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Projective symmetry group analysis of inelastic light scattering in Kitaev spin balls
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Projective symmetry groups are applied to Raman observations of the Kitaev quantum spin liquids in spherical
lattice geometries realized by Platonic and Archimedean polyhedra. Parton single excitations in Kitaev spin
polyhedra are characterized by double-valued irreducible representations of their belonging projective symmetry
groups, whereas parton geminate excitations relevant to Raman scattering are decomposed into single-valued
irreducible representations of the corresponding point symmetry groups. We combine a standard point symmetry
group analysis of the Loudon-Fleury vertices and an elaborate projective symmetry group analysis of itinerant
spinons against the ground gauge fields to reveal hidden selection rules for Raman scattering in Z2 spin liquids.
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I. INTRODUCTION

The Kitaev honeycomb model [1] sparked brand new inter-
est in quantum spin liquids (QSLs) [2–5]. It is exactly solvable
to have a QSL ground state accompanied by Z2 gauge fields,
whose excitations are fractional, decomposing into itinerant
“spinons” and local gapped “visons.” Jackeli and Khaliullin
[6] designed Mott insulators in the strong spin-orbit coupling
limit for the Kitaev model, leading to many candidate mate-
rials such as Na2IrO3 [7], α-Li2IrO3 [8], H3LiIr2O6 [9], and
α-RuCl3 [10]. The pure Kitaev model is hard to realize but
often accompanied by not only usual Heisenberg interactions,
whether intralayer [11,12] or interlayer [13–16], but also
off-diagonal exchanges referred to as the � term [17–19].
Since fractional excitations remain possible in such “effec-
tive” Kitaev models [4,5,20–29], inelastic neutron scattering
[30–33], x-ray absorption [10], and Raman scattering [34]
measurements have been performed on them in an attempt to
diagnose QSLs. Raman spectroscopy is particularly useful in
detecting spinons separately from visons [24,25,35].

The Kitaev QSL is realizable with any lattice of coordina-
tion number 3. β-Li2IrO3 [36] and γ -Li2IrO3 [37], consisting
of “hyperhoneycomb” [38,39] and “stripyhoneycomb” [40]
lattices, respectively, are such candidates in three dimen-
sions. While they both exhibit gapless spinon excitations
coming from nodal rings, the degeneracy of the Fermi level
strongly depends on the lattice geometry in general. A nor-
mal Fermi surface is emergent in a “hyperoctagon” lattice
[41,42], whereas it reduces to what are called Weyl points in
“hypernonagon” [42,43] and “hyperhexagon” [42,44] lattices.
Spinon excitations may be gapped from the ground state [42].
Kitaev models of lower than two dimensions also attract much
interest. Kitaev honeycomb nanoribbons with both zigzag and
armchair edges are discussed in an attempt to optically dis-
tinguish between different topological phases [45] and inves-
tigated with particular interest in a bulk-edge correspondence
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[46], i.e., a possible relation between gapped states in the bulk
and gapless states in the boundary. A Kitaev spin ladder maps
onto a one-dimensional p-wave superconductor in terms of
Dirac fermions to reveal the equivalence between spontaneous
global Z2 symmetry breaking and emergent isolated Majorana
modes [47], while that with inhomogeneous exchange inter-
actions exhibits coexistent different topological phases with
Majorana end states in between [48].

In such circumstances, Mellado, Petrova, and Tch-
ernyshyov (MPT) [49] discuss the Kitaev spin model in a
spherical lattice geometry realized by Archimedean solids.
Analyzing the projective symmetry [50,51] of the gauge-
ground Majorana fermionic Hamiltonian (cf. Appendix A)
rather than the point symmetry of the background lattice,
they claim that a parton behaves like an electrically charged
particle in a radial (monopole) magnetic field within the
continuum—in the sense of a perfect sphere—approximation.
This parton has a half-odd-integral orbital angular momentum
due to the magnetic monopole located at the center of the
cluster.

