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First-principles perspective on magnetic second sound
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The fluctuations of the magnetic order parameter, or longitudinal spin excitations, are investigated theoretically
in the ferromagnetic Fe and Ni as well as in the antiferromagnetic phase of the pnictide superconductor FeSe. The
charge and spin dynamics of these systems is described by evaluating the generalized charge and spin density
response function calculated from first-principles linear response time-dependent density functional theory
within adiabatic local spin density approximation. We observe that the formally noninteracting Kohn-Sham
system features strong coupling between the magnetization and charge dynamics in the longitudinal channel and
that the coupling is effectively removed upon the inclusion of the Coulomb interaction in the charge channel
and the resulting appearance of plasmons. The longitudinal spin fluctuations acquire a collective character
without the emergence of the Goldstone boson, similar to the case of paramagnon excitations in nonmagnetic
metals like Pd. In ferromagnetic Fe and Ni the longitudinal spin dynamics is governed by interactions between
low-energy intraband electron-hole pairs while in quasi-two-dimensional antiferromagnet FeSe it is dominated
by the interband transitions with energies of the order of exchange splitting. In the later material, the collective
longitudinal magnetization fluctuations feature well-defined energies and long lifetimes for small momenta
and appear below the particle-hole continuum. The modes become strongly Landau damped for growing
wave vectors. We relate our theoretical findings to existing experimental spinpolarized electron energy loss
spectroscopy results. In bulk bcc Fe, the longitudinal magnetic modes appear above the typical energies of
transverse spin-waves, have energies comparable with the Stoner spin-flip excitation continuum and are order of
magnitude less energetic than the charge dynamics.

DOI: 10.1103/PhysRevB.101.214420

I. INTRODUCTION

The spin fluctuations in itinerant (metallic) system attract
unquenched interest of theoretical, experimental, and engi-
neering communities as their properties remain central to
the full understanding of a broad spectrum of physical and
technical problems. The magnetic excitations drive the phase
transitions at Curie and Néel temperatures [1,2] as well as
in the vicinity of quantum critical points [3]. They give rise
to unconventional coupling mechanisms in new families of
high-temperature superconductors [4–8] and form the basis
for information processing in spintronic computers [9–12].
Owing to the recent impressive experimental progress, they
can be probed even in the nanostructures [13–16].

*Corresponding author: pawel.buczek@haw-hamburg.de

Despite the enormous relevance, it is surprising to ob-
serve that an important and intriguing class of spin density
excitations, the so-called longitudinal spin fluctuations, re-
ceived little attention in the literature so far. These excited
states constitute the central theme of this paper. As they
are a somewhat exotic and less known member of the spin
excitations family, we will briefly put them in the context of
the theory of itinerant magnets before proceeding with their
detailed microscopic analysis.

In a simple picture, the itinerant magnets undergo a phase
transition at respective critical temperature associated with the
emergence of long-range magnetic order (the order parameter
being macroscopic magnetization) and spontaneous rotational
and time-reversal symmetry breaking [17–19]. The broken
symmetry results in the appearance of a Goldstone boson
and the corresponding family of low-energy excitations, the
spin-waves or magnons. These excited states involve a spin
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flip and are essentially associated with a tilt, i.e., a change
of the direction of the local magnetization with respect to the
ground-state direction. (We consider only collinear magnets
in this work and assume the magnetization to point along the
z axis.) The magnons in collinear magnets—in the absence
of spin orbit interaction—involve solely fluctuations of the
magnetization in the direction perpendicular to the z axis,
which are practically decoupled from the charge excitations.

At temperature T = 0, the longitudinal spin excitations
are associated with the variation of value of the longitudinal
(z-component) magnetization density. The symmetry of the
collinear band structure, i.e., the one involving up and down
bands of different dispersion, requires that such fluctuations
couple to the charge density fluctuations, including plasmons.
(We discuss this issue in more detail in Sec. II). Little is known
about the exact physical picture of the coupling. Furthermore,
questions concerning the existence of collective modes in this
channel and, if they indeed exist, their dispersion and lifetimes
have hardly been addressed, in particular for complex systems
such as antiferromagnets.

On the other hand, the longitudinal spin excitations of
itinerant magnets relate to one of the most exciting effects
in the many-body physics, namely the emergence of the
“second sound” in the superfluids, in particular in the liquid
helium [20–22]. Since in a magnet the expectation value of
the z component of the magnetization plays the role of the
order parameter, the longitudinal spin excitations are in fact
the fluctuations of the order parameter themselves. Similarly,
the second sound in liquid helium involves the fluctuations
of the boson condensate density being the superfluid phase
order parameter. However, despite this apparent relation, the
two manifestations of equivalent phenomenon exhibit rather
different underlying microscopic pictures and we defer the
detailed discussion of the analogy to the summary in Sec. IV.

The second sound in helium is associated with the heat
transport, which, unlike typically in usual matter, occurs by
wave propagation rather than by diffusion. Apart from the liq-
uid helium, the second sound has been observed in ultracold
atomic gases [23]. Such wavelike heat transport emerges in
solids as well [24–26]. As pointed out by Chester [27] this
phenomenon appears when the heat flow is unable to infinitely
quickly respond to the temperature gradient, leading to the
appearance of the time derivative of the thermal heat current
in a generalized Fourier equation, thus giving its solution
the wavelike character. Equivalent effects arise in the cold
Fermi gases where ballistic (wavelike) and diffusive transport
can coexist, e.g., correspondingly for charge and spin excita-
tions [28,29]. It must be noted, however, that the second sound
in solids involves no fluctuations of any condensate density or
order parameter.

The time-resolved dynamics of order parameters can be
accessed in several sophisticated experiments. The fluctuating
Cooper pair density, the latter being the order parameter in
the superconductors, has been studied [30–33]. Signatures
of the longitudinal spin fluctuations can be experimentally
observed in thermal neutron scattering [34–40] and in the
spin-polarized electron energy loss spectroscopy experiments
(SPEELS) [41–43].

