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Using newly developed quantum-classical hybrid framework, we investigate interaction between spin-
polarized conduction electrons and a single spin wave (SW) coherently excited within a metallic ferromagnetic
nanowire. The SW is described by classical atomistic spin dynamics as a collection of precessing localized
magnetic moments on each atom. The conduction electrons are described quantum mechanically using time-
dependent nonequilibrium Green functions. When the nanowire hosting SW is attached to two normal metal
(NM) leads, with no dc bias voltage applied between them, the SW pumps chiral electronic charge and spin
currents into the leads. Their direction is tied to the direction of SW propagation and they scale linearly with
the frequency of the precession. This is in contrast to standard pumping by the uniform precession mode with
identical spin currents flowing in both directions and no accompanying charge current or experimentally observed
[C. Ciccarelli et al., Nat. Nanotechnol. 10, 50 (2014); M. Evelt et al., Phys. Rev. B 95, 024408 (2017)] magnonic
charge pumping which was interpreted by requiring spin-orbit (SO) coupling effects. Conversely, the mechanism
behind our prediction is nonadiabaticity due to time-retardation effects—motion of localized magnetic moment
affects conduction electron spin in a retarded way, so that it takes a finite time until the electron spin reacts
to the motion of the classical vector. This makes the time-dependent nonequilibrium spin density misaligned
with ‘adiabatic direction,’ even for zero SO coupling and in the absence of magnetic or spin-orbit impurities.
We visualize retardation effects by computing the spatial profile of nonadiabaticity angle between the electronic
nonequilibrium spin density and ‘adiabatic direction.’ Upon injecting dc spin-polarized charge current, electrons
interact with SW where outflowing electronic charge and spin current are modified due to both scattering off
time-dependent potential generated by the SW and superposition with the currents pumped by the SW itself.
Using Lorentzian voltage pulse to excite leviton out of the Fermi sea, which carries one electron charge with
no accompanying electron-hole pairs and behaves as solitonlike quasiparticle, we describe how a single electron
interacts with a single SW.

DOI: 10.1103/PhysRevB.101.214412

I. INTRODUCTION

In the semiclassical picture [1,2], a spin wave (SW) is a
disturbance in the local magnetic ordering of a ferromagnetic
material in which localized magnetic moments precess around
the easy axis with the phase of precession of adjacent mo-
ments varying harmonically in space over the wavelength λ,
as illustrated in Fig. 1. The quanta of energy of SW behave
as a quasiparticle, termed magnon, which carries energy h̄ω

and spin h̄. The frequency ω of the precession is commonly
in GHz range of microwaves, but it can reach THz range in
antiferromagnets [3]. The SWs can be excited in equilibrium
as incoherent thermal fluctuations, which then reduce the total
magnetization with increasing temperature [4]. They can also
be excited by external fields [5–10] which leads to coherent
propagation of SWs as a dispersive signal.

Out of equilibrium, electron-magnon interaction is encoun-
tered in numerous phenomena in spintronic devices, such as
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inside magnetic layers or at their interfaces with layers of
normal metals and insulators. For example, such processes
can increase resistivity of ferromagnetic metal (FM) with
temperature due to spin-flip scattering from thermal spin
disorder [11,12], play an essential role in the laser-induced
ultrafast demagnetization [13], generate nontrivial tempera-
ture and bias voltage dependence of tunneling magnetore-
sistance in magnetic tunnel junctions [14,15], open inelastic
conducting channels [16], contribute to spin-transfer [17–19]
and spin-orbit (SO) torques [20], and convert magnonic spin
currents into electronic spin current or vice versa at magnetic-
insulator/normal-metal interfaces [10,21–23]. Magnon driven
chiral charge pumping—where magnon generates electronic
charge current in the absence of any bias voltage, and with the
direction of current changing upon reversing the direction of
magnon propagation—has also been observed experimentally
[7,24].

The nonequilibrium many-body perturbation theory
[15,22], formulated using Feynman diagrams for nonequilib-
rium Green functions (NEGFs) [25], offers rigorous quantum-
mechanical treatment of both electrons and magnons, once

2469-9950/2020/101(21)/214412(10) 214412-1 ©2020 American Physical Society

https://orcid.org/0000-0002-5793-7764
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.214412&domain=pdf&date_stamp=2020-06-05
https://doi.org/10.1038/nnano.2014.252
https://doi.org/10.1103/PhysRevB.95.024408
https://doi.org/10.1103/PhysRevB.101.214412
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FIG. 1. Schematic view of two-terminal setups where FM wire,
modeled as 1D chain of ferromagnetic atoms [29], hosts SW com-
prised of N = 10 localized magnetic moments Mi(t ) precessing as
classical vectors with frequency ω and cone angle θ = 10◦ [6], as
well as with harmonic variation in the phase of precession of adjacent
moments. The wire is attached to the left and right semi-infinite
normal metal leads which terminate into the macroscopic reservoirs
wherein: (a) no bias voltage is applied between the reservoirs,
(b) small bias voltage Vb is applied to inject dc unpolarized charge
current into the wire, which is then spin polarized by three fixed
spins (red arrows), and (c) Lorentzian voltage pulse [30,31] is applied
between the reservoirs to inject leviton current pulse IL(t ) into the
wire carrying integer charge Q = ∫

dt IL(t ) = 2e.

the original spin operators are mapped to the bosonic ones
[26]. However, to ensure current conservation, one has to
sum large classes of such diagrams [27] which can lead to
errors due to missed vertex corrections [28]. Furthermore,
due to small magnon bandwidth, small electron-magnon
interaction constant Jsd in the realm of electrons can become
a strongly correlated regime for magnons due to large ratio
Jsd/magnon-bandwidth. This can lead to quasibound states
of magnons surrounded by electron-hole pairs [15], therefore
suggesting that complicated higher order diagrams should be
evaluated. This severely limits system size in two-terminal
geometries of Fig. 1 or time scale over which electronic
spin and charge currents, or magnonic spin current, can be
computed. Since both electrons and magnons have intrinsic
angular momentum, their translational flow leads to a flux of
spin angular momentum as spin current.