Motivated by the MPT theory, we present a symmetry
argument of optical observations of “Kitaev spin balls”, i.e.,
QSLs in a spherical lattice geometry realized by Platonic and
Archimedean polyhedra (cf. Fig. 1). Since Raman scattering
within the Loudon-Fleury (LF) scheme [53–55] is mediated
by spinons in pairs, we make direct-product representations
out of irreducible representations of the corresponding pro-
jective symmetry group and then decompose them into ir-
reducible representations again. In order to reveal how each
spinon geminate excitation behaves under spatial inversion,
which is vitally important in the context of Raman scattering,
we go so far as to take gauged inversion, if any, as well
as gauged rotations, into the projective symmetry. Kitaev
spin balls made only of 2l-sided polygons (l ∈ N) require
such an elaborate formulation, namely, making direct-product
representations of the extended binary polyhedral group, i.e.,
the double cover of the full icosahedral or octahedral group, to
obtain inversion-symmetry-definite single-valued irreducible
representations.
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FIG. 1. Kitaev spin balls consisting of (a) dodecahedral,
(b) truncated-tetrahedral, and (c) truncated-octahedral lattices in
their ground flux configurations. The ground state of the trun-
cated octahedron is unique, whereas those of the dodecahedron
and truncated tetrahedron are both degenerate [52], with their con-
stituent pentagons arrangeable into either {Wp = +i; p = 1, . . . , 12}
or {Wp = −i; p = 1, . . . , 12} and triangles arrangeable into either
{Wp = +i; p = 1, . . . , 4} or {Wp = −i; p = 1, . . . , 4}.

II. KITAEV MODELS OF PLATONIC AND ARCHIMEDEAN
POLYHEDRA

The Kitaev Hamiltonian (Fig. 1) reads

H = −
∑

λ=x,y,z

∑
〈m,n〉λ

Jλσ
λ
mσλ

n , (1)

where (σ x
l , σ

y
l , σ z

l ) (l = 1, . . . , L) are the Pauli matrices and
〈m, n〉λ (λ = x, y, z) each run over a different set of L/2
nearest-neighbor bonds between the λ components. We set
this model in various polyhedral geometries, i.e., on dodec-
ahedral, truncated-tetrahedral, and truncated-octahedral lat-
tices, whose point symmetry groups are given by Ih = I × Ci,
Td = T + IC4T, and Oh = O × Ci = Td × Ci, respectively.
Jx, Jy, and Jz are all set to J > 0 in the following.

By representing the spin operators in terms of four
Majorana fermions, σλ

l = iηλ
l cl , with anticommutation rela-

tions between them, {ημ
m, ην

n} = 2δmnδμν , {cm, cn} = 2δmn, and
{ηλ

m, cn} = 0, and then introducing bond operators, û〈m,n〉λ ≡
iηλ

mηλ
n , the spin Hamiltonian (1) is rewritten as

H = iJ
∑

λ=x,y,z

∑
〈m,n〉λ

û〈m,n〉λcmcn. (2)

Since [û〈m,n〉λ ,H ] = 0 and û2
〈m,n〉λ = 1, û〈m,n〉λ reads as a Z2

classical variable, u〈m,n〉λ = ±1. Numbering the constituent
polygons of a polyhedra, p = 1, . . . , L

2 + 2, we define a flux
operator [1,56] for each by multiplying its Np spin operators
in the anticlockwise manner viewed from the outside of the
polyhedron,

Ŵp ≡ eiΦ̂p =
∏

〈m,n〉λ∈∂ p

σλ
mσλ

n

= (−i)Np
∏

〈m,n〉λ∈∂ p

û〈m,n〉λ . (3)

Ŵp also commutes with (2) and thus behaves as a classical
variable, Wp = ±1 or ±i, according to whether Np is even or
odd. A U(1) gauge flux, Wp ≡ eiΦp (−π < Φp � π ), pierces
the constituent polygon p. Every Kitaev spin ball consists of
L
2 + 2 gauged polygons with their flux variables satisfying∏ L

2 +2
p=1 Wp = 1. The Hilbert space of the spin Hamiltonian (1)

is block-diagonal with respect to flux configurations {Wp},
consisting of 2

L
2 +1 blocks of dimension 2

L
2 −1 × 2

L
2 −1, while

that of the augmented Majorana Hamiltonian (2) is block-
diagonal with respect to bond configurations {u〈m,n〉λ} as well
as {Wp}, consisting of 2

3L
2 blocks of dimension 2

L
2 × 2

L
2 . Four

Majorana fermions at each site have 22L degrees of freedom,
containing “unphysical states” [57,58] to be projected out by
the operator [57–60]

P =
L∏

l=1

1

2

(
1 + ηx

l η
y
l η

z
l cl

)
. (4)

Once a set of the 3L/2 gauge fields {u〈m,n〉λ} is given, we
have a Majorana quadratic Hamiltonian to be solved:

H = i

2

L∑
m=1

L∑
n=1

Hmncmcn;

Hmn = −Hnm ≡ Ju〈m,n〉λ . (5)

The real skew-symmetric matrix H can be block-diagonalized
by a real orthogonal matrix �:

H = i

2
tc�t�H�t�c = i

2
tc̃E c̃ = i

L/2∑
k=1

εk

2
c̃2k−1c̃2k,

c ≡

⎡⎢⎣c1
...

cL

⎤⎥⎦ =

⎡⎢⎣ψ1,1 · · · ψ1,L
...

