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Analysis of surface acoustic wave induced spin resonance of a spin accumulation
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It is shown that a surface acoustic wave (SAW) can induce spin resonance of a spin accumulation in a
paramagnetic material. The high-frequency mechanical motion of the SAW produces an effective AC magnetic
field. If it is oriented orthogonal to the spins, spin precession is induced if an additional DC magnetic field B0 is
applied along the spin axis and the corresponding Larmor frequency ω0 matches the SAW frequency. The spin
accumulation is then resonantly suppressed. We describe this SAW-induced spin resonance quantitatively and
analyze the example of a nonlocal spin-transport device with a silicon channel, in which the spin accumulation is
created by electrical spin injection from a ferromagnetic contact. The analysis demonstrates that the (nonlocal)
electrical detection of SAW-induced spin resonance is feasible.
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I. INTRODUCTION

The manipulation of spin angular momentum is an indis-
pensable aspect of the operation of many spin-based elec-
tronic devices [1–5]. Besides the application of an external
magnetic field, several new ways to manipulate spins have
been developed, including the application of electric fields
[6,7], thermal gradients [8–11], magnetic exchange fields
[12–14], and spin torques created by spin-polarized currents
[15–18]. The efforts to develop methods for the manipulation
of conduction electron spins have provided a wealth of knowl-
edge about the interaction of spins with their environment.
Interestingly, there has also been a keen interest to explore the
coupling between spin and mechanical motion [19–25]. The
underlying physical concept is that of spin-rotation coupling,
which was revealed in the seminal experiments by Einstein
and de Haas [26] and by Barnett [27,28]. Spin-rotation cou-
pling for electrons is described the following Hamiltonian:

Hrot = −S · �rot (1)

with S the electron spin angular momentum and �rot the
angular velocity of the mechanical rotation. This is equivalent
to an effective Zeeman coupling Heff = −γ S · B� with an
effective magnetic field B� = �rot/γ , denoted as the Barnett
field, in which γ = gμB/h̄ is the electron gyromagnetic ratio
(≈175.9 GHz/T), μB is the Bohr magneton, g is the electron
g factor, and h̄ is the reduced Planck’s constant.

For the mechanical rotation of an entire object, the angular
frequency is typically limited to the kilohertz (kHz) regime,
so that the effect on electrons is very small. Also, the in-
tegration of the rotation assembly into a spintronic device
is rather problematic. Hence our interest is in producing the
mechanical motion using a surface acoustic wave (SAW). In
solids, surface acoustic waves with frequencies in the range of
100 MHz up to 10 GHz or so can readily be generated by a
microwave-driven interdigital transducer (IDT), consisting of
two interlocking comb-shaped arrays of metallic electrodes

that can be patterned onto the surface of the sample. Con-
tinuously driving the IDT causes a periodic displacement
of the surface atoms which propagates through the material
at the sound velocity. Owing to spin-rotation coupling, this
produces [21,23,29–31] an effective AC magnetic field that
is oriented parallel to the surface plane and perpendicular
to the propagation direction of the SAW and oscillates at
the frequency fac of the SAW. The amplitude B� of the AC
Barnett field is given by [23,30,31]

B� = ω2
ac u0

γ c
ξ 2 (2)

with ωac = 2 π fac, u0 the vertical displacement amplitude
[30] of the SAW, c the velocity of the SAW, and the dimen-
sionless factor ξ is near unity (0.87 � ξ � 1, depending on
the Poisson ratio [29]). The Barnett field is of the order of
several Oe for a SAW with a frequency in the GHz range
(Fig. 1). Although B� is not very large, the manipulation
of conduction electron spins in a paramagnetic material via
Hanle spin precession requires [1] a magnetic field for which
the Larmor frequency is of the order of 1/τs, with τs the spin-
relaxation time. The spin lifetime of conduction electrons can
be of the order of 1–10 ns in semiconductors (such as silicon),
metals and two-dimensional materials (such as graphene),
which puts the required magnetic fields in the range of several
Oe. In spin-transport devices with such materials, it has also
been shown that a large spin accumulation (spin splitting of
the electrochemical potential) in the range of 1–10 meV can
be induced by spin injection from a ferromagnetic (tunnel)
contact using an electrical current [32–36]. This makes spin-
transport devices a suitable platform to explore the interaction
between a spin accumulation and a surface acoustic wave.