On the other hand, experiments [5–8] exciting dipole or
exchange dominated SWs are commonly interpreted using
classical micromagnetics [1] or atomistic spin dynamics [2]
simulations (the latter is akin to the former but with atom-
istic discretization). These methodologies describe SWs using
trajectories of classical vectors Mi(t ) of fixed (unit) length,
pointing along the direction of localized magnetic moments
or the corresponding localized spins, which precess around an
easy axis with frequency ω and precession cone angle θ , as
illustrated in Fig. 1. The cone angle has been measured [6] to
be typically θ � 10◦.

In this study, we employ recently developed multiscale
and nonperturbative (i.e., numerically exact) time-dependent
quantum transport combined with classical atomistic spin
dynamics framework [32–35] to the problem of electron-
SW interaction. This makes possible treating large number
of time-dependent localized spins in experimentally relevant
noncollinear configurations and over technologically relevant
time scales ∼1 ns. The formalism combines time-dependent
nonequilibrium Green function (TDNEGF) [25,36] descrip-
tion of electrons out of equilibrium in open quantum sys-
tems, such as those illustrated in Fig. 1, with the Landau-
Lifshitz-Gilbert (LLG) equation describing classical dynam-
ics of localized magnetic moments. The classical treatment of
localized magnetic moments is justified [37] in the limit of
large localized spins S → ∞ and h̄ → 0 (while S × h̄ → 1),
as well as in the absence of entanglement [38] between the
quantum state of localized spins which is expected to be
satisfied at room temperature.

The paper is organized as follows. In Sec. II we intro-
duce SW solution and its coupling to quantum Hamiltonian
of electrons and TDNEGF calculations. Since explanation
of electron-SW scattering for dc injected electronic current
[Sec. III C] or leviton current pulse [Sec. III D] requires us to
first understand how SW can pump spin and charge currents
in the absence of any bias voltage, we carefully analyze
the origin of such pumping in Sec. III A and Sec. III B,
respectively. This includes computation of angles between
the nonequilibrium electronic spin density, its ‘adiabatic di-
rection,’ and localized magnetic moments which helps us to
visualize time-retardation effects in Sec. III B. We conclude
in Sec. IV.

II. MODELS AND METHODS

We assume that a single coherent SW has been excited
externally, such as by microwave current flowing through
narrow antennas [7]. Therefore, we fix dynamics of localized
magnetic moment Mi(t ) at site i of a one-dimensional (1D)
lattice to be the SW solution [1,2] of the LLG equation (for
simplicity without damping):

Mx
i (t ) = sin θ cos(kxi + ωt ), (1a)

My
i (t ) = sin θ sin(kxi + ωt ), (1b)

Mz
i (t ) = cos θ. (1c)

Due to 1D geometry, the wave vector is just a number k =
2π/[a(N − 1)] = 2π/λ, while the discrete coordinate is xi =
(i − 1)a and N is the total number of localized magnetic
moments. Note that the uniform mode—which describes all
magnetic moments precessing in-phase in magnetic materials
driven by microwaves under the ferromagnetic resonance
conditions [39]—is obtained by setting k = 0. Even though
we employ 1D geometry as a tractable model of a realistic
three-dimensional FM layer, such 1D geometries can even be
realized experimentally as demonstrated by using an artificial
chain of ferromagnetically coupled Fe atoms whose SWs were
excited and detected using atom-resolved inelastic tunneling
spectroscopy in a scanning tunneling microscope [29]. We
note that the solution in Eq. (1) also appears in classical
micromagnetics [1]. But there Mi represents magnetization of
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a small volume of space, typically (2–10 nm)3, rather than of
individual atoms [2] that we must assume in order to couple
classical dynamics of Mi(t ) to time-dependent quantum trans-
port calculations where electrons hop from atom to atom.

The FM nanowire hosting such SW is an active region
of devices in Fig. 1, which is attached to two normal metal
(NM) semi-infinite leads terminating into the macroscopic
reservoirs. We use three different two-terminal geometries
depicted Fig. 1: (a) No bias voltage Vb is applied between the
left (L) and right (R) reservoirs kept at the same chemical
potential μL = μR = EF where EF is the Fermi energy in
the Fermi function f (E ) of the reservoirs; (b) small dc bias
voltage, eVb = μL − μR = 0.01 eV, is applied between the
reservoirs to inject unpolarized charge current into the active
region where electrons are spin polarized by three static
localized magnetic moments [red arrows in Fig. 1(b)] pointing
along the z axis; (c) the Lorentzian voltage pulse [30,31]
applied to the left NM lead injects a leviton current pulse
IL(t ) carrying integer charge Q = ∫

dt IL(t ) = 2e, which is
then spin polarized by the same three static localized magnetic
moments as in (b).