. . .
...

ψL,1 · · · ψL,L

⎤⎥⎦
⎡⎢⎣c̃1

...
c̃L

⎤⎥⎦ ≡ �c̃,

c̃ = t�c, E ≡ 1

2

⎡⎢⎢⎢⎢⎢⎣
0 ε1

−ε1 0
. . .

0 ε L
2−ε L

2
0

⎤⎥⎥⎥⎥⎥⎦. (6)

We recomplexify Majorana fermions,

c̃2k−1 = α
†
k + αk, c̃2k = i(α†

k − αk ),

cl =
L/2∑
k=1

(ψl,2k−1c̃2k−1 + ψl,2k c̃2k )

=
L/2∑
k=1

[(ψl,2k−1 + iψl,2k )α†
k + (ψl,2k−1 − iψl,2k )αk],

αk = 1

2
(c̃2k−1 + ic̃2k ) = 1

2

L∑
l=1

(ψl,2k−1 + iψl,2k )cl ,

α
†
k = 1

2
(c̃2k−1 − ic̃2k ) = 1

2

L∑
l=1

(ψl,2k−1 − iψl,2k )cl , (7)

214411-2



PROJECTIVE SYMMETRY GROUP ANALYSIS OF … PHYSICAL REVIEW B 101, 214411 (2020)

so as to obtain a diagonal Hamiltonian,

H =
L/2∑
k=1

εk

2
(α†

k αk − αkα
†
k ) =

L/2∑
k=1

εk

(
α

†
k αk − 1

2

)
, (8)

with nonnegative eigenvalues εk � 0. Note that all sets of the
gauge fields {u〈m,n〉λ ; 〈m, n〉x, 〈m, n〉y, 〈m, n〉z = 1, . . . , L

2 }
yielding the same flux configuration {Wp; p = 1, . . . , L

2 + 2}
give the same set of eigenvalues {εk; k = 1, . . . , L

2 }. P can
be expressed in terms of the bond variables u〈m,n〉λ , mixing
coefficients ψl,l ′ , and quasiparticle occupation operators α

†
k αk

to act on quasiparticle (spinon) states labeled background
gauge fields {u〈m,n〉λ}. Physical (unphysical) spinon states in
the ground (lowest-energy) gauge sector consist of even (odd)
numbers of emergent spinons α

†
k αk . All the 2

3L
2 gauge sectors

each contain 2
L
2 −1 physical and 2

L
2 −1 unphysical states, each

consisting of either only even or only odd numbers of spinons.
The ground flux configurations of Kitaev spin balls (Fig. 1)

are such that Wp of every constituent Np-sided polygon is +1,
−1, or either of +i and −i according to whether Np is 4l + 2,
4l , or 2l + 1 with l ∈ N [49,56]. With the time-reversal-
invariant Hamiltonian, the ground state is at least doubly
degenerate unless all Np’s are even [52]. Considering that the
eigenspectrum of (2) depends on {u〈m,n〉λ} only through {Wp}
and the Wp’s each commute with (1) as well as (2), we describe
the ground state, unless otherwise noted, as a spinon vacuum
against a ground flux configuration,

|{nk}〉0 ⊗ |{Wp}〉0 ≡ |0〉, (9)

where we denote the κth spinon state against the qth flux con-
figuration by |{nk}〉κ ⊗ |{Wp}〉q (κ = 0, . . . , 2

L
2 −1 − 1; q =

0, . . . , 2
L
2 +1 − 1), allowing it to run over physical states only.