Here it is shown that a surface acoustic wave can induce
spin resonance of a spin accumulation in a nonmagnetic ma-
terial. We provide a quantitative description of SAW-induced
spin resonance, which can be used to guide the design of
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FIG. 1. Magnitude of the AC Barnett field as a function of the
frequency of the SAW, for a constant amplitude of the SAW of
u0ξ

2 = 0.2 nm, and a wave velocity of 5000 m/s.

experiments and for the interpretation and the quantitative
analysis of the data. We describe the specific example of a
nonlocal spin-transport device with an n-type silicon channel,
in which the spin accumulation is created by electrical spin
injection from a ferromagnetic contact, and show that the
(nonlocal) electrical detection of SAW-induced spin reso-
nance is feasible.

Note that different types of acoustic spin resonance have
been discussed and observed in other systems [37–40]. In
Ref. [37], it was discussed that the motion of charged ions in
insulating crystals produces an oscillating electric field, which
couples to the spins and produces a resonant absorption of
acoustic power by inducing transitions between the different
spin levels. This was indeed observed using bulk crystals
subjected to ultrasonic waves [38,39]. More recently, it was
shown that the oscillating strain field from a SAW couples to
atomic-scale spin centers in silicon carbide [40].

II. RESULTS

A. Description of the system

We shall analyze how a SAW modifies the spin accumula-
tion in the paramagnetic channel of a nonlocal spin-transport
device (Fig. 2 ). The device contains two ferromagnetic (FM)
contacts, one for the electrical injection of a spin accumula-
tion into the channel, and the second contact to electrically
detect the spins after transport through the channel in the
y direction. Two additional nonmagnetic (NM) contacts at
the far ends of the device are needed for the application
of the current (I) and the detection of the nonlocal voltage
(VNL). An interdigital transducer is patterned onto the surface
of the channel and driven at GHz frequency. This produces
surface acoustic waves that propagate through the channel
along the x axis, thus interacting with the spin accumulation
between the FM injector and detector. The effective magnetic
field B� created by the SAW is oriented along the y axis

FIG. 2. Device layout for the observation of SAW-induced spin
resonance of a spin accumulation. The nonlocal spin-transport device
consists of a nonmagnetic channel with four electrical contacts. The
two FM contacts serve as injector and detector of the spins in the
channel, whereas the two additional nonmagnetic (NM) contacts at
the far ends of the device are needed for the application of a current
I and the detection of the nonlocal voltage VNL. The IDT, which is
patterned onto the surface of the channel, is driven at a microwave
frequency, thus producing surface acoustic waves (red wavy lines)
that propagate through the channel and interact with the spins (dark
blue arrows) between the two FM contacts. The relative dimensions
in the x and y directions are not to scale, as the FM contacts typically
have aspect ratios larger than 10.

and oscillates at the driving frequency of the IDT. In order
to obtain SAW-induced spin resonance, an additional DC
magnetic field B0 is applied along the x direction, which also
forces the magnetization of the FM contacts to align along
the x direction. Consequently, the spins that are injected into
channel are also oriented along x direction. The thickness of
the paramagnetic channel is assumed to be small compared
to the spin-diffusion length (as in typical nonlocal devices
[32–36]), so that the spin accumulation is homogeneous in the
depth direction. Moreover, the channel thickness is assumed
to be small compared to the wavelength of the SAW (typically
∼1 μm for GHz frequencies), so that the atomic displacement
amplitude can also be considered as homogenous in the depth
direction. Because the FM contacts are typically elongated
along the x direction with aspect ratios larger than 10, the spin
transport in the channel can be considered as one-dimensional
(spin-diffusion along the y direction). Small corrections that
account for spin diffusion in the orthogonal direction have
been described before [36].