The quantum Hamiltonian of the electronic system within
the FM nanowire is chosen as a 1D tight-binding model

Ĥ (t ) = −
∑
〈i j〉

γi j ĉ
†
i ĉ j − Jsd

∑
i

ĉ†
i σ · Mi(t )ĉi, (2)

with an additional sd exchange interaction of strength Jsd =
0.5 eV [40] between Mi(t ) from Eq. (1) and spin of the
conduction electrons, described by the vector of the Pauli
matrices σ = (σ̂x, σ̂y, σ̂z ). Here ĉ†

i = (ĉ†
i↑ ĉ†

i↓) is a row vec-

tor containing operators ĉ†
iσ which create an electron with

spin σ =↑,↓ at site i, ĉi is a column vector containing
the corresponding annihilation operators, and γi j = 1 eV
is the nearest-neighbor hopping. The NM leads are described
by the same Hamiltonian as in Eq. (2) but with Jsd ≡ 0.

The fundamental quantity of nonequilibrium quantum sta-
tistical mechanics is the density matrix. The time-dependent
one-particle density matrix can be expressed [36], ρneq(t ) =
G<(t, t )/i, in terms of the lesser GF of TDNEGF formalism
defined by G<,σσ ′

ii′ (t, t ′) = i〈ĉ†
i′σ ′ (t ′)ĉiσ (t )〉 where 〈. . .〉 is the

nonequilibrium statistical average [25]. We solve a matrix
integro-differential equation [41]

ih̄
dρneq

dt
= [H(t ), ρneq] + i

∑
p=L,R

[�p(t ) + �†
p(t )], (3)

for the time evolution of the nonequilibrium density matrix
ρneq(t ), where H(t ) is the matrix representation of the Hamil-
tonian in Eq. (2). This can be viewed as an exact master
equation for the reduced density matrix of the active region
viewed as an open finite-size quantum system attached to
macroscopic Fermi liquid reservoirs via semi-infinite NM
leads. The leads ensure continuous energy spectrum of the
system and, thereby, dissipation. The �p(t ) matrices,

�p(t ) =
∫ t

t0

dt2 [G>(t, t2)�<
p (t2, t ) − G<(t, t2)�>

p (t2, t )],

(4)

are expressed in terms of the lesser and greater GF and
the corresponding self-energies �>,<

p (t, t ′) [41]. They yield
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FIG. 2. Time dependence of electronic spin currents ISα

L (t ) =
ISα

R (t ) pumped symmetrically [39,43] into the left and right NM leads
of setup in Fig. 1(a) whose localized magnetic moments precess as
a uniform mode with k = 0 in Eq. (1). The Fermi energy is chosen
as EF = −1.6 eV, the frequency of precession is h̄ω = 0.005 eV, the
total number of localized magnetic moments is N = 10 and dc bias
voltage is absent, Vb ≡ 0.

directly time-dependent total charge current

Ip(t ) = e

h̄
Tr [�p(t )], (5)

and spin current

ISα

p (t ) = e

h̄
Tr [σ̂α�p(t )], (6)

flowing into the lead p = L, R. Local currents [42], or any
other local quantity within the active region, are obtained
by tracing the corresponding operator with ρneq(t ). We use
the same units for charge and spin currents, defined as Ip =
I↑

p + I↓
p and ISα

p = I↑
p − I↓

p , in terms of spin-resolved charge
currents Iσ

p . In our convention, positive current in NM lead p
means charge or spin is flowing out of that lead.

III. RESULTS

A. Spin-wave-driven chiral spin pumping

As a warm-up, we first consider standard [39,43–45] spin
pumping by the uniform mode, with k = 0 in Eq. (1) and no
dc bias voltage applied, which serves as a reference point for
subsequent discussion. In this case, identical pure (i.e., not
accompanied by any charge current) spin currents ISα

L (t ) =
ISα

R (t ) are pumped into both leads, as shown in Fig. 2. Their
ISz

L = ISz

R components are time independent, and their negative
sign shows that they flow into the NM leads, as obtained also
in the scattering theory [39], rotating frame approach [43] or
Floquet-NEGF theory [44,45].

On the other hand, the excited SW in the setup of Fig. 1(a)
pumps both charge and spin currents into the NM leads in
the absence of any dc bias voltage. Their time dependences,
ISα

p (t ) and Ip(t ), are shown in Figs. 3(a)–3(c) after transient
currents have died out. Furthermore, in contrast to pumping
by the uniform mode, we find |ISz

L | > |ISz

R |. This is due to
the spin current carried by the SW itself [10]. That is, spin
current carried by the SW must be “transmuted” [46] into
electronic spin current at the FM-wire/NM-left-lead interface
[8,10,34] because no localized magnetic moments exist in
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FIG. 3. Time dependence of electronic spin currents pumped into
the (a) left and (b) right NM leads of setup in Fig. 1(a) whose
localized magnetic moments precess as coherent SW mode with k �=
0 in Eq. (1). (c) The SW with its nonuniform precessing magnetic
moments also pumps dc charge current IL = −IR into the NM leads,
whose dependence on frequency (solid line) in panel (d) is linear ∝ω

(dash-dot line). The Fermi energy is chosen as EF = −1.6 eV, the
frequency of SW is h̄ω = 0.005 eV, the total number of localized
magnetic moments is N = 10 and dc bias voltage is absent, Vb ≡ 0.

the NM lead to support transport of angular momentum via
their dynamics. This current is then added or subtracted to
symmetrically pumped spin currents into the left or right NM
leads, respectively. This explanation is supported by the fact
that changing the sign of k in Eq. (1) leads to a reversed
situation, |ISz

L | < |ISz

R |.