III. PROJECTIVE SYMMETRY GROUPS FOR
GAUGE-GROUND KITAEV POLYHEDRA

A. Single- and double-valued irreducible representations

Characterizing Raman scattering mediated by Majorana
spinons emergent in the gauge-ground Kitaev truncated octa-
hedron in terms of its projective symmetry group is essentially
twofold: first, we go further than MPT [49] in obtaining a pro-
jective symmetry group for single Majorana eigenmodes, i.e.,
construct the double cover of the O(3) superset of a pure ro-
tation group, and then analyze direct-product representations
made of its double-valued irreducible representations. Let us
denote the point symmetry group of a Kitaev spin ball and
its arbitrary group element by P and P, respectively, and the
Z2-gauge extension of P and resultant gauged point symmetry
operations by P̃ and P̃, respectively. Regular and semiregular
polyhedral lattices of our interest have the same coordination
number 3 and their point symmetry groups are either the
cubic (Td, Oh) or the icosahedral (Ih) groups. Therefore,
P ⊂ O(3) in general. P ∈ P generally changes the ground
gauge fields of the Majorana Hamiltonian. We demonstrate
in detail gauged point symmetry operations on gauge-ground
Kitaev polyhedra as well as pure point symmetry operations
on their background lattices in Appendix A. Any two bond
configurations yielding the same set of fluxes can be con-
verted to each other by local gauge operations. Every rotation

R ∈ R leaves any flux configuration {Wp; p = 1, . . . , L
2 + 2}

unchanged, whereas the inversion I ∈ P and every reflection
σ ∈ P reverse the signs of all imaginary Wp’s peculiar to
polygons of odd Np. Only if the group action P leaves the flux
configuration {Wp} unchanged does there exist a pair of gauge
transformations ±Λ(P) to recover the initial ground gauge
fields, ±Λ(P)P{u〈m,n〉λ} = {u〈m,n〉λ}. We denote a couple of
gauged point symmetry operations ±Λ(P)P unifiedly as P̃
and distinguishably by P and P. The symmetry groups of the
gauge-ground Kitaev dodecahedron and truncated tetrahedron
are the Z2-gauge extensions of the SO(3) subgroups of their
full point symmetry groups, Ĩ and T̃, respectively, whereas
that of the gauge-ground Kitaev truncated octahedron is the
Z2-gauge extension of its full point symmetry group, Õh.
While gauged rotations R̃ with R ∈ O and gauged inversions
Ĩ with I ∈ Ci are all symmetry operations of the gauge-
ground Kitaev truncated octahedron, they are not necessar-
ily commutable because every gauge transformation Λ(P)
is obedient to the preceding point symmetry operation P.
All the gÕ × gC̃i + gC̃i × gÕ = 384 products between the gÕ

elements of Õ and the gC̃i elements of C̃i are indeed symmetry
operations of the gauge-ground Kitaev truncated octahedron,
but they quadruply count the gÕh = 96 elements of Õh =
Õ + IÕ. Note further that the symmetry group of the gauge-
ground Kitaev truncated octahedron is different from that of
half-integral spins in an octahedral environment, Õ × Ci (cf.
Appendix B), where Õ ⊂ SU(2), being a double covering
group for the pure rotation group O ⊂ SO(3), commutes with
Ci because inversion has no effect on any angular momentum
[61].

We are now in a position to construct the double group Õh.
The 48 elements of Oh can be divided into 10 classes: {E},
{6C4}, {3C2}, {6C′

2}, {8C3}, {I}, {6IC4}, {3IC2}, {6IC′
2}, {8IC3}.

The 96 elements of Õh can be divided into 13 classes: {E},
{E}, {6C4, 6C4}, {3C2, 3C2}, {6C′

2, 6C′
2}, {8C3}, {8C3}, {I, I},

{6IC4, 6IC4}, {3IC2, 3IC2}, {6IC′
2, 6IC′

2}, {8IC3}, {8IC3}. The

qth class Cq (q = 1, . . . , nP̃
C) of P̃ is generally obtained by

gauging point symmetry operations of the same type to yield
hq elements in such ways that {hqPq}, {hqPq}, or { hq

2 Pq,
hq

2 Pq}.
Let us denote the ith irreducible representation of P (̃P) by Ξi

(Ξ̃i) and its dimensionality by dP
Ξi

(d P̃
Ξ̃i

). Having in mind that
all the single-valued irreducible representations of Oh remain
unchanged in Õh, Ξ̃i = Ξi (i = 1, . . . , 10), we compare

n
Oh
C ≡10∑
i=1

(
dOh

Ξi

)2 = gOh ,

n
Õh
C ≡13∑
i=1

(
d Õh

Ξ̃i

)2 = gÕh (10)

to reveal that the three double-valued irreducible represen-
tations of Õh have the same dimensionality, dÕh