B. Spin dynamics

The spin density S in the channel of a nonlocal device
is obtained from the spin-diffusion equation [1,2] for spin
dynamics of an ensemble of spins in a paramagnetic host:

∂S
∂t

= S × ωL + D∇2S − S
τs

(3)
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with D the diffusion constant, τs the spin-relaxation time and
ωL = (ωx, ωy, ωz ) = γ (Bx, By, Bz ) the Larmor frequency.
The components Bi of the magnetic field contain all the (real
and effective) magnetic fields. The terms on the right-hand
side of Eq. (3) describe, respectively, spin precession, spin
diffusion, and spin relaxation. Spin drift has been neglected.
We shall consider the usual case of one-dimensional diffusion
(in the lateral y direction only). In general, S is a vector,
but we shall describe the case where the spins injected from
the FM injector contact are initially polarized along the x
direction, and the FM detector senses the x component of
the spin accumulation. We are thus only interested in the x
component of the spin accumulation 	μ in the nonmagnetic
channel, which is given by [34,36]

	μ(y) = 2e J Pinj rch

∫ 0

−Winj

∫ ∞

0
Sx(t )

1√
4πDt

× exp

(
− (y − y1)2

4Dt

)
1

τs
exp

(
− t

τs

)
dtdy1 (4)

with J the injected current density, Pinj is the spin polarization
of the injected current, e is the electron charge, and rch is the
spin resistance of the channel material [41,42]. The integra-
tion over time t and the width Winj of the injector contact in
the y direction yields the spin accumulation at location y in the
channel produced by spins injected from the injector contact
located between y = −Winj and y = 0.

The complete integrand of Eq. (4) is the x component of the
(normalized) spin density in the channel [solution of Eq. (3)].
Because the terms due to spin diffusion and spin relaxation
can be factored out, they are already given explicitly in the
integrand. However, we still need to find the spin precession
term Sx(t ). This is to be obtained from the expression for spin
dynamics without the spin diffusion and spin relaxation terms:

∂S
∂t

= S × ωL. (5)

When there is only an external DC magnetic field along
the z direction, perpendicular to the spins, one obtains the
usual term Sx(t ) = cos(ωz t ) that describes the familiar Hanle
spin precession. Here we will examine the effect of the AC
Barnett field on the spin dynamics. The mathematical analysis
has some similarities with that presented by Roundy et al.
[43], who evaluated Hanle spin precession with an AC drive
field, although the system and the specific conditions that we
consider here are different.

1. Hanle effect with added AC magnetic field

It is instructive to first consider how the Hanle spin preces-
sion in a DC magnetic field Bz perpendicular to the spins is
affected by an AC Barnett field, oriented perpendicular to the
spins and to the external field. We set

ωx = 0,

ωy = ω1 cos(ωac t + ϕ), (6)

ωz = ωz

with ωz = γ Bz and ω1 = γ B�. Note that a random phase ϕ

is included [43] to account for the fact that electron spins are
injected into the channel at random times (the injection is not

synchronized with the AC field). The solution of Eq. (5), after
averaging over ϕ, is then (see Appendix A):

Sx(t ) = cos(J0(ω1/ωac) ωz t ) + 1

2

(
ω1

ωac

)2

cos(ωac t ) (7)

with J0 the zero-order Bessel function. Because ω1/ωac is
typically of the order of 10−4 for the AC field produced by
a SAW, we have J0(ω1/ωac) ≈ 1, and also the last term in
Eq. (7) can be neglected. The final solution, Sx(t ) ≈ cos(ωz t ),
is then identical to the one without the AC field, i.e., the
Barnett field has no effect on the Hanle spin precession. This
can be understood in the following way. During half of the AC
period B� points in one direction, making the spins precess
in one direction, while for the other half of the AC cycle,
the spins precess back in the opposite way. The maximum
angle that the spins can reach is given by the precession
rate (∝ω1) times the duration of half an AC cycle (∝1/ωac).
Because ω1 � ωac, the maximum angle is very small. In other
words, before any significant precession is made, the AC field
reverses sign again and so does the direction of precession.

2. SAW-induced spin resonance

Although the maximum precession angle produced by the
AC magnetic field during half a cycle is negligibly small,
a strong effect on the spin accumulation is nevertheless
achieved when the AC magnetic field is accompanied by a DC
magnetic field B0 aligned parallel to the spins, so as to obtain
spin resonance. The analysis is more straightforward for a
rotating AC field (see Appendix B), however, a SAW produces
an effective AC magnetic field that oscillates in amplitude
along a fixed axis [21,30]. We thus set

ωx = ω0,

ωy = ω1 cos(ωac t + ϕ), (8)

ωz = 0

with ω0 = γ B0 and ω1 = γ B�. The solution for the spin
density is then (see Appendix B):

Sx(t ) = (ω0 − ωac)2 + (ω1/2)2 cos(�L t )

(ω0 − ωac)2 + (ω1/2)2 . (9)

with the effective Larmor frequency

�L =
√

(ω0 − ωac)2 + (ω1/2)2. (10)

When the DC field is far from the resonance value ((ω0 −
ωac)2 	 (ω1/2)2), the spin density is constant (Sx(t ) = 1),
and there is no spin precession. However, at resonance, when
B0 = ωac/γ , we have Sx(t ) = cos((ω1/2) t ). At resonance,
the combined effect of the AC and DC fields is equivalent
to spin precession at a Larmor frequency ω1/2 = γ B�/2, and
thus the spin density is reduced by an amount that depends on
the amplitude of the AC field.