Concerning the outlined broad many-body context of the
longitudinal spin fluctuations, it is exciting to explore whether

well-defined collective excitations occur in this channel and,
in case they do, what are their properties. First-principles
theoretical investigations of the longitudinal spin excitations
in itinerant magnets are scarce and this state of affairs is
largely attributable to the lack of suitable theoretical tools. The
bulk of investigations of the transverse spin excitations (spin
waves) were performed in the framework of the adiabatic
mapping onto the Heisenberg Hamiltonian [44–51]. In this
approach, at absolute zero, there are strictly no longitudi-
nal magnetic excitations, as the moments in the Heisenberg
model are treated as rigid entities. The spectrum of spin
fluctuations—both transverse as well as longitudinal—can
be inferred from the frequency-dependent and wave-vector-
dependent magnetic susceptibility χ (q, ω), which itself is
amenable to the ab initio treatment by means of the linear
response time-dependent density functional theory [52]. Un-
fortunately, the corresponding necessary numerical calcula-
tions are characterized by high algorithmic complexity and
non-negligible computational costs [53–58]. Only recently,
Wysocki et al. [59] evaluated the spectrum of longitudinal
spin excitations for elementary 3d transition metals. In the
course of recent years, we have developed a highly effi-
cient numerical scheme for the computation of the linear
response functions of solids within the time-dependent den-
sity functional theory based on the Korringa-Kohn-Rostoker
(KKR) Green’s function (GF) method [60] and applied it
to complex bulk materials [61] and thin films [13,16,62–
64]. The scheme is general and applicable to all collinear
magnets, including ferro- and ferrimagents [65,66] as well as
paramagnetic phases [67]. Here, we report on the extension
of the scheme to the examination of longitudinal and charge
excitations.

In this paper, we first discuss the longitudinal spin excita-
tions in Fe and Ni. We aim to provide additional insights into
the microscopic nature of the fluctuations in these systems and
open the possibility to contrast the spin dynamics in ferro-
magnets with the one of antiferromagnets. Thus, we proceed
to the more involved case of the iron-based superconductor
FeSe. There exists compelling evidence that in this system the
superconductivity is mediated by the spin excitations of the
nonmagnetic phase (so-called paramagnons) [8,68]. Unfortu-
nately, the local spin density approximation (LSDA) predicts
a stable antiferromagnetic ground-state phase, which contra-
dicts the experiment [69]. It is generally believed that the
deficiency of the LSDA stems from its failure to capture the
detrimental influence of the intense spin fluctuations induced
by a hidden quantum critical point on the magnetic ordering
in such systems [67,70]. The spectrum of the spin fluctua-
tions in the ordered phase is thus the key ingredient for an
improvement of the first-principles predictions of the ground
state. It seems to be a general observation for many itinerant
systems also beyond the pnictide family of superconductors.
For example, as shown by Derlet [71], the inclusion of the
longitudinal spin fluctuations is unexpendable in the realistic
modeling of magnets with strongly polarizable constituents.

The paper is organized as follows. In Sec. II the formalism
of the time-dependent density functional theory allowing for
the calculations of the charge and longitudinal spin suscep-
tibility is exposed. The results of the numerical studies are
presented and discussed in Sec. III.
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II. FORMALISM

Our aim is to describe the spectrum of its excited states
involving longitudinal fluctuations of the magnetization. In
order to achieve it, we resort to the evaluation of the retarded
generalized charge and magnetization susceptibility [60]

χ i j (x, x′, t − t ′) = −iθ (t − t ′)〈[σ̂ i(xt ), σ̂ j (x′t ′)]〉, (1)

which relates the linear charge or magnetization density re-
sponse δni(x) of the system under consideration to the applied
dynamical magnetic or scalar field δV j (x′). σ̂ i are charge (i =
0) and magnetization density operators (i = x, y, z), [A, B] ≡
AB − BA, and the 〈ô〉 is the expectation value of the operator
ô for the unperturbed system.

The time Fourier transformation of the susceptibility,
χ i j (x, x′, ω), has a clear physical interpretation following the
fluctuation dissipation theorem [72–74]. Its nonzero imagi-
nary part for certain frequency ω signifies the presence of
excited states of the underlying unperturbed Hamiltonian with
this energy1 and involving fluctuating charge and magneti-
zation densities. For complex solids, considering all density
channels at once, the imaginary part must be generalized as
loss matrix, i.e., the anti-Hermitian part of the susceptibility

L[χ i j (x, x′, ω)] ≡ 1

2i
(χ i j (x, x′, ω) − χ ji(x′, x, ω)∗). (2)

For a chosen energy ω, the eigenvectors ξλ(x) of L[χ i j]
represent the shapes of the resonant natural modes (charge
and magnetization density fluctuations) at this frequency. The
magnitude of the associated eigenvalues, L[χ i j]λ, give the
intensity (density of states) of these modes.

The susceptibility can be obtained from the linear response
time-dependent density function theory (LRTDDFT) [52,75]
in a two-step procedure. First, the Kohn-Sham susceptibility

χ
i j
KS(x, x′, ω)

=
∑
km

σ i
αβσ

j
γ δ ( fk − fm)

φk (xα)∗φm(xβ )φm(x′γ )∗φk (x′δ)

ω + (εk − εm) + i0+ ,

(3)

yields the density response, or equivalently single-particle ex-
citation spectrum, of the formally noninteracting Kohn-Sham
(KS) system. In the above equation φ j (xα)’s and ε j’s denote
respectively KS eigenfunctions and corresponding eigenen-
ergies. f j ≡ fT (ε j ), where fT (ε) is the Fermi-Dirac distri-
bution function. Second, when an external field is applied,
the induced charge and magnetization densities described by
the χ

i j
KS alter the Hartree and exchange-correlation potential

leading to a self-consistent susceptibility Dyson equation

χ i j (x, x′, ω) = χ
i j
KS(x, x′, ω)+

3∑
k,l=0

∫∫
dx1dx2χ

ik
KS(x, x1, ω)

1Unless otherwise specified, Rydberg atomic units are used
throughout, with h̄ = 1, Bohr radius a0 = 1, and Rydberg energy
ER = 1, which in turn implies the numerical values of the electron
charge and mass to be, respectively, e = √

2 and me = 1
2 .