Ξ̃i
= 4 (i =

11, 12, 13). Since their characters satisfy χ
Õh

Ξ̃i
(P) = −χ

Õh

Ξ̃i
(P),

we readily find that χ
Õh

Ξ̃i
(E ) = −χ

Õh

Ξ̃i
(E ) = 4 and χ

Õh

Ξ̃i
(P̃) =

0 (P = C4, C2, C′
2, I, IC4, IC2, IC′

2), while the rest χ
Õh

Ξ̃i
(P̃)

(P = C3, IC3) are obtainable through the first orthogonality
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FIG. 2. Spinon excitation energies εk and Raman intensities I (ω) of Kitaev spin balls consisting of (a) dodecahedral, (b) truncated-
tetrahedral, and (c) truncated-octahedral lattices in their ground flux configurations, where δ-function peaks are Lorentzian-broadened by
0.05J [59]. The eigenenergy, multiplicity, and irreducible representation are specified beside each eigenlevel. For the incident polarization
( π

2 , π

2 ), we observe various scattered polarizations ( π

2 , lπ
4 ) (l = 0, 1, 2), each consisting of peaks attributable to direct-product representations

of the projective symmetry groups Ĩ, T̃, and Õh (Ξ̃i ⊗ Ξ̃ j in Table I), on one hand, and containing one or more irreducible representations of
the point symmetry groups I, T, and Oh (

⊕
k Ξk in Table I), on the other hand.

relation (cf. Appendix B)∑
P̃∈Õh

χ
Õh

Ξ̃i
(P̃)∗χ Õh

Ξ̃ j
(P̃) = gÕhδi j . (11)

We name the thus-obtained double-valued irreducible repre-
sentations Gg

3
2

, Gu
3
2
, and G 1

2 + 5
2

so that they signify the ger-

adelike or ungeradelike response to a gauged point symme-
try operation as well as suggest the compatibility relations
between Õh and its subgroup Õ, G 1

2 + 5
2

↓ Õ = E 1
2
⊕ E 5

2
and

Gg
3
2

↓ Õ = Gu
3
2

↓ Õ = G 3
2
, i.e.,

χ
Õh
G 1

2 + 5
2

(P̃) = χ Õ
E 1

2

(P̃) + χ Õ
E 5

2

(P̃), (12)

χ
Õh

Gg
3
2

(P̃) = χ Õ
G 3

2

(P̃), χ
Õh

Gg
3
2

(ĨC3) =
√

3χ
Õh

Gg
3
2

(C̃3), (13)

χ
Õh
Gu

3
2

(P̃) = χ Õ
G 3

2

(P̃), χ
Õh
Gu

3
2

(ĨC3) = −
√

3χ
Õh
Gu

3
2

(C̃3). (14)

The Majorana spinon spectrum of the gauge-ground Õh Ki-
taev polyhedron thus consists of three quadruplets 3 × 4 =
L/2 [see Fig. 2 together with Eq. (8)]. If we employ Õ [49]
in this context, we have two doublets, E 1

2
and E 5

2
, instead of

the quadruplet G 1
2 + 5

2
, and they look accidentally degenerate

with each other. Only the full symmetry group Õh can reveal
the necessary quadruplet. All the L/2 Majorana spinon eigen-
modes of the gauge-ground Ĩ and T̃ Kitaev polyhedra are also
describable with double-valued irreducible representations of
their projective symmetry groups [see Fig. 2 together with
Eq. (8)]. The former consist of a sextuplet of I 5

2
and a

quadruplet of G 3
2
, while the latter consist of three doublets of

G(1)
3
2

, G(2)
3
2

, and E 1
2
, where the four-dimensional real irreducible

representation G 3
2

splits into the two-dimensional complex

ones G(1)
3
2

and G(2)
3
2

due to the pure imaginary Hamiltonian

(8). Irreducible representations of the double groups Ĩ, T̃, Õ,
and Õh are analyzed in further detail and listed with their
characters in Appendix B.