Let us illustrate the effect of the SAW on the spin accu-
mulation in the absence of spin diffusion, which yields the
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following expression for the spin accumulation:

	μ ∝
[

(ω0 − ωac)2

(ω0 − ωac)2 + (ω1/2)2 +
(

(ω1/2)2

(ω0 − ωac)2 + (ω1/2)2

)(
1

1 + (�L τs)2

)]
. (11)

Figure 3 displays the calculated spin accumulation in the
presence of SAW-induced spin resonance. Close to resonance
(γ B0 ≈ 2 π fac) the spin accumulation is significantly sup-
pressed, and the suppression becomes stronger at larger SAW
frequency, because the AC Barnett field increases with fac.
Importantly, the width of the SAW-induced spin-resonance
line is determined both by τs and by ω1, as can be deduced
from Eq. (11).

In the next section, we shall analyze the detection of the
SAW-induced spin resonance for a nonlocal spin-transport
device, including spin diffusion. This requires [34] numerical
evaluation of Eq. (4), because the result depends on the geo-
metrical parameters of the device (widths of the FM injector
and detector contacts and their separation).

C. SAW-induced spin resonance in a silicon nonlocal device

We evaluate the spin signal produced by SAW-induced spin
resonance in a nonlocal spin-transport device with a Si chan-
nel, using parameters previously established from nonlocal
spin-transport data [34–36] (τs = 18 ns, spin-diffusion length
2.2 μm). We assume that the width of the FM injector in
the y direction is 1 μm, and calculate the spin accumulation
at the center of the nonlocal detector contact by numerical
evaluation of Eq. (4) with Eq. (9) for Sx(t ), for different
distances d between the detector center and the edge of the
injector (Fig. 4, left panel). The SAW has a frequency of
10 GHz and the external field B0 is parallel to the spins.

FIG. 3. SAW-induced spin resonance without spin diffusion. The
spin accumulation as a function of the external magnetic field B0

parallel to the spins was calculated in the absence of spin diffusion
[Eq. (11)], for different values of the frequency fac of the SAW,
as indicated. Other parameters: u0ξ

2 = 0.2 nm, c = 5000 m/s, and
τs = 18 ns.

When B0 is swept through the resonance, a sharp reduction
of the nonlocal spin signal occurs. For a distance of 1 μm,
the spin signal is reduced by about a factor of 2. At larger d ,
the relative dip in the signal becomes stronger, and a complete
suppression of the spin accumulation is obtained at resonance.
The dependence on d is because for larger distances the
electron spins have more time to precess before reaching
the detector, thus producing a larger precession angle. Thus
the SAW-induced spin resonance becomes more pronounced
at larger separation between injector and nonlocal detector.
The right panel of Fig. 4 shows how the nonlocal spin signal
at resonance (B0 = 3572.4 Oe for fac = 10 GHz) decays as
a function of the amplitude of the SAW. For small distance,
the complete suppression of the spin signal requires a SAW
amplitude above 0.4 nm, which is difficult to achieve exper-
imentally. However, SAW amplitudes of 0.1 to 0.2 nm are
sufficient for distances of 4 μm and above.

III. DISCUSSION

For a nonlocal device with a given set of geometric pa-
rameters, the width of the SAW-induced spin resonance line
depends on B� and on τs. If the magnitude of the Barnett field
is known, one can determine the spin lifetime from the SAW
spin-resonance line width. However, in a nonlocal device the
spin accumulation is created by electrical injection, and thus
τs can readily be obtained [32–36] by applying only a DC
field perpendicular to the spins (regular Hanle measurement),
without the need for the AC field produced by the SAW. With
τs known, one can thus determine the Barnett field from the
line width of SAW-induced spin resonance. Note the essential
difference with conventional electron spin resonance (ESR) in
paramagnetic materials [44], in which the DC field is needed
to create a net spin polarization and spin precession cannot
be induced with an additional DC field perpendicular to the
spins (this would just reorient the spin polarization). That is,
in conventional ESR one needs the resonance produced by an
AC field in order to determine the spin lifetime.