B. Spin-wave-driven chiral charge pumping

The charge pumping in spintronic devices with excited
coherent SWs was observed experimentally in compressively
strained (Ga,Mn)As bar [24], as well as in YIG/graphene
heterostructures [7]. In the latter case, SW is excited within
insulating YIG while pumped current flows through metallic
graphene where localized magnetic moments are induced
by the magnetic proximity effect [47]. The charge current
pumped by time-dependent noncoplanar and noncollinear
magnetic texture, described by local magnetization m(r, t ) as
a continuous variable,

jα (r) = C[∂αm(r, t ) × m(r, t )] · ∂t m(r, t ), (7)

is the subject of the spin motive force (SMF) theory [48–53].
Equation (7), which is rooted in the associated geometrical
(or Berry) phase [56], is valid when electron spins can fol-
low “adiabatically” [54,55] the instantaneous configuration
of Mi(t ), which requires Jsd � h̄|∂t m|, h̄vF |∂αm| (vF is the
Fermi velocity). In Eq. (7), we use notation ∂t = ∂/∂t and
∂α = ∂/∂α for α ∈ {x, y, z}, C = PG0 h̄/2e is constant with
proper units, P = (G↑ − G↓)/(G↑ + G↓) is the spin polar-
ization of the ferromagnet, and G0 = G↑ + G↓ is the total
conductivity.

If we plug the SW solution for the local magnetization—
mx(x) = sin θ cos(kx + ωt ), my(x) = sin θ sin(kx + ωt ), and
mz(x) = cos θ—into Eq. (7) we obtain zero pumped charge
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FIG. 4. The dependence of charge current from Fig. 3(c) on:
(a) precession cone angle θ and (b) wave vector k of the SW. The
solid lines are obtained from TDNEGF calculations and the dashed
line is obtained from the β term in Eqs. (9) and (10) which corrects
[51,52] the original SMF formula in Eq. (7) in order to take into
account nonadiabatic effects [56,57].

current, jx(x) ≡ 0. It is worth mentioning that plugging in
the SW solution from Eq. (1) into the discretized version of
Eq. (7)

jx(i) = C

a
[∂t Mi × Mi+1] · Mi, (8)

apparently leads to a nonzero result, jx(i) =
Cω
a sin θ sin 2θ sin2(ka/2) which contradicts jx(x) ≡ 0

obtained from the continuous formula in Eq. (7). But in
the limit of lattice spacing going to zero, a → 0, we use
lima→0

1
a sin2(ka/2) = 0 to arrive at the same conclusion,

jx(i) ≡ 0.
Thus, to explain nonzero charge pumping by SW in

Ref. [7], a modified version of the SMF formula in Eq. (7)
was employed which includes the so-called β term [51,52,56]
due to nonadiabaticity

jα (r) = C[∂αm(r, t ) × m(r, t ) + β∂αm(r, t )] · ∂t m(r, t ).

(9)

The β term is standardly justified by spin relaxation processes
due to magnetic or SO impurities [57], which cause mis-
alignment between electron spin and its perfectly ‘adiabatic
direction’ tracking the instantaneous configuration of Mi(t ).
In the case of Dirac materials like graphene, with intrinsic or
proximity SO coupling in its band structure (which YIG can
induced in graphene via screw dislocation and a torsion of
its honeycomb lattice [7]), even spin-independent impurities
can cause spin relaxation [58]. This requires that equilibrium
spin texture is tilted out of the plane (such as by spin-valley
coupling) [58,59]. Using the SW solution from Eq. (1) in the
discretized version of the β term in Eq. (9) gives

jβx (i) = Cβ∂t Mi ·
(

Mi+1 − Mi

a

)

= Cβω sin2 θ

(
sin ka

a

)
−−→
a→0

Ckω sin2 θ. (10)

The final result explains the experimentally observed [7]
chiral nature of pumping where charge current changes sign
upon k → −k.

Figure 4 compares analytical result from Eq. (10) (dashed
line) with the one from our TDNEGF calculations (solid line).
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FIG. 5. (a),(b) Spatial profile at time t = 2π/ω of the in-xy-plane component of nonequilibrium electronic spin density vector 〈ŝi〉neq(t )
[Eq. (11)] and localized magnetic moments Mi(t ) across FM nanowire hosting a SW of wave vector k = 0.2π/a. (c),(d) Spatial profile of
angle δ

neq
i , illustrated in the inset between panels (c) and (d), between vectors of the nonequilibrium spin density 〈ŝi〉neq(t ) and classical

localized magnetic moment Mi(t ). (e),(f) Spatial profile of nonadiabaticity angle, δ
neq
i − δ

eq
i , between 〈ŝi〉neq(t ) and adiabatic spin density

〈ŝi〉eq
t [Eq. (13)]. (g),(h) Spatial profile of FL and DL components of STT [Eq. (14)], illustrated in the inset between panels (g) and (h), exerted

on Mi(t ) at time t = 2π/ω due to nonzero angle δ
neq
i − δ

eq
i . In panels (a),(c),(e),(g) SO coupling is absent, while in panels (b),(d),(f),(h) we

use the Rashba SO coupling [Eq. (12)] of strength tSO = 0.1 eV. Two different values of sd exchange interaction in the Hamiltonian [Eq. (2)]
are used, Jsd = 0.05 eV (red lines) and Jsd = 0.5 eV (green lines). The Fermi energy is chosen as EF = −1.6 eV, the frequency of SW is
h̄ω = 0.005 eV, the total number of localized magnetic moments is N = 20, and dc bias voltage is absent, Vb ≡ 0.