B. Direct-product representations

Direct-product representations of a nonabelian group are
not necessarily irreducible even though they are made of
irreducible representations. Those of the projective symmetry
group P̃ are generally decomposed into irreducible represen-
tations of P̃:

Ξ̃i ⊗ Ξ̃ j = 1

g̃P

nP̃
C⊕

k=1

Ξ̃k

nP̃
C∑

q=1

hqχ
P̃
Ξ̃k

(Cq)∗χ P̃
Ξ̃i⊗Ξ̃ j

(Cq);

χ P̃
Ξ̃i⊗Ξ̃ j

(P̃) = χ P̃
Ξ̃i

(P̃)χ P̃
Ξ̃ j

(P̃). (15)

Two-spinon-mediated Raman scatterings in a Kitaev QSL
are generally labeled with direct-product representations
of its projective symmetry group P̃, Ξ̃i ⊗ Ξ̃ j (i, j = nP

C +
1, . . . , nP̃

C ), each decomposable into single-valued irreducible
representations of the corresponding point symmetry group P,

Ξ̃i ⊗ Ξ̃ j =
nP
C⊕

k=1

Ξk

nP̃
C∑

q=1

hq

g̃P
χP

Ξk
(Cq)∗χ P̃

Ξ̃i⊗Ξ̃ j
(Cq), (16)

keeping in mind that

χ P̃
Ξ̃i⊗Ξ̃ j

(P) = χ P̃
Ξ̃i⊗Ξ̃ j

(P)
(
i, j = nP

C + 1, . . . , nP̃
C
)
. (17)

Direct-product representations made of the two same irre-
ducible representations further decompose into symmetric and
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antisymmetric direct-product representations,

Ξ̃i ⊗ Ξ̃i = [Ξ̃i ⊗ Ξ̃i] ⊕ {Ξ̃i ⊗ Ξ̃i} ≡
⊕
σ=±

(Ξ̃i ⊗ Ξ̃i )σ ,

(Ξ̃i ⊗ Ξ̃i )± =
nP
C⊕

k=1

(Ξk )±

nP̃
C∑

q=1

hq

g̃P
χP

Ξk
(Cq)∗χ P̃

(Ξ̃i⊗Ξ̃i )±
(Cq),

χ P̃
(Ξ̃i⊗Ξ̃i )±

(P̃) = 1

2

[
χ P̃

Ξ̃i
(P̃)2 ± χ P̃

Ξ̃i
(P̃2)

]
. (18)

Spinon-geminate-excitation-relevant direct-product represen-
tations of the double groups Ĩ, T̃, Õ, and Õh are listed with
their containing single-valued irreducible representations of
the corresponding point symmetry groups in Table I and with
further details, including their characters, in Appendix C.

IV. RAMAN INTENSITY PROFILES

A. Point symmetry argument

Within the LF theory [53–55], the Raman scattering inten-
sity at absolute zero reads [24,62]

I (ω) = 1

2π h̄L

∫ ∞

−∞
〈0|e iH t

h̄ Re− iH t
h̄ R|0〉eiωt dt,

R ≡ −J
∑

λ=x,y,z

∑
〈m,n〉λ

(ein · dmn)(esc · dmn)σλ
mσλ

n

= iJ
∑

λ=x,y,z

∑
〈m,n〉λ

(ein · dmn)(esc · dmn)

× û〈m,n〉λcmcn, (19)

where ein ≡ (sin ϑin cos ϕin, sin ϑin sin ϕin, cos ϑin ) and esc ≡
(sin ϑsc cos ϕsc, sin ϑsc sin ϕsc, cos ϑsc) are the polarization
vectors of incident and scattered lights, respectively, while
dmn ≡ rm − rn are the lattice vectors, with rm and rn being the
positions of neighboring sites. When the ground state belongs
to the double group P̃ [63], it is useful to write the Raman
operator (19) as [64]

R=
∑

i

′
d P̃

Ξ̃i∑
μ=1

E P̃
Ξ̃i:μ

RP̃
Ξ̃i:μ

=
∑

i

′
dP

Ξi∑
μ=1

EP
Ξi:μR

P
Ξi:μ, (20)

where
∑′

i runs over the LF-active irreducible representations
Ξ̃i of P̃, which are necessarily real and single-valued and
therefore equal to the irreducible representations Ξi of the
corresponding point symmetry group P, and E P̃

Ξ̃i:μ
(EP

Ξi :μ
) and

RP̃
Ξ̃i :μ

(RP
Ξi:μ

) are the μth polarization-vector basis function

and LF vertex for Ξ̃i (Ξi), respectively, both of which are
explicitly given in Appendix D. Within the LF formulation,
the nonvanishing vertices read RI