×
(

Kkl
xc (x1, x2, ω) + 2δk0δl0

|x1 − x2|
)

χ l j (x2, x′, ω)

(4)

which allows us to find the true interacting (enhanced) suscep-
tibility of the many-body system providing that the exchange-
correlation kernel, Kxc, defined as a functional derivative of
exchange-correlation potential evaluated at the ground-state
values of electronic and magnetic densities

Ki j
xc[〈σ̂ (x)〉](x, x′, t − t ′) ≡ δvi

xc(x, t )

δn j (x′t ′)
, (5)

is known. Furthermore, in what follows, we denote the Hartree
(Coulomb) interaction with vC(x) = 2/x.

The determination of the exchange-correlation kernel is
equivalent to the exact solution of the many-body problem and
equally difficult. In this work we resort to the adiabatic local
spin density approximation (ALSDA)

Ki j
xc[〈σ̂ (x)〉](x, x′, t − t ′)

≈ δvi
LSDA[〈σ̂ (x)〉, x]

δn j (x)
δ(x − x′)δ(t − t ′). (6)

Recently, there has been a progress in constructing nonlocal
magnetic exchange-correlation functionals [76–81], but their
their inclusion in practical LRTDDFT calculations is still an
ongoing effort.

Let us consider first the structure of the Kohn-Sham sus-
ceptibility. Within the nonrelativistic local spin density ap-
proximation (LSDA), the Kohn-Sham states of the collinear
ferro-, antiferro-, and paramagnetic systems can be character-
ized by a certain value of the spin projection. We adopt the
convention that the ground-state magnetization m(x) points
everywhere along the ±z direction, which we select as the axis
of the spin quantization. In this case the susceptibility χ

i j
KS has

only four independent elements and the following structure:

χKS =

⎛
⎜⎜⎜⎝

χ xx
KS χ

xy
KS 0 0

−χ
xy
KS χ xx

KS 0 0

0 0 χ00
KS χ0z

KS

0 0 χ0z
KS χ00

KS

⎞
⎟⎟⎟⎠ (7)

in which the transverse (i.e., with the direction in the xy
plane) magnetic fluctuations are strictly decoupled from the
fluctuations of the z component of magnetization and the
charge fluctuations. The transverse susceptibilities, χ± =
χ xx ∓ iχ xy, describe the spin-flip processes, respectively, up
to down (+) and down to up (−). We refer to these as
Stoner and anti-Stoner excitations. On the other hand, the
longitudinal susceptibilities (i, j = 0, z) involve particle-hole
pairs of the same spin. The longitudinal block can be readily
diagonalized and the eigenvalues of the susceptibility read

χ00
KS = χ zz

KS = χ
↑
KS + χ

↓
KS, (8)

χ0z
KS = χ z0

KS = χ
↑
KS − χ

↓
KS, (9)

where χ
↑,↓
KS are the response functions of formally nonin-

teracting spin-up and spin-down bands. Thus, it turns out,
that the mz-charge coupling is given by the difference in the
dynamics of the up and down electron channels. As such, it

214420-3



BUCZEK, BUCZEK, VIGNALE, AND ERNST PHYSICAL REVIEW B 101, 214420 (2020)

vanishes for paramagnets where the bands are degenerate but,
interestingly, not for antiferromagnets. Despite the fact that in
an antiferromagnet the up and down bands are degenerate as
well, χ z0

KS does not vanish due to the fact that these two bands
have different spatial characters.

We observe that the decoupling between the transverse
and longitudinal fluctuations is preserved in the enhanced
susceptibility structure when the Kxc is approximated within
the ALSDA. Furthermore, due to the presence of the Coulomb
term in the charge channel of the susceptibility Dyson equa-
tion (4), the charge and longitudinal magnetization responses
cease to become identical (χ00 �= χ zz), also for paramagnets.

Concerning our computational scheme, it is exposed in a
great detail in Ref. [60]. Both the KKR Green’s function and
the susceptibilities are expanded in real spherical harmonics
up to lmax = 3. We use about 100 energy points in the complex
energy integration contour. For the convolution of two Green’s
functions, the adaptive sampling of the Brillouin zone is used,
which uses between 64 (away from the real axis) and 2 × 105

(close to the real axis) k points. Twelve Chebyshev polynomi-
als are used to describe the dependence of the susceptibilities
in the atomic cells. All quantities are carefully converged with
respect to these parameters.