They closely follow each other [Fig. 4(a)] as a function of
cone angle θ , except around θ = 90◦, as well as as a func-
tion of k [Fig. 4(b)] within |k| � 0.2π/a interval. Since our
TDNEGF calculations are numerically exact, such deviations
(for values of θ and k not commonly found in experiments
though [6,8]) stem from the fact that the SMF formula in
Eq. (9) contains only the lowest order [50,51] time and spatial
derivatives of local magnetization.

At first sight, it seems surprising that we reproduce (within
some interval) Eq. (10) even though our setup in Fig. 1(b) does
not contain obvious sources of nonzero β, such as impurities
or SO coupling in the band structure [57]. To clarify this, we
compute electronic nonequilibrium spin density at site i

〈ŝi〉neq(t ) = h̄

2
Tr [ρneq(t )|i〉〈i| ⊗ σ], (11)

and plot [Figs. 5(a)–5(d)] spatial profile (at fixed time t =
2π/ω) of angle δ

neq
i [see inset between Figs. 5(c) and 5(d)]

between 〈ŝi〉neq(t ) and Mi(t ) across the whole chain with an
excited SW. This angle is nonzero in Figs. 5(a) and 5(c) in
the absence of SO coupling or spin-dependent impurities,
and it increases in Figs. 5(b) and 5(d) after the Rashba SO

coupling [60],

ĤSO =
∑

i j

ĉ†
i ti j ĉ j, (12)

is added into the quantum Hamiltonian in Eq. (2). Here ti j =
−itSOσ̂y for i = j + 1. The strength of the Rashba SO cou-
pling is chosen as tSO = 0.1 eV, which generates conventional
static Gilbert damping αG = 0.01 via the scattering theory
[61] as the typical value [62] found in FM nanowires.

In addition, we examine instantaneous equilibrium spin
density

〈ŝi〉eq
t = h̄

2
Tr

[
ρ

eq
t |i〉〈i| ⊗ σ

]
, (13)

which is obtained from the equilibrium density matrix [25],
ρ

eq
t = − 1

π

∫ +∞
−∞ dE Im Gt (E ) f (E ) using the frozen (adia-

batic) retarded Green function, Gt (E ) = [E − Ht − �]−1,
computed for instantaneous configuration of Mi(t ). Here we
use subscript t to emphasize parametric dependence on time
through slow variation of Mi(t ), and � = �L + �R is the
sum of the retarded self-energies of the leads. Thus, 〈ŝi〉eq

t
rigorously defines the meaning of ‘adiabatic direction’
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[51,52,56] for electronic spins. Its derivation assumes
dMi/dt → 0. For example, first nonadiabatic correction, that
depends linearly on dMi/dt and parametrically on time
through Mi(t ), can be derived [63,64] from G<(t, t ) by
expanding it into a power series in the small parameter
dMi/dt and by retaining only the first order. Note that our
numerically exact G<(t, t ) employed to obtain 〈ŝi〉neq(t ) in
Eq. (11) effectively includes all orders of such series. In the
case of the dynamics of a single localized magnetic moment
[55], and in the adiabatic limit Jsd/h̄ω � 1, 〈ŝ1〉eq

t ‖ M1(t )
and angle δ

eq
1 = 0. However, the angle δ

eq
i [see inset between

Figs. 5(e) and 5(f)] between 〈ŝi〉eq
t and Mi(t ) is not zero in any

noncollinear configurations of Mi(t ).
The adiabaticity assumption [51,52,54,56], according to

which electronic quantum state follows the instantaneous
SW configuration in the limit Jsd/h̄ω � 1, would imply that
〈ŝi〉neq(t ) remains parallel to 〈ŝi〉eq

t . In contrast, spatial profile
of nonadiabaticity angle, δ

neq
i − δ

eq
i , plotted in Fig. 5(e) in the

absence of SOC and in Fig. 5(f) in the presence of the Rashba
SOC, demonstrates that 〈ŝi〉neq(t ) is not parallel to 〈ŝi〉eq

t ,
even in the perfectly justified adiabatic limit Jsd/h̄ω = 100
(green lines in Fig. 5). The nonadiabaticity angle δ

neq
i − δ

eq
i

visualized in Figs. 5(e) and 5(f) decreases with increasing
Jsd/h̄ω, but making (δneq

i − δ
eq
i ) → 0 would require unrealis-

tically large Jsd —the realistic values measured experimentally
are Jsd � 0.1 eV [40].

Thus, difference [32] 〈ŝi〉neq(t ) − 〈ŝi〉eq
t and its non-

collinearity with Mi generates spin-transfer torque (STT) [65]
on localized magnetic moment at site i

Ti(t ) = Jsd
[〈ŝi〉neq(t ) − 〈ŝi〉eq

t

] × Mi(t ) = TDL
i (t ) + TFL

i (t ).