A:μ, RI
H:μ for the dodecahe-

dron, RT
A:μ, RT

E:μ, RT
T:μ for the truncated tetrahedron, ROh

A1g:μ,

ROh
Eg:μ, ROh

T2g:μ for the truncated octahedron, and, for reference,

RC6v
A1:μ, RC6v

E2:μ for two-dimensional lattices of triangular ge-
ometry [62,65–67]. In the spherical lattice geometry realized
by Platonic and Archimedean polyhedra, all the vertices of
the identity representation, such as RI

A:μ, RT
A:μ, and ROh

A1g:μ,
commute with the corresponding Hamiltonians and therefore

TABLE I. Spinon-geminate-excitation-relevant direct-product
representations composed of double-valued irreducible represen-
tations Ξ̃i ⊗ Ξ̃ j and their decompositions into single-valued irre-
ducible representations Ξ̃k , which are doubly or singly underlined
when they are relevant to inelastic (Raman) or elastic (Rayleigh)
scatterings, respectively, for various double groups P̃. Note that Ξ̃k

of P̃ is nothing but Ξk of P.

P̃ Ξ̃i ⊗ Ξ̃ j
⊕

k Ξ̃k = ⊕
k Ξk

Ĩ {I 5
2

⊗ I 5
2
} {A}⊕{G}⊕2{H}

I 5
2

⊗ G 3
2

T1⊕T2⊕2G⊕2H

{G 3
2

⊗ G 3
2
} {A}⊕{H}

T̃ {G(2)
3
2

⊗ G(2)
3
2

} {E(1)}
G(2)

3
2

⊗ E 1
2

E(2)⊕T

{E 1
2

⊗ E 1
2
} {A}

G(1)
3
2

⊗ G(2)
3
2

A⊕T

G(1)
3
2

⊗ E 1
2

E(1)⊕T

{G(1)
3
2

⊗ G(1)
3
2

} {E(2)}
Õ {E 1

2
⊗ E 1

2
} {A1}

E 1
2

⊗ E 5
2

A2⊕T2

{E 5
2

⊗ E 5
2
} {A1}

G 3
2

⊗ E 1
2

E⊕T1⊕T2

G 3
2

⊗ E 5
2

E⊕T1⊕T2

G 3
2

⊗ G 3
2

{A1}⊕[A2]⊕{E}⊕2[T1]⊕[T2] ⊕ {T2}
Õh {G 1

2 + 5
2

⊗ G 1
2 + 5

2
} {A1g}⊕{A1u}⊕{A2u}⊕{T2g}

Gg
3
2

⊗ G 1
2 + 5

2
Eg⊕Eu⊕T1g⊕T1u⊕T2g⊕T2u

{Gg
3
2

⊗ Gg
3
2
} {A1g}⊕{Eu}⊕{T2g}

Gu
3
2

⊗ G 1
2 + 5

2
Eg⊕Eu⊕T1g⊕T1u⊕T2g⊕T2u

Gg
3
2

⊗ Gu
3
2

A1u⊕A2u⊕Eg⊕T1g⊕T1u⊕T2g⊕T2u

{Gu
3
2

⊗ Gu
3
2
} {A1g}⊕{Eu}⊕{T2g}

reduce to Rayleigh scattering. This is the case for RC6v
A1:μ as

well.
Since the ground state (9) is invariant under every sym-

metry operation of P, every expectation value between Ra-
man vertices of different symmetry species for it goes to 0
[62,64,66],

1

2π h̄L

∫ ∞

−∞
〈0|e iH t

h̄ RP
Ξi:μe− iH t

h̄ RP
Ξ j :ν |0〉eiωt dt

= δi jδμν

2π h̄L

∫ ∞

−∞
〈0|e iH t

h̄ RP
Ξi:μe− iH t

h̄ RP
Ξi:μ|0〉eiωt dt

≡ δi jδμνIP
Ξi:μ(ω), (21)

and IP
Ξi:μ

(ω) (μ = 1, . . . , dP
Ξi

) no longer depend on μ

[24,29,62,65]. While the Raman spectra of gauge-ground
Kitaev polyhedra are analyzable with direct-product represen-
tations of their projective symmetry groups P̃, they can be
classified by irreducible representations of the corresponding
point symmetry groups P. Substituting the irreducible decom-
position of the Raman operator R (20) into the LF expres-
sion of the Raman intensity (19) and taking account of the
spectral degeneracy within each multidimensional irreducible
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FIG. 3. Actions of the spin operators σ z
n = icnη

z
n (b) and σ z

mσ z
n =

−iû〈m,n〉z cmcn (c) on the gauge-ground Kitaev dodecahedron |{Wp}〉0

(a) in the context of calculating the dynamic structure factor (24) and
Raman scattering intensity (23).