III. RESULTS

A. Elementary ferromagnets Fe and Ni

In this section we study the longitudinal spin fluctuations in
bcc Fe and fcc Ni. Let us first outline the general picture of the
electron dynamics in the longitudinal channel. As discussed
in Sec. II, the formally noninteracting Kohn-Sham electron
features two distinct normal modes χ

↑
KS and χ

↓
KS associated

with the decoupled dynamics of formally noninteracting up
and down electron channels. In principle, both of these modes
involve coupled charge and magnetization dynamics and the
strength of the coupling is given by the magnitude of the
χ0z

KS susceptibility. As evident from Fig. 1, the magnetization-
charge interaction is indeed substantial as its magnitude
compares to the one of the same-channel χ00

KS = χ zz
KS response

functions.
The pictures changes qualitatively when the true (en-

hanced) susceptibility is obtained from the susceptibility
Dyson equation. The Coulomb interaction active in the χ00

channel causes the charge (plasmon) dynamics to develop at
characteristic energy scale of several Ry [82]. As a result,
the low-energy window, cf. Fig. 1, is clearly dominated by
the longitudinal spin dynamics, given by χ zz, with practically
vanishing coupling to the charge density excitations, χ0z =
χ z0 ≈ 0. Owing to this separation of the energy scales, the
longitudinal spin dynamics in ferromagnets becomes quali-
tatively similar to the one in the transverse channel, given
by χ±, which also does not involve the coupling to the
charge excitations. We stress, however, that in the ALSDA
without spin-orbit interaction, the transverse-longitudinal and
the transverse-charge decoupling is exact whereas the charge-
longitudinal decoupling is only approximate.

Let us investigate now the details of the spin dynamics
in longitudinal channel starting with the fcc Ni presented in
Fig. 2. The characteristic pronounced intensity of the single-

FIG. 1. Magnitudes of the response functions in the longitudinal
channel in Ni for a selected momentum transfer. The picture does
not qualitatively change for other momenta and is similar to the Fe
case as well. For simplicity, in the response function, it is assumed
that the driving field is uniform in the atomic cell of the atom and the
response is integrated over the cell. The terms χ0z = χ z0 and χ 00 are
practically zero in the scale of the figure.

particle excitations in a narrow low-energy window of width
growing with the momentum transfer hints at the dynamics
of the formally noninteracting Kohn-Sham system (described
by χ zz

KS) dominated by intraband particle-hole excitations be-
tween hole and electron states of the same band, respectively,
just below and above the Fermi level [83]. This is in striking
contrast to the case of transverse magnetization dynamics of
Ni and Fe in which the single-particle (Stoner) excitations
are formed between states of different bands separated by
the exchange splitting [60]. The dynamics of the fully in-
teracting system, given by the enhanced susceptibility χ zz,
features peaks with well-defined energies forming above the
Kohn-Sham single-particle continuum, which, therefore, can
be understood as damped, or approximate, eigenstates of the
interacting electron liquid. As they form upon the inclusion
of electronic interaction, they should be regarded as collective
excitations, even though they do not correspond to additional
poles of the response function χ zz, contrary to the undamped
magnons in the transverse channel. In this respect, they are
close cousins of paramagnons in systems such as Pd [84–86]
or nonmagnetic FeSe [67]. Similar to the case of Pd, the peaks
rapidly loose their collective character above q ≈ 0.3 × 2π/a
and the enhancement of the single-particle spectrum becomes
marginal. In our understanding, these excitations are the mag-
netic second sound mode of Ni.

Considering to the case of bcc Fe, a very similar picture
of the longitudinal spin dynamics emerges, cf. Fig. 3. Inter-
estingly, contrary to the case of fcc Ni, the collective mode
appears somewhat below the single-particle continuum and
the enhancement of the continuum is clearly present in the
entire Brillouin zone. The origin of this effect cannot be traced
back to a single cause. It emerges as an interplay between the
shape of the density of the single-particle continuum and the
energy dependence of the denominator of the susceptibility
Dyson equation, which differ in these two systems. This
observation stresses the importance of performing the ab initio
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FIG. 2. The spin dynamics in the longitudinal channel for fcc Ni
and different momenta along the (1,0,0) direction. For simplicity,
in the response function, it is assumed that the driving field is
uniform in the atomic cell of the atom and the response is integrated
over the cell. The dynamics of the formally noninteracting Kohn-
Sham system (described by χ zz

KS) is dominated by low-energy intra-
band particle-hole excitations. The dynamics of the fully interacting
system, given by the enhanced susceptibility χ zz, features a clear
peak for every momentum, appearing somewhat above the
Kohn-Sham single-particle continuum. The peaks are well defined
only for small momenta and lose the well defined above q ≈ 0.3 ×
2π/a.

calculations, which are able to yield such details without
manual fine tuning of model parameters.

It is illustrative to examine the influence of different quan-
tities in the formation of the collective mode in the longitu-
dinal magnetization dynamics channel. Despite the weakly
developed charge excitations in the low-energy regime, the
coupling terms χ z0

KS and χ0z
KS as well as the inclusion of the

Coulomb interaction vC in the susceptibility Dyson equation
are indispensable for the proper description of the system
dynamics. Considering the χ zz

KS channel alone, the interaction
included in the susceptibility Dyson equation reduces to the
exchange-correlation kernel Kxc. In this case the denominator
of the Dyson equation, I − χ zz

KS(0, 0)Kxc, where χ zz
KS(0, 0)

denotes the static uniform longitudinal susceptibility, features
a negative eigenvalue, or, equivalently, an instability in which
the system can lower its energy by deforming its charge
or magnetization density. Similar effect occurs when the
magnetization-charge coupling terms are taken into account
but the Coulomb interaction vC is neglected while keeping
Kxc only. (Obviously, neglecting both vC and Kxc results in
χ zz = χ zz

KS.) This points to the fact that for the corresponding
electron system, stripped of the coupling between the charge
and magnetization or the Coulomb interaction, the converged
ground state is unstable. Obviously, this is unphysical and
reflects the crucial role of the Coulomb forces in the stabi-
lization of the magnetic order.

On the other hand, the stability of the ground state is
preserved when the coupling terms χ z0

KS and χ0z
KS are taken into

account but the Kxc terms are neglected. In the case of Ni, as
evident from Fig. 4(a), this leads to a slight increase of the
energy of the collective longitudinal mode, which otherwise
becomes preserved. The situation is completely different in
bcc Fe, cf. Fig. 4(b). Here, the Kxc is solely responsible for
the enhanced of the Kohn-Sham continuum. This is similar
to the case of the transverse magnetization dynamics where
the collective modes (magnons) emerge exclusively due to the
action of the Kxc. We recall briefly that within ALSDA the
Coulomb term vC does not appear in the transverse channel.