(14)

As usual [65], we split the STT vector [as illustrated in the
inset between Fig. 5(g) and Fig. 5(h)] into two components:
even under time-reversal or fieldlike (FL) torque, that affects
precession around the easy axis, and odd under time reversal
or dampinglike (DL) torque, which either enhances the Gilbert
damping by pushing magnetic moment toward the axis of
precession or competes with it as “antidamping.” For example,
negative value of T DL

i = TDL
i · eDL in Figs. 5(g) and 5(h),

where eDL is the unit vector in the direction of Mi × ∂Mi/∂t ,
means that TDL

i vector points away from the easy axis which is
“antidamping” action. Similarly, T FL

i = TFL
i · eFL, where eFL

is the unit vector in the direction of ∂Mi/∂t , is plotted in
Figs. 5(g) and 5(h). In the absence of SO coupling TDL

i points
toward the easy axis at all sites i in Fig. 5(g), which is time-
dependent contribution to damping discussed in more details
in Refs. [33,66,67]. Note, however, that we fix the dynamics of
localized magnetic moments to SW solutions in Eq. (1), rather
than solving TDNEGF and LLG equations self-consistently
as performed in Refs. [32–34]. In the presence of the Rashba
SO coupling, TDL

i can change sign, thereby acting as both
damping and antidamping torque depending on the site i in
Fig. 5(h).

Thus, TDNEGF calculations naturally include additional
sources of nonadiabaticity for quantum dynamics of elec-
tronic spins and damping for classical dynamics of local-
ized magnetic moments. They are operative even when SO
coupling in the band structure is zero and spin-dependent

impurities are absent, which is traditionally considered as
necessary for nonadiabaticity or damping [56,57]. These ef-
fects stem from the fact that 〈ŝi〉neq(t ) is always somewhat
behind ‘adiabatic direction’ set by 〈ŝi〉eq

t because classical
magnetization affects the conduction electrons in a retarded
way [33,66]. That is, it always takes a finite amount of
time until the conduction electron spin 〈ŝi〉neq(t ) reacts to the
motion of Mi(t ). Similar magnitude of TDL

i torque compo-
nent in Fig. 5(h) with zero SO coupling and Fig. 5(h) with
nonzero SO coupling shows that retardation effects are an
equally important physical mechanism of (time-dependent
[33,66,67]) Gilbert damping as is traditionally considered
SO coupling combined with electron-phonon interactions
[68,69].

An alternative way to interpret the origin of charge pump-
ing by SW is to analyze its frequency dependence shown in
Fig. 3(d). This complies with the general theory of “adiabatic”
quantum pumping [42,70,71] since it scales linearly with fre-
quency in the physically relevant frequency range GHz–THz
[3]. Note that terminology “adiabatic” in this context is not
related to spin—instead it signifies sufficiently slow change
of harmonic potential driving the quantum system so that its
frequency is h̄ω � EF and/or smaller than relevant relaxation
time for orbital dynamics of electrons. We recall that such
linear scaling is in accord with the key requirement—breaking
of left-right symmetry—for nonzero dc component of quantum
charge pumping by a time-dependent potential [42,70,71].
This can be achieved by breaking inversion symmetry and/or
time-reversal symmetry. In the “adiabatic” regime, quantum
charge pumping requires both inversion and time-reversal
symmetries to be broken dynamically, such as by two spatially
separated potentials oscillating out-of-phase [70], which leads
to Īp(t ) ∝ ω at low frequencies (Ā is the average of quantity A
over one period). In the case of SW, it is the wavelike pattern
of precessing localized magnetic moments which dynamically
breaks the left-right symmetry in Fig. 1(a), with respect to
the vertical plane positioned between moments localized at
sites i = N/2 and i = N/2 + 1. In contrast, in the “nonadi-
abatic” regime only one of those two symmetries needs to
be broken and this does not have to occur dynamically. The
dc component of the pumped current in the “nonadiabatic”
regime is [71] Īp(t ) ∝ ω2 at low frequencies as obtained in,
e.g., the case of charge pumping by uniform mode across po-
tential barrier that breaks the left-right symmetry of the device
statically [43].

C. Electron/spin-wave scattering for injected dc spin-polarized
charge current

For the setup in Fig. 1(b), we first establish (after some
transient period not shown explicitly) steady charge current IR

[flat line in Fig. 6(c) for t < 500 fs] of electrons injected by
dc bias voltage into 3 + 10 static localized magnetic moments
oriented along the z axis. The initially unpolarized current
becomes spin polarized due to static moments, as charac-
terized by steady spin current ISz

R �= 0 [flat line in Fig. 6(b)
for t < 500 fs] and the corresponding spin polarization Pz =
|ISz