Although the analysis was performed for a nonlocal device,
the SAW-induced spin resonance can occur in any device in
which there exists a spin accumulation, created electrically,
optically or thermally. In two-terminal lateral spin-transport
devices, the analysis of SAW-induced spin resonance requires
more effort, because the Hanle spin signal consists of a
superposition of four contributions [45]. Nevertheless, the
analysis is straightforward since the description of each of the
four contributions is similar to that of a nonlocal Hanle signal,
as recently shown [45]. In devices with the three-terminal
geometry [46], the SAW-induced spin resonance can also be
observed, but the magnitude of the resonance peak is reduced,
because the effective distance between the point of injection
and detection is smaller than in a nonlocal device (recall that
the effect of the SAW is reduced at smaller distance between
injector and detector, as shown above).
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FIG. 4. SAW-induced spin resonance in a nonlocal spin-transport device. Left panel: spin signal as a function of the external magnetic
field B0 parallel to the spins, calculated for a nonlocal device with a Si channel (τs = 18 ns, spin-diffusion length 2.2 μm) and a 1 μm wide
FM injector contact, for different distances d between the edge of the injector and the center of the nonlocal detector contact, as indicated.
Parameters of the SAW: fac = 10 GHz, u0ξ

2 = 0.2 nm, and c = 5000 m/s. Right panel: nonlocal spin signal at resonance (B0 = 3572.4 Oe) as
a function of the amplitude u0 of the SAW, at different distances d between injector and detector ( fac = 10 GHz and c = 5000 m/s).

In our description, the SAW produces an effective AC
magnetic field that modifies spin precession and produces
spin resonance. However, any effect of the SAW on the spin
lifetime was neglected. In reality, the SAW produces a time-
varying strain, and it is known that in semiconductors, the spin
lifetime changes under the application of strain [47–49]. One
may therefore expect that in the presence of a SAW, the spin
lifetime oscillates at the SAW frequency. A refined description
of SAW-induced spin resonance should take this into account,
for instance by including an effective spin lifetime obtained
by averaging the time-dependent spin lifetime over a period
of the fast AC oscillation [note that the AC period is of
the order of 0.1 ns, and thus much smaller than the spin
lifetime (∼10 ns)]. This is not a simple exercise, because
(i) the magnitude and direction of the strain produced by a
SAW is inhomogeneous in space, (ii) the spins in the channel
material are moving by diffusion, and (iii), the precise relation
between strain and spin lifetime needs to be known. So far,
we have only made a rough estimate, which indicates that
for the calculations presented in this manuscript, the effect of
the SAW on the spin lifetime is minimal [50]. Fortunately, in
the nonlocal spin-transport devices considered here, the effect
of the SAW on the spin lifetime can be measured directly,
namely, by performing a regular Hanle measurement in small
perpendicular DC magnetic fields (far from any resonance),
with and without the SAW.

IV. SUMMARY

It was shown that a surface acoustic wave can induce spin
resonance of a spin accumulation in a nonmagnetic material.
A quantitative description of SAW-induced spin resonance
was presented and the conditions for it to occur were ob-
tained. This can be used to guide and interpret experiments
and to analyze the data. The SAW-induced spin resonance
was evaluated for a nonlocal spin-transport device with a
silicon channel, in which the spin accumulation is created

by electrical spin injection from a ferromagnetic contact. The
analysis demonstrates that the (nonlocal) electrical detection
of SAW-induced spin resonance is feasible.
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APPENDIX A

In this Appendix, we evaluate the expression for Sx(t ) for
the case of Hanle spin precession in a DC magnetic field
perpendicular to the spins, with an additional AC magnetic
field, also oriented perpendicular to the spins. We thus seek
the solution of the spin-dynamics equation ∂S/∂t = S × ωL
for

ωx = 0,

ωy = ω1 cos(ωac t + ϕ), (A1)

ωz = ωz

with ωz = γ Bz, whereas ω1 = γ B� for an AC field generated
by a SAW. It is convenient [43] to change variables:

x′ = x cos (θ (t )) − z sin (θ (t )),

y′ = y, z′ = x sin (θ (t )) + z cos (θ (t )) (A2)

with θ (t ) = (ω1/ωac) sin(ωac t + ϕ). The spin-dynamics
equations then transform into:

