2, L2). As
amplitude of DDpd dominates by order of magnitude over other CFs,
we present domelike shape for τ ∈ {0, pp, plaq} in the inset.

Note that we excluded the values for Ne = 298(δ ≈ 0.34) as
for all four CFs considered here the obtained values were
unexpectedly high due to optimization issues. As one can see,
the domelike shape for all DDτ is reproduced. Nonetheless, the
amplitude of DDpd is one order of magnitude higher. Detailed
analysis of DD0, DDpp, and DDplaq (see inset in Fig. 8) provides
evidence of domelike shape existence in the same range of δ

as observed for DDpd and DDdd and thus confirms the d-wave
superconducting nature of the ground state. Note that the
whole numerical analysis is performed for Sz

tot = 0, so the
local diagonal correlations contain Zhang-Rice spin-singlet
correlations at local scale.

B. Spin-spin correlations

The VMC method allows us to determine the characteris-
tics of the spin and charge ordering. Though the variational
Hamiltonian does not include explicitly AF terms, the short-
range correlations of this type can be expected. The existence
of the AF order for both hole- and electron-doped cuprates is
one of the main features of their phase diagram. Therefore, we
investigate if the considered ansatz is able to reproduce such
a tendency.

We perform analysis of the z component of spin-spin CFs
defined in a standard manner [13,31,32], namely,

Sz
l (R) = 1

L2

∑
i,R

〈(n̂il↑ − n̂il↓)(n̂ j(R)l↑ − n̂ j(R)l )↓)〉, (20)

and the static spin-spin susceptibility, which has the form

Sz
l (q) =

∑
R

eiq·RSl (R), (21)

with q being the ordering vector given in 1/a units.
In Fig. 9, we present Sz

l (q) for vectors q = {(π, 0),
(π, π ), ( π

2 ), π
2 ), (0, 0)}. As one can see, the amplitude for

the ordering vector q = (π, π ) dominates over others as the
hole doping is reduced in the system. This corresponds to
the tendency of establishing the magnetic state with staggered
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FIG. 9. Static spin-spin susceptibilities as a function of hole
doping δ for the d orbitals. Sz

d (π, π ) is dominant, particularly with
decreasing δ, and attains maximum value for the parent compound.

magnetization, at least at short range. Note, that our result is
in the quantitative agreement with that obtained by means of
the DQMC method [13], e.g., the value of Sz

d (π, π ) at δ = 0 is
≈2.6. However, our result refers to that procured for a larger
system. Thus the ratio Sz

d (π,π )
L2 fits the finite-size scaling analy-

sis performed by Kung et al. [13]. In our solution the absence
of the long-range AF order is expected due to no AF terms in
Ĥeff, whereas in DQMC, where T > 0, it originates from the
Mermin-Wagner theorem. Despite these circumstances both
approaches reproduce similar spin physics.

The evidence of the AF correlation enhancement with
decreasing hole-doping manifests itself also in terms of the
real-space analysis. In Fig. 10, we present spatial CF Sz

d (0, a)
and Sz

d (a, a). As one can see, with decreasing hole-doping,
NN orbitals are occupied by the antiparallel spins, whereas
correlations between next-NN becomes positive, indicating
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FIG. 10. The doping dependence of the correlation functions
Sz

d (R) for the nearest- and next-nearest d orbitals. The maximal
absolute values correspond to δ = 0, and their signs correspond to
the development of staggered magnetization.
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FIG. 11. The decay of spin-spin spatial correlations in real space
for δ ≈ 0.4 (a) and δ = 0 (b). The radius of the circles is proportional
to the value of Sz

d (R); the color indicates the sign of the amplitude:
positive (red) and negative (blue). For the sake of brevity, we exclude
the auto-correlation function (central black dot).

parallel orientation of the z component of the further spins.
In spite of the fact that the spin-spin correlations are short-
ranged, in the vicinity of δ = 0 they decay slowly with the dis-
tance (cf. Fig. 11). In the analyzed doping range, we have not
found any indication of crossover from AF to ferromagnetic
correlations. Namely, Sz

d (0, a) remains negative and increases
with increasing hole doping.

For the sake of completeness, the correlation functions
related to p orbitals are presented in Fig. 12. As one can see,
there is no particular spin order for each selected wave vector.
Values of Sz

py
(q) decrease monotonically with decreasing hole

doping. This result agrees with that obtained by means of
DQMC [13].

C. Charge gap

As cuprates fall into the class of strongly correlated sys-
tems, the emergence of an electron-electron-induced insulat-
ing phase is characteristic of these compounds. The outcome
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FIG. 12. Equal-time correlation functions Sz
py

(q) for the selected
wave vectors as a function of doping. In the considered range of
doping, the system does not exhibit spin ordering at the p orbitals.
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FIG. 13. Charge gap �CG versus δ. The gap emerges for δ � 0.1
attaining, its maximum for the parent compound (δ = 0).

of our estimation is directly comparable to other theoretical
treatments as well as to the experimental results.