B. FeSe

In this section, we study the longitudinal magnetic fluc-
tuations in the antiferromagnetic phase of FeSe. Following
Ref. [67] we use the tetragonal lattice structure with lattice
parameters a = b = 3.765 Å and c = 5.518 Å. The primitive
cell features two Fe atoms residing in the basal plane of the
cell and two Se atoms shifted from the plane in the z direction
by ±ξc. In our calculations, we fix ξ to 0.26. In the local
spin density approximation, this setup gives rise to the stable
checkerboard antiferromagnetic ground state. In what follows,
we denote the sites with magnetization pointing up and down
as, respectively, Fe↑ and Fe↓.

The longitudinal spin dynamics of the FeSe is very differ-
ent from the cases of elemental metallic magnets discussed
above. Let us first consider the single-particle excitations
of the formally noninteracting Kohn-Sham system in the zz
channel, presented in the Fig. 5. For low momentum transfers
q, we observe a series of clear peaks in the energy window
between 0.1 Ry and 0.3 Ry associated with the interband
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FIG. 3. The spin dynamics in the longitudinal channel for bcc Fe and different momenta along the (1,0,0) direction. For simplicity, in the
response function, it is assumed that the driving field is uniform in the atomic cell of the atom and the response is integrated over the cell. The
dynamics of the formally noninteracting Kohn-Sham system (described by χ zz

KS) is dominated by low-energy intraband particle-hole excitations.
The dynamics of the fully interacting system, given by the enhanced susceptibility χ zz, features a clear peak for every momentum, appearing
somewhat below the Kohn-Sham single-particle continuum. The enhancement of the continuum is clearly present in the entire Brillouin zone.

non-spin-flip transitions. The low-energy single-particle ex-
citations, corresponding below 0.1 Ry to the intraband ex-
citations between states in the close vicinity of the Fermi
level, are much weaker. When we examine the corresponding
spectra of Fe and Ni in this energy region, we conclude
that the characteristic low-energy intense intraband excitation
signature is practically absent. It is not surprising, taking
into account the practically two-dimensional character of the
FeSe band structure with its weak dispersion in the z [67]
direction and the associated reduced phase space available for
the formation of the electron-hole pairs [83].

We inquire now which electronic states, respectively, be-
low and above the Fermi energy, are involved in the formation
of these energetically well-defined interband transitions in
FeSe. A quick glance at the spectrum of the spin-flip (Stoner)

excitations, Fig. 6, described by the imaginary part of the
transverse susceptibility χ+

KS, reveals a pronounced intensity
appearing in the same energy window. In order to understand
this observation, it is necessary to recall the main features
of the spin-polarized band structure (Kohn-Sham system) of
an antiferromagnet [65]. An antiferromagnet is symmetric
with respect to the symmetry transformation consisting of
the product of flipping up and down spin states and the
space translation transforming one Fe sublattice into other.
As a consequence, similar to the case of FeRh or any other
antiferromagnet, FeSe features energy degenerate spin-up and
-down bands, as shown in the simplified band structure in
Fig. 7(a). Despite this degeneracy, the spatial character of
these two types of bands is different, cf. the schematics in
the Fig. 7(b). The wave functions of the majority up bands

214420-6



FIRST-PRINCIPLES PERSPECTIVE ON MAGNETIC … PHYSICAL REVIEW B 101, 214420 (2020)

(a)

(b)

FIG. 4. Influence of the exchange correlation kernel Kxc on the
collective dynamics in the magnetic longitudinal channel. For sim-
plicity, in the response function, it is assumed that the driving field is
uniform in the atomic cell of the atom and the response is integrated
over the cell.

(�maj
↑ ) feature higher electron density on the Fe site with the

atomic moment pointing up (Fe↑) and the wave functions of
the majority down bands (�maj

↓ ) on the other Fe site with the
atomic moment pointing down (Fe↓). Additionally, there is a
complementary minority spin-down band �min

↓ of the spatial

character similar to �
maj
↑ , i.e., with higher electronic density

on the Fe↑ site. Because of the presence of the exchange-
correlation magnetic field, the state �min

↓ has higher energy

than �
maj
↑ by a value of order of the exchange splitting. The

degenerate minority spin-up counterpart �min
↑ feature spatial

character similar to �
maj
↓ .

As in the case of ferromagnets, for small momentum
transfer, the Stoner excitations in the antiferromagnets are par-
ticularly pronounced between spin-up and spin-down states
separated by the exchange splitting, owing to the similarity
of their spatial characters. These transitions between �

maj
↑

and �min
↓ are responsible for the intensive and well-defined

spectrum of the Stoner excitations in the 0.1 Ry and 0.3 Ry
energy window in the case of the Fe↑, cf. also Fig. 8 site. The
corresponding transitions between energy degenerate coun-
terparts of the wave functions with the same spin, i.e., �

maj
↑

and �min
↑ as well as �

maj
↓ and �min

↓ , dominate the spectrum of
the χ zz

KS. Because of the reduced density associated with �min
↑,↓

FIG. 5. Spectral intensity −Imχ zz
KS(q, ω + i0+)/π of single-

particle excitations in the formally noninteracting Kohn-Sham sys-
tem for small momentum transfer q = (0.1, 0, 0)2π/a. In the case
of FeSe system Fe↑-Fe↑ block of the susceptibility is concerned. For
simplicity, in the response function, it is assumed that the driving
field is uniform in the atomic cell of the atom and the response is
integrated over the cell.

on the Fe↑,↓ site, they are necessarily less intense than their
Stoner excitations counterparts, as evident from the figure
Fig. 6.