∂S′
x

∂t
= S′

y [ωz cos (θ (t ))] − S′
z [2 ω1 cos(ωac t + ϕ)],

∂S′
y

∂t
= S′

z [−ωz sin (θ (t ))] − S′
x [ωz cos (θ (t ))], (A3)

∂S′
z

∂t
= S′

x [2 ω1 cos(ωac t + ϕ)] − S′
y [−ωz sin (θ (t ))]
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implying that after transformation ω′
x = −ωz sin (θ (t )),

ω′
y = 2 ω1 cos(ωac t + ϕ) and ω′

z = ωz cos (θ (t )). Also, the
initial conditions [Sx(0) = 1, Sy(0) = Sz(0) = 0] transform
into S′

x(0) = cos((ω1/ωac) sin ϕ), S′
y(0) = 0, and S′

z(0) =
sin((ω1/ωac) sin ϕ) in the new coordinate frame. Because
ωac is much larger than any of the Larmor frequencies, the
equations can be averaged [43] over a period of the fast AC
dynamics, noting that

∫ +π/ωac

−π/ωac

cos (θ (t ))dt = J0(ω1/ωac),

∫ +π/ωac

−π/ωac

sin (θ (t ))dt = 0,

(A4)∫ +π/ωac

−π/ωac

cos(ωac t + ϕ)dt = 0

with J0 the zero-order Bessel function. After averaging we
then have

∂S′
x

∂t
= S′

y ωz J0(ω1/ωac),

∂S′
y

∂t
= −S′

x ωz J0(ω1/ωac), (A5)

∂S′
z

∂t
= 0.

Because the effective field components are now indepen-
dent of time, we can use the general solution presented in
Appendix C. Applying the above-mentioned initial condi-
tions, the solutions are

S′
x(t ) = cos ((ω1/ωac) sin ϕ) cos (J0(ω1/ωac) ωz t ),

S′
y(t ) = − cos ((ω1/ωac) sin ϕ) sin (J0(ω1/ωac) ωz t ), (A6)

S′
z(t ) = sin ((ω1/ωac) sin ϕ).

Finally, after transforming back to the (x, y, z) coordinate
system and averaging over the initial phase ϕ, we obtain for
the x component:

Sx(t ) = cos(J0(ω1/ωac) ωz t ) + 1

2

(
ω1

ωac

)2

cos(ωac t ). (A7)

APPENDIX B

In this Appendix, we present the solution of the spin-
dynamics equation ∂S/∂t = S × ωL with a DC magnetic
field parallel to the spins and an AC field perpendicu-
lar to the spins, which yields spin resonance. It is con-
venient to first change to a rotating coordinate system
(x′, y′, z′), with x′ = x, y′ = y cos(ωac t ) − z sin(ωac t ) and
z′ = z cos(ωac t ) + y sin(ωac t ). The spin-dynamics equation
then changes to ∂S′/∂t = S′ × ω′

L, with an effective field
characterized by

ω′
x = ωx − ωac,

ω′
y = ωy cos(ωac t ) − ωz sin(ωac t ), (B1)

ω′
z = ωz cos(ωac t ) + ωy sin(ωac t ).

Let us first consider a rotating AC field with amplitude ω1:

ωx = ω0,

ωy = +ω1 cos(ωac t + ϕ), (B2)

ωz = −ω1 sin(ωac t + ϕ).

The effective fields in the rotating frame are then

ω′
x = ω0 − ωac,

ω′
y = +ω1 cos(ϕ), (B3)

ω′
z = −ω1 sin(ϕ).

Because the effective fields in the rotating frame do not
depend on time, we can use the general solution of the
spin-dynamics equation (Appendix C), noting that the initial
conditions at t = 0 [Sx(0) = 1, Sy(0) = Sz(0) = 0] transform
into S′

x(0) = 1, S′
y(0) = S′

z(0) = 0 in the rotating frame. The
solution for the x component of the spin density Sx(t ) in the
laboratory frame is then

Sx(t ) = S′
x(t ) = ω′2

x + (
ω′2

y + ω′2
z

)
cos(ω′

L t )

ω′2
L

(B4)

with ω′
L

2 = ω′2
x + ω′2

y + ω′2
z . We thus have

Sx(t ) = (ω0 − ωac)2 + (ω1)2 cos(�L t )

(ω0 − ωac)2 + (ω1)2 . (B5)

with

�L =
√

(ω0 − ωac)2 + (ω1)2. (B6)

Note that the solution does not depend on the initial phase ϕ,
so that the averaging over ϕ is unnecessary. Also note that
if a rotating AC field with the opposite sense of rotation is
used, the solution is similar, but the factor ω0 − ωac changes
to ω0 + ωac, so that no spin resonance is produced at positive
magnetic fields (ω0 > 0).