One of the methods for calculating the CG �CG (which
identifies the insulating state) is based on the single-mode
approximation, which has been proved to be an efficient
method for the Hubbard-type systems. Within such analysis,
one has to determine quantity

�CG ∝ lim
q→0

χ c(q)

q
, (22)

where χ c(q) is the Fourier transform of equal-time charge-
charge CF. Unfortunately, the minimal norm of the wave
vector for L = 8 is |q| = π

2 , thus we are not able to provide a
firm estimate of �CG along these lines. Instead, we determine
the value of �CG in a standard manner. Namely,

�CG ≈ 2E (Ne) − E (Ne + 2) − E (Ne − 2)

2
, (23)

where E (Ne) is the total energy of the system at the doping
value corresponding to a particular number of electrons Ne.
The above formula previously used by us in a different context
[27] can be applied directly here due to the fact the in this
analysis one can safely assume that Sz

tot = 0 and �Ne = 2.
In Fig. 13, we present �CG as a function of δ. For δ � 0.12,

we still obtain small but nonzero values of �CG, which should
be considered as residual and not identified as an indicator
of the insulating state. Close to zero doping, we obtain the
maximal value of �CG(δ = 0) ≈ 1.78 eV, as expected for the
parent compound, which agrees well with those reported in
experiments [33–37], i.e., �CG ≈ 1.32 − 2.2 eV for the group
of layered structure compounds X-CuO2, where X refers to
lanthanide (La, Sr, Nd, Ca, Sm, Tb). Kung et al. [13] reports
the value of indirect gap ≈0.77 eV (after the extrapolation to
zero temperature). The authors discuss if such a low value—
when compared to the experiment—originates from finite-size
effects or is connected with temperature extrapolation issues.
The maximal size cluster taken for that study was 6 × 6,
i.e., (smaller than the one examined by us) as well as 2 × 2
clusters were treated at T = 0 also in the framework of cluster
perturbation theory and ED [13]. The latter method provided

�CG ≈ 1.7, which is very close to the value obtained by us.
This may suggest that the extrapolation to T = 0 for data
obtained in the framework of DQMC [13] affected value of
�CG, thus finite system-size effects seem not to be decisive in
this matter. This issue needs a further analysis, since we do
not have a systematic analysis of finite-size effects.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have considered a three-band d − p model
of the copper-oxygen plane within the VMC approach with a
wave-function ansatz containing both onsite Gutzwiller and
intersite Jastrow correlators in real space. The analysis of
superconducting pairing properties in view of the so-called
standard analysis, i.e., the one based on d-orbital pairing CFs,
provided us with results which are quantitatively consistent
with our previous work, as well as qualitatively with selected
experimental observations. As an extension of our previous
work, we have also calculated the spatial distribution func-
tions of pairing operators proposed by Moreo and Dagotto in
their very recent report [10]. We found that the amplitude of
the CF is the highest (order of magnitude higher) for the Dpd

operator when compared to those consisting of p orbitals only.
Moreover, the considered CFs show the domelike behavior
as a function of hole doping, which is similar to the NN
d-d pairing amplitude. According to our study, the CFs for
MSPO parameters can be regarded as convenient observables
for the characterization of the d-wave paired state in the d-p
model. Recapitulating, scrutinization of pairing observables
in the context of this paper, as well as analysis performed
recently [16], indicate that both inter- and intraorbital pairing
amplitudes are responsible for the net d-wave superconduc-
tivity in the three-band d-p model. Nonetheless, the dominant
contribution to the superconducting state results from the d-d
pairing [16].

For the sake of completeness, we have also determined
spin-spin equal-time CFs. Even though the utilized ansatz is
not supplemented with explicit AF terms, we have observed
short-range AF ordering on the d orbitals. Detailed analysis
brought us to conclusions similar to those obtained by Kung
et al. [13]. Particularly, static spin-spin susceptibilities agree
quantitatively with the DMC solution. Moreover, the esti-
mated value of CG is �CG ≈ 1.78 eV, which fits surprisingly
well experimental data [33–38].

Recapitulating, we have retrieved the main features of
hole-doped cuprate compounds by means of VMC method,
within compact Gutzwiller-Jastrow variational approach. Ac-
cording to experimental findings [5], the symmetry of charge
order in the cuprates is likely to be complex and the role of
p orbitals is supposed to be quite important. Nevertheless,
we have not analyzed the onset of charge ordering [5]. This
issue can be related both to the supercell size, as well as
to the form of variational ansatz. Possibly, the application
of the most general Pfaffian wave function and more distant
Jastrow terms, with a minimal dose of symmetries, could
provide a better understanding of this state. However, in such a
scenario the number of variational parameters is large and the
optimization procedure may become too complex. The recent
development of dedicated VMC codes may help to overcome
these difficulties [26], potentially even at the ab initio level
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[39,40]. We should be able to see progress in this matter in
the near future.
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