The discussion allows us to conclude that in the case of
FeSe the interband transitions between exchange split bands
determine the major features of spin dynamics in both the
transverse and the longitudinal channel. This is in contrast
to the case of elemental 3d ferromagnets, where it is only
the case for the transverse channel and the longitudinal spin
dynamics is governed by the intraband low-energy non-spin-
flip electron excitations.

FIG. 6. Spectral intensity of single-particle excitations in FeSe
on the Fe↑ site in the formally noninteracting Kohn-Sham system for
small momentum transfer q = (0.1, 0, 0)2π/a. For simplicity, in the
response function, it is assumed that the driving field is uniform in
the atomic cell of the atom and the response is integrated over the
cell. Compared are the spectra of spin-flip (Stoner) and non-spin-flip
excitations, given, respectively, by χ+

KS and χ zz
KS.
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(a) (b)

FIG. 7. Schematics of bands in an (a) antiferromagnet and (b) their spatial characters. X↑ and X↓ stand for sites with the magnetic moment
pointing in the respective direction. (a) is adapted from Ref. [65].

For the sake of completeness, let us mention that in the
transverse channel the antiferromagnets feature both Stoner
(spin up to down) and anti-Stoner (spin down to up) excita-
tions appear on an equal footing. The amplitude of the Stoner
excitations is pronounced on the sites with magnetization
pointing up whereas the anti-Stoner excitations are confined
to the sites with magnetization pointing down, as evident
from the Fig. 9. In the case of the 3d ferromagnets, the
anti-Stoner excitation (spin flips from occupied spin-minority
to empty spin-majority bands) are characterized by practically
vanishing intensity due to the unavailability of the necessary
electron states.

With the increasing momentum transfer, the intensity of the
single-particle excitations in the low-energy region increases
starting around transfer momentum q ≈ 0.2π/a due to the
increase of the available phase space for the formation of
electron-hole pairs, in particular for the intraband transitions.

FIG. 8. Dominating single-particle excitation channels in an an-
tiferromagnet. Stoner and anti-Stoner excitations are described re-
spectively by χ+

KS and χ−
KS whereas the longitudinal excitations by

χ
↑
KS and χ

↓
KS or equivalently by χ zz

KS = χ 00
KS and χ 0z

KS = χ z0
KS.

For large momenta, cf. Fig. 10, the well-defined peaks vanish
and the spectrum is dominated by a wide intensity feature with
a maximum around 0.1 Ry and spreading up to 0.5 Ry . As we
will see later, the qualitative change in the low-energy range
of the single-particle spectra with growing momenta impacts
strongly the collective electron dynamics in the longitudinal
channel.

We proceed now to analyze the interacting susceptibility
of the FeSe, obtained through the solution of the suscepti-
bility Dyson equation. As in the case of Fe and Ni, in the
Kohn-Sham susceptibility the longitudinal zz (spin) and 00
(charge) channels hybridize strongly (χ0z

KS = χ z0
KS is of the

same order of magnitude as χ zz
KS = χ00

KS) but the hybridization
is effectively removed at lower energies for the interacting

FIG. 9. The intensity of Stoner and anti-Stoner excitations in
FeSe for low momentum transfer. On the Fe↑ the Stoner excitations
dominate whereas the Stoner excitations are practically absent. The
relation is fully symmetrically opposite on the Fe↓ site.
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FIG. 10. Spectral intensity −Imχ zz
KS(q, ω + i0+)/π of single-

particle excitations in the formally noninteracting Kohn-Sham sys-
tem for large momentum transfers compared with the intensity close
to the center of the Brillouin zone for FeSe. Fe↑-Fe↑ block of the
susceptibility is concerned. For simplicity, in the response function,
it is assumed that the driving field is uniform in the atomic cell of the
atom and the response is integrated over the cell.

susceptibility, cf. Fig. 11. In the investigated energy range,
the interacting charge susceptibility χ00 is of much smaller
magnitude than the longitudinal magnetic susceptibility χ zz.
As a consequence, practically free longitudinal magnetic exci-
tations in the zz channel appear whereas the charge dynamics
takes place on much higher-energy scale and we do not
investigate it any further here.

The enhanced susceptibility in the longitudinal zz channel
differ strongly from its formally noninteracting Kohn-Sham
counterpart. For momenta close to the center of the Brillouin
zone, clear pronounced peaks form with maximum around
0.1 Ry and the full width at half-maximum of 0.0244 Ry,
cf. Fig. 11. This peaks signify strong absorption of energy
from the driving monochromatic longitudinal field with this
frequency or, alternatively, that the longitudinal magnetic ex-
citation of the electron gas in FeSe is practically an eigenstate
of this system, the magnetic second sound. As in the case of
Ni and Fe, the nature of this mode is similar to the one of
the paramagnon. It is not associated with a new singularity
of the zz susceptibility but with the strong enhancement of
the formally noninteracting particle-hole excitation density.
We observe that in the FeSe for low momenta this mode is
accompanied by a high-energy satellite at around 0.195 Ry,
originating from the structure of the Kohn-Sham intensity.

In the case of FeSe, similarly to the case of bcc Fe, the
Kxc is indispensable for the enhancement of the Kohn-Sham
continuum. Without the inclusion of the kernel, the collective
spin dynamics in the longitudinal channel does not form, as
evident from the example Fig. 11(b).