Next, we consider an oscillating AC field with amplitude
ω1:

ωx = ω0,

ωy = ω1 cos(ωac t + ϕ), (B7)

ωz = 0.

This yields the following effective fields in the rotating frame:

ω′
x = ω0 − ωac,

ω′
y = ω1 cos(ωac t ) cos(ωac t + ϕ), (B8)

ω′
z = ω1 sin(ωac t ) cos(ωac t + ϕ).

As may have been expected, for an oscillating AC field,
the transformation to the rotating coordinate frame does not
yield effective fields that are time-independent. Hence, an
additional step is required, namely, the averaging of the spin-
dynamics equation in the rotating frame over a period of the
fast AC dynamics (similar to what was done in Appendix A).
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Noting that ∫ +π/ωac

−π/ωac

ω′
ydt = +1

2
ω1 cos(ϕ),

∫ +π/ωac

−π/ωac

ω′
zdt = −1

2
ω1 sin(ϕ), (B9)

we obtain after averaging over the fast AC dynamics:

ω′
x = ω0 − ωac,

ω′
y = +(ω1/2) cos(ϕ), (B10)

ω′
z = −(ω1/2) sin(ϕ).

The effective fields are now independent of time, and in fact,
they are identical to those for the rotating AC field, except
that ω1 is replaced by ω1/2. The solution for the spin density
is thus:

Sx(t ) = (ω0 − ωac)2 + (ω1/2)2 cos(�L t )

(ω0 − ωac)2 + (ω1/2)2 (B11)

with

�L =
√

(ω0 − ωac)2 + (ω1/2)2. (B12)

Note that the appearance of the factor of (1/2) is well known
from conventional electron spin resonance [44]. It can be
understood as follows. An oscillating AC field with amplitude
ω1 can be decomposed into a sum of two rotating AC fields
with opposite sense of rotation and half the amplitude. As
noted above, at positive magnetic fields spin resonance occurs
only for one sense of rotation, while for the oppositely rotating
field, the system is far from resonance and there is little effect
on the spins. One can thus retain only the rotating field that
produces spin resonance, and replace the amplitude ω1 by
ω1/2.

APPENDIX C

In this Appendix, we present the general solution of the
spin-dynamics equation ∂S/∂t = S × ωL for arbitrary initial

conditions:

Sx(t = 0) = A,

Sy(t = 0) = B, (C1)

Sz(t = 0) = C

with A, B, C constants subject to the condition A2 + B2 +
C2 = 1 for a normalized spin density. Although the solution
for initial conditions A = 1 and B = C = 0 is often used [51],
the general solution is required if after transformation to a
different coordinate system, B and C are no longer zero (as, for
instance, in Appendix A). Provided that all the components of
the magnetic field are independent of time, the general solution
has the form:

Sx(t ) = [C1 cos(ωL t ) + C2 sin(ωL t ) + C3]/ω2
L,

Sy(t ) = [C4 cos(ωL t ) + C5 sin(ωL t ) + C6]/ω2
L, (C2)

Sz(t ) = [C7 cos(ωL t ) + C8 sin(ωL t ) + C9]/ω2
L

with the constants C1 to C9 given by

C1 = A
(
ω2

y + ω2
z

) − B ωxωy − C ωxωz,

C2 = B ωzωL − C ωyωL,

C3 = A ω2
x + B ωxωy + C ωxωz,

C4 = −A ωxωy + B
(
ω2

x + ω2
z

) − C ωyωz,

C5 = −A ωzωL + C ωxωL,
(C3)

C6 = A ωxωy + B ω2
y + C ωyωz,

C7 = −A ωxωz − B ωyωz + C
(
ω2

x + ω2
y

)
,

C8 = A ωyωL − B ωxωL,

C9 = A ωxωz + B ωyωz + C ω2
z .
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