R |/|IR| ≈ 50%. Then at t = 500 fs we suddenly excite SW
composed of 10 precessing localized magnetic moments in
Fig. 1(b). This induces transient currents around that instant
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FIG. 6. Time dependence of electronic spin currents in the
(a) left and (b) right NM leads of setup in Fig. 1(b) whose localized
magnetic moments start to precess at t = 500 fs as a coherent SW
with k �= 0 in Eq. (1) in the presence of a flux of electrons injected
into the active region by dc bias voltage eVb = 0.01 eV. The electrons
are spin polarized by three fixed spins (red arrows) in Fig. 1(b).
The corresponding time dependence of their charge current IR(t )
is shown in panel (c). Panel (d) plots time dependence of IR(t ) for
“frozen-in-time” [12] SW where t = 0 in Eq. (1). The Fermi energy
is chosen as EF = −1.6 eV, the frequency of SW is h̄ω = 0.005 eV,
the total number of localized magnetic moments is N = 10, and dc
bias voltage is Vb = 0.01 V.

which help us to visualize the boundary between the time
interval without and with SW being present. Within the
time interval t > 500 fs where SW is present, new time-
dependent spin currents ISx

p (t ) and I
Sy
p (t ) emerge [Figs. 6(a)

and 6(b)] due to spin pumping by SW demonstrated in
Figs. 3(a) and 3(b).

Concurrently, dc spin currents ISz

L [Fig. 6(a)] and ISz

R
[Fig. 6(b)], as well as dc charge current IR [Fig. 6(c)], are
reduced compared to their values prior to SW excitation. This
reduction is mostly due to charge and spin currents pumped in
the direction right-NM-lead→left-NM-lead in Fig. 3, which
is opposite to the flow of originally injected charge and spin
currents by dc bias voltage. Thus, outflowing spin and charge
currents in the right NM lead can also be enhanced if we
invert the sign of k in Eq. (1) and, therefore, the direction of
SW propagation. Another reason for the reduction is backscat-
tering of electrons by time-dependent potential generated by
SW. The magnitude of reduction due to backscattering for
charge current shown in Fig. 6(c) is estimated using [IR(t <

500 fs) − IR(t > 500 fs) + ISW
R ]/IR(t < 500 fs) � 1%. Here

ISW
R denotes charge current pumped by SW [Fig. 3(c)] in the

absence of any dc bias voltage Vb.
Recent time-independent quantum transport calculations

[12] of the resistance of FM layers have included “frozen
magnons” as correlated spin disorder where localized spins
are tilted away from the easy axis in accord with thermal
population of magnon modes. To understand time-dependent
effects missed in such calculations, we freeze localized mag-
netic moments by setting t = 0 in Eq. (1). The scattering
from such “frozen-in-time” SW leads to much smaller current
reduction in Fig. 6(d).
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FIG. 7. Time dependence of electronic spin currents ISα

R (t ) in the
right NM lead after unpolarized leviton is injected by the Lorentzian
voltage pulse [30,31] into the active region hosting: (a) three static
localized magnetic moments (red arrows) pointing along the z axis,
acting as spin polarizer, followed by SW excited at t = 500 fs, as
illustrated in Fig. 1(c); (b) three static localized magnetic moments
and a “frozen-in-time” SW excited at t = 500 fs. Panels (c) and
(d) show time dependence of the charge current IR(t ) corresponding
to (a) and (b), respectively. In addition, panels (b) and (d) plot
(dotted lines) time dependence of ISα

R (t ) and IR(t ), respectively, for
the active region containing only the three static localized magnetic
moments pointing along the z axis. The Fermi energy is chosen as
EF = −1.6 eV, the frequency of SW is h̄ω = 0.005 eV, and the total
number of localized magnetic moments is N = 10.

D. Electron/spin-wave scattering for injected spin-polarized
charge current leviton pulse

In order to simulate single-electron/single-SW scattering,
we inject pulsed current into the active region using the
Lorentzian voltage pulse [41], VL(t ) = 2h̄τ/[(t − t0)2 + τ 2],
where the pulse duration is τ = 7.5h̄/γ . As confirmed exper-
imentally [72], such special pulse profile with e

h̄

∫
dt VL(t ) =

2πn [73] drives the Fermi sea in the left reservoir to ensure
[30,31] excitation of an integer number n of purely electronic
states above the sea. They appear without spurious electron-
hole pairs and exhibit minimal [74] nonequilibrium noise in
charge transfer across the active region. We use n = 2, so that
injected unpolarized charge current pulse, called leviton [72],
carries charge Q = ∫

dt IL(t ) = 2e. This can be viewed as
minimalistic unpolarized current composed of one spin-↑ and
one spin-↓ electron flowing together. Upon spin polarization
by three static localized magnetic moments in Fig. 1(c), the
leviton interacts with SW excited suddenly at t = 500 fs.
After such interaction, leviton outflows into the right NM lead
where its spin and charge currents are plotted in Figs. 7(a) and
7(c), respectively. For comparison, Figs. 7(b) and 7(d) plot
spin and charge currents in the right NM lead, respectively, for
a leviton interacting with “frozen-in-time” SW. In addition,
Figs. 7(b) and 7(d) also include (dotted lines) spin and charge
current of leviton outflowing into the right NM lead when
SW in Fig. 1(c) is removed from the active region. The
integrals for outflowing spin-polarized leviton after scattering
from SW in Figs. 7(a) and 7(c) are

∫
dt ISz

R (t ) = 0.939e and
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∫
dt IR(t ) = 0.822e, respectively. They can be compared to∫
dt ISz

R (t ) = 0.944e and
∫

dt IR(t ) = 0.827e in Figs. 7(b)
and 7(d), respectively. Note that the ratio of integrals
of two dotted curves in Figs. 7(b) and 7(d) is Pz =
| ∫ dt ISz

R (t )|/| ∫ dt IR(t )| ≈ 40% which can be considered as
the spin polarization of leviton after passing through three
static localized magnetic moments in Fig. 1(c).