As the momentum transfer q increases, the energy of the
second sound peak shifts gradually to lower energies and
its width increases, cf. Fig. 12. For q ≈ 0.25π/a, a clear
discontinuity in the dispersion of the second sound mode
sets in where it enters the region of intense single-particle
non-spin-flip transitions. This is an example of the Landau
damping in which the lifetime of a collective mode is strongly

(a)

(b)

FIG. 11. Spectral intensity −Imχ (q, ω + i0+)/π of collective
excitations in the longitudinal channel (given by the enhanced sus-
ceptibility) compared to the noninteracting Kohn-Sham susceptibil-
ity for FeSe. Investigated is the (Fe↓, Fe↓) or equivalently (Fe↑, Fe↑)
block of the susceptibility for FeSe. In the considered energy range,
the clear pronounced second sound peak in the zz channel forms
whereas charge-charge susceptibility practically vanishes. (a) and
(b) correspond to different momentum transfers. In general, with
growing momentum, the energy of the mode decreases slightly and
its damping increases quickly above q ≈ 0.25π/a. As example, in
(b), the enhanced susceptibility computed without the Kxc is plotted.
Similarly to the case of bcc Fe, the Kxc is indispensable for the
enhancement of the Kohn-Sham continuum. Without the inclusion of
the kernel, the collective spin dynamics in the longitudinal channel
does not form.

reduced by the hybridization with the continuum of single-
particle excitations [61]. Thus, the momentum dependence of
the damping of the second sound mode can resemble strongly
the spin-wave disappearance mechanism in the transverse
channel of materials such as bcc Fe [60].

For comparison, the dispersion of the transverse magnon
along the �-M direction [67] is included in Fig. 12 as well.
We note briefly that the latter theoretical results agree rather
nicely with the available inelastic neutron scattering data of
Wang et al. [37]. As required by the Goldstone theorem, the
dispersion of the transverse magnons starts at 0 for small
momentum transfers, contrary to the longitudinal mode for
which the Goldstone boson does not appear. The maximum
energy of the transverse magnon, at the edge of the Brillouin
zone, amounts to about 0.0147 Ry . As such, similarly to the
case of elemental ferromagnets, the collective longitudinal
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FIG. 12. Dispersion of the second sound mode in the FeSe along
the two main direction in the Brillouin zone. For different wave
vectors, the figure summarizes the position and width of the second
sound peaks as exemplarily presented in Fig. 11. Clearly visible is
the discontinuity around q ≈ 0.25π/a where the collective mode
starts to hybridize strongly with single-particle excitations for larger
momenta. For comparison, the dispersion of the transverse magnon
along the �-M direction [67] is plotted. The lines do not represent
data and are only meant as a guide to the eye.

spin dynamics develops at substantially higher energies than
in the transverse channel.

Let us briefly discuss the role of the Se in the formation
of the second sound mode. Figure 13 presents the intensities
of the electron-hole excitations χ zz

KS(Se, Se) on the Se site.
They are pronounced at much higher energies than their
counterparts on the Fe site, χ zz

KS(Se, Se). The figure shows that
their intensity practically does not change when the Coulomb
interaction and Kxc are taken into account. Thus, we conclude
that Se is virtually inert in the collective longitudinal spin
dynamics.

IV. DISCUSSION AND SUMMARY

We investigated the longitudinal spin dynamics in elemen-
tary 3d ferromagnets bcc and fcc Ni as well as in the antiferro-

FIG. 13. Longitudinal spin dynamics on the Se site. Cf. the
discussion in the text.

magnetic phase of FeSe. We applied the linear response time-
dependent density functional theory in order to evaluate the
energy- and vector-dependent charge and spin susceptibility.
We resorted to the adiabatic local spin density approximation
when evaluating the exchange-correlation kernel.

Contrary to the case of transverse spin excitations
(magnons) in collinear magnets, the fluctuations of the lon-
gitudinal channel can couple to the charge fluctuations. The
coupling is substantial in the formally noninteracting Kohn-
Sham case but is effectively lifted by the inclusion of the
Coulomb interaction in the enhanced susceptibility.

Unlike the transverse magnons, the longitudinal spin fluc-
tuations acquire a collective character without the emergence
of a Goldstone boson and are not associated with an addi-
tional singularity originating from the susceptibility Dyson
equation, similar to the case of paramagnon excitations in
nonmagnetic metals such as Pd. Their properties are strongly
material dependent. In Ni and Fe their dynamics is deter-
mined by the low-energy intraband single-particle excitations
while in the antiferromagnetic FeSe they derive from the
interband transitions within the same family of states, which
are involved in the formation of the Stoner excitations in
the transverse channel. For low momenta, the excitations
correspond to well-defined peaks in the imaginary part of
the susceptibility. In Ni, they gradually lose their collective
character with growing momentum, while in Fe they can be
observed for momentum transfers in the entire Brillouin zone.
The excitations are particularly clearly observable in the anti-
ferromagnetic FeSe close to the center of the Brillouin zone.
For growing momenta their lifetime abruptly shortens around
q ≈ 0.25π/a due to the Landau mechanism, as the excitations
enter the region of intense single-particle continuum.

Unfortunately, there is only a limited number of ex-
perimental works that we can compare to our findings.
The neutron-based experimental investigations of longitudinal
spin fluctuations known to us are cited in Sec. I. However, they
address the energy range well below the window where longi-
tudinal excitations emerge in our calculations. As expected,
the experiments do not reveal any well-defined collective
modes at these small energies.

There exist several SPEELS studies of inelastic scattering
of electrons off different Fe surfaces with energy transfer up
to several eV and momentum transfer about halfway to the
Brillouin zone boundary [41–43]. In these experiments, due
to the conservation of angular momentum, the signature of the
longitudinal magnetization and charge excitations would ap-
pear in the non-spin-flip scattering, contrary to the transverse
spin waves, whose signature is found in the spin-flip channel.
To determine this signal, the polarization of the outgoing
(scattered) electron beam must be analyzed as well, which is
not the case in most of the recent SPEELS studies [16]. For
the wave vectors considered in these experimental studies, we
predict the maximum of the magnetic longitudinal mode peak
at about 800 meV (2eV at the zone boundary, cf. Fig. 3). In
older experiments addressing the surface of bcc iron [41,42]
a broad signature of excitations in the non-spin-flip channel is
found at about 2eV while in a more recent study of six mono-
layers thick Fe film on Ir(100) [43] a clear resonant feature is
observed slightly below 5 eV. Now, a definite interpretation of
these SPEELS experiments is by no means straightforward.
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Contrary to the case of neutrons, the scattering of electrons
is not simply governed by the enhanced response function χ

but may involve a strong signal originating the from single-
particle continuum as well (χSPEELS) [87,88], which appear in
Fe at somewhat higher energies. Furthermore, our calculations
address the bulk Fe while SPEELS is believed to be a surface-
sensitive method. Thus, the question whether our ALSDA-
based theory underestimates the energy of the longitudinal
magnetization modes must be deferred to the moment when
the dedicated ab initio SPEELS cross section can be computed
for these specific surfaces. This is an ongoing effort.

Nevertheless, in Fe, the overall energy scale of the
non-spin-flip features found in the SPEELS experiments
mentioned would fit the first-principles calculations rather
well. They appear above the typical energies of spin waves,
which in bcc Fe are well defined below 125 meV [60], have
energies comparable with the Stoner spin-flip excitation
continuum (around 2 eV for small momenta) [53], and are an
order of magnitude less energetic than the charge dynamics
in the bulk [82].

We drew the analogy between the excitations of the lon-
gitudinal magnetization density and the second sound in su-
perfluids based on the observation that both are examples of
fluctuating order parameter in a state of spontaneously broken
symmetry. However, these two effects feature rather different
microscopic details. In the two-fluid model of superfluidity,
the second sound mode is understood as opposed-phase oscil-
lations of the superfluid and the nonsuperfluid densities, leav-
ing the total fluid density constant. Contrary to the latter effect,
in the first sound mode, associated with the excitation of the
usual phonons, the two densities oscillate in phase, changing
locally the fluid density but keeping the ratio of superfluid and
the nonsuperfluid densities constant. In a magnet, the analog
of the phonons are the transverse magnons.

In an itinerant ferromagnet, at absolute zero, the role of
the superfluid density, i.e., the order parameter, is played
by the magnetization density, mz = n↑ − n↓, whereas the
normal density, i.e., the unpolarized fraction of the electron
liquid, is given by ρ0 = 2n↓. Obviously, the two densities
add up to the total local electron density n0 = n↑ + n↓. (In
the antiferromagnetic case, the definition of the up and down
reference directions must be allowed to vary in space fol-
lowing the ground-state magnetization direction.) As shown
by our preceding analysis of itinerant magnets, in the lon-
gitudinal mode the mz and ρ0 do not necessarily oscillate
with opposite phases. This is particularly the case when the
noninteracting (KS) susceptibility is concerned. In this case,
the fluctuations described by χ↑ and χ↓ are independent from
each other giving rise to two distinct longitudinal normal
modes, both involving strongly coupled dynamics of spin
and charge densities. However, these up and down density
channels decouple only in the formally noninteracting Kohn-
Sham single-particle picture. In the time-dependent density
functional framework, the density induced in an excitation of
the electron gas alters the effective Kohn-Sham potential. This
effect connects the dynamics of the two spin channels and,
when the interacting susceptibility is concerned, the picture
of the longitudinal modes changes drastically. The Coulomb
interaction is responsible for the formation of plasmons in the
charge density channel with typical energies well above those

of the longitudinal magnetic fluctuations.2 For low frequen-
cies, the true (interacting) magnetization susceptibility (χ zz)
clearly dominates the other terms in the response function
(χ00, χ0z, and χ z0). This separation of the energy scales prac-
tically decouples the longitudinal magnetization and charge
dynamics. Effectively, similar to the case of the liquid helium,
the order parameter in magnets tends to oscillate without
affecting the total particle density.

We briefly add that this picture in magnets changes again at
elevated temperatures below the phase transition. The normal
fluid density increases by the density of thermally excited
magnons, which determines the magnitude of the reduction
of the z component of the magnetization relative to the mag-
netization at T = 0. In this case the magnetic second sound
involves, in addition to the electronic density fluctuations
present even at T = 0, a sound wave within the gas of magnon
excitations. Contrary to the case of the spin and electron
density dynamics at absolute zero, the latter effect can be cap-
tured already within the Heisenberg Hamiltonian models with
rigid magnetic moments. This effect is a subject of a separate
study.

We believe that longitudinal spin fluctuations may come
to play a prominent role in the field of spintronics [89],
i.e., the computer engineering area using magnetic degrees
to freedom to perform logical operations. One of the key
challenges in this field is the construction of transducers, i.e.,
devices allowing different degrees of freedom to effectively
couple to the spin dynamics and thus allowing us to exercise
a reliable control over it. Using charge current, or electric
field, would be attractive when interfacing the magnonic logic
gates with conventional computers. In collinear magnets, in
linear regime, spin-flip and charge excitations can couple
practically only via the relatively weak spin-orbit interaction.
On the other hand, the spin excitations in the longitudinal
channel would strongly interact with plasmons in the sys-
tems in which the two classes of excitations appeared in the
same energy window. Ab initio studies can pave the way to
engineer such materials. Spin-flip magnetic excitations have
been recently shown to couple to phonons [90–92] offering
an alternative way to interact with the spin dynamics. It seems
conceivable that the spin dynamics in the longitudinal channel
could couple even stronger to the phonons than its spin-flip
counterpart owing to its character hybridized with charge
excitations. However, the coupling would be most probably
possible only for optical phonons due to the comparably high
energies of the longitudinal spin fluctuations. We hope that our
investigations into the nature of longitudinal spin excitations
will stimulate further theoretical and experimental studies in
this vastly unexplored domain.
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