IV. CONCLUSIONS

In conclusion, using time-dependent quantum transport
combined with classical atomistic spin dynamics multiscale
framework [32–34] we predict that SW coherently excited
within a metallic ferromagnet will pump chiral electronic
charge and spin currents into the attached normal metal leads.
The chirality of pumped currents means that their direction
is tied to the direction of SW propagation, changing upon
reversal of the SW wave vector. The pumped currents scale
linearly with the frequency of the SW in experimentally
relevant GHz–THz range. In contrast, recent experiments on
magnonic charge pumping [7,24] were interpreted by invok-
ing nonzero SO coupling in the band structure (alternatively,
one could invoke magnetic or SO impurities [57]) to introduce
misalignment between nonequilibrium electronic spin density
and its ‘adiabatic direction’ defined by Eq. (13). This adds
nonadiabatic contribution [51,52,56] to the spin motive force
formula which describes charge pumping by time-dependent
noncoplanar and noncollinear magnetic textures. Although
SW is an example of such texture, standard purely adiabatic

spin motive force formula [Eq. (7)] predicts zero pumped
charge current [Sec. III B]. Thus our prediction highlights
the importance of time-retardation effects [33,66,67], where
conduction electron spin is always somewhat behind the ‘adi-
abatic direction’ that would instantaneously follow classical
localized magnetic moments. The retardation is visualized
by plotting the nonadiabaticity angle between the true and
‘adiabatic direction’ for conduction electron spin and classical
localized magnetic moment, both in the absence [Fig. 5(e)]
and in the presence [Fig. 5(f)] of SO coupling in the band
structure. When dc spin-polarized charge current is injected
into the ferromagnet, electrons interact with SW in such a
way that the outflowing charge and spin current are changed
both by the scattering off time-dependent potential generated
by the SW and superposition with the currents pumped by
the SW itself. Using Lorentzian voltage pulse to excite spin-
polarized leviton out of the Fermi sea, which carries one
electron charge with no accompanying electron-hole pairs and
behaves as solitonlike quasiparticle, we also reveal how a
single electron scatters from a single SW.
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mixing conductance of topological-insulator/ferromagnet and
heavy-metal/ferromagnet spin-orbit-coupled interfaces: A first-
principles Floquet-nonequilibrium-Green-function approach,
arXiv:1905.01299.

[46] G. E. Bauer and Y. Tserkovnyak, Viewpoint: spin-magnon
transmutation, Physics 4, 40 (2011).

[47] A. Hallal, F. Ibrahim, H. X. Yang, S. Roche, and M. Chshiev,
Tailoring magnetic insulator proximity effects in graphene:
First-principles calculations, 2D Mater. 4, 025074 (2017).

[48] G. E. Volovik, Linear momentum in ferromagnets, J. Phys. C:
Solid State Phys. 20, L83 (1987).

[49] S. E. Barnes and S. Maekawa, Generalization of Faraday’s Law
to Include Nonconservative Spin Forces, Phys. Rev. Lett. 98,
246601 (2007).

[50] R. A. Duine, Spin pumping by a field-driven domain wall, Phys.
Rev. B 77, 014409 (2008).

214412-9

https://doi.org/10.1103/PhysRevB.90.045115
https://doi.org/10.1016/j.jmmm.2006.10.507
https://doi.org/10.1103/PhysRevB.78.174404
https://doi.org/10.1126/science.aav8076
https://doi.org/10.1103/PhysRevB.99.104417
https://doi.org/10.1103/PhysRevB.95.115403
https://doi.org/10.1038/nature08876
https://doi.org/10.1103/PhysRevB.96.174422
https://doi.org/10.1038/nmat2856
https://doi.org/10.1038/nnano.2014.252
https://doi.org/10.1103/PhysRevLett.85.5631
https://doi.org/10.1103/PhysRevB.94.165429
https://doi.org/10.1103/PhysRevB.91.235114
https://doi.org/10.1038/nmat4018
https://doi.org/10.1103/PhysRevB.56.6839
https://doi.org/10.1103/PhysRevLett.97.116403
https://doi.org/10.1103/PhysRevApplied.10.054038
https://doi.org/10.1103/PhysRevB.99.134409
http://arxiv.org/abs/arXiv:1908.03194
https://doi.org/10.1002/pssb.201800590
https://doi.org/10.1016/j.physrep.2013.09.001
https://doi.org/10.1140/epjb/e2015-50832-0
https://doi.org/10.1103/PhysRevB.99.094431
https://doi.org/10.1103/RevModPhys.77.1375
https://doi.org/10.1103/PhysRev.164.662
https://doi.org/10.1088/1367-2630/18/9/093044
https://doi.org/10.1088/2515-7639/ab0a3e
https://doi.org/10.1103/PhysRevB.79.054424
https://doi.org/10.1103/PhysRevB.85.054406
http://arxiv.org/abs/arXiv:1905.01299
https://doi.org/10.1103/Physics.4.40
https://doi.org/10.1088/2053-1583/aa6663
https://doi.org/10.1088/0022-3719/20/7/003
https://doi.org/10.1103/PhysRevLett.98.246601
https://doi.org/10.1103/PhysRevB.77.014409
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