representation (cf. Appendix D), we have

I (ω) =
∑

i

′
dP

Ξi∑
μ=1

(
EP

Ξi :μ

)2
IP
Ξi:μ(ω)

=
∑

i

′
IP
Ξi:1(ω)

dP
Ξi∑

μ=1

(
EP

Ξi :μ

)2
. (22)

Bearing in mind that [RP
Ξi:μ

,Ŵp] = 0, q〈{Wp}|{Wp}〉q′ = δqq′ ,

and cl |0〉 = ∑L/2
k=1(ψl,2k−1 + iψl,2k )α†

k |0〉, the LF vertex RP
Ξi:μ

evokes two spinons without any vison (for more details refer
to Appendix D),

IP
Ξi:μ(ω) =

∫ ∞

−∞

dt eiωt

2π h̄L

2
L
2 +1−1∑
q=0

2
L
2 −1−1∑
κ=0

0〈{Wp}| ⊗ 0〈{nk}|

× e
iH t

h̄ RP
Ξi:μe− iH t

h̄ |{nk}〉κ ⊗ |{Wp}〉q

× q〈{Wp}| ⊗ κ〈{nk}|RP
Ξi:μ|{nk}〉0 ⊗ |{Wp}〉0

= 1

L

∑
1=k<k′= L

2

∣∣〈0|αkαk′RP
Ξi:μ|0〉∣∣2

× δ(h̄ω − εk − εk′ ). (23)

We may be reminded that the above is not the case with
any single spin operator. Unlike the Raman response, visons
(Fig. 3) as well as spinons are involved in the dynamic spin
response [68,69]:

Sλλ(q, ω) = 1

2π h̄L

∫ ∞

−∞

L∑
m,n=1

e−iq·(rm−rn )

× 〈0|e iH t
h̄ σλ

me− iH t
h̄ σλ

n |0〉eiωt dt

=
∫ ∞

−∞

dt eiωt

2π h̄L

L∑
m,n=1

2
L
2 +1−1∑
q=0

2
L
2 −1−1∑
κ=0

e−iq·(rm−rn )

× 0〈{Wp}| ⊗ 0〈{nk}|e iH t
h̄ σλ

me− iH t
h̄ |{n′

k}〉κ
⊗ |{Wp}〉qq〈{Wp}| ⊗ κ〈{n′

k}|σλ
n |{nk}〉0 ⊗ |{Wp}〉0.

(24)

Indeed 0〈{nk}|α†
k′αk′ |{nk}〉0 = 0 (k′ = 1, . . . , L

2 ), but the
spinon operator αk and therefore the vacuum state |{nk}〉0

depend on the background flux configuration |{Wp}〉q. We
denote these against the excited flux configuration |{Wp}〉q �=0

by α′
k and |{n′

k}〉0 distinguishably from αk and |{nk}〉0 against

|{Wp}〉0 in Eq. (24). Since spinons in an excited flux sector
read a linear combination of spinons in the ground flux sec-
tor, α′

k′ = ∑L/2
k=1(χk′,kαk + υk′,kα

†
k ) (k′ = 1, . . . , L

2 ), and their
vacuum |{n′

k}〉0 reads a linear combination of the ground-
flux-sector spinon vacuum and/or excited states, i.e., a linear
combination of |{nk}〉0, α

†
k1
α

†
k2
|{nk}〉0, α

†
k1
α

†
k2
α

†
k3
α

†
k4
|{nk}〉0, . . .

or a linear combination of α
†
k1
|{nk}〉0, α

†
k1
α

†
k2
α

†
k3
|{nk}〉0, . . . ,

we can exactly calculate the dynamic structure factor (24) as
well [69]. In higher dimensions, Eq. (24) is hard to calculate
for sufficiently large systems, with excited flux configura-
tions |{Wp}〉q �=0 no longer being invariant under the primitive
translation, but we can employ a Dyson equation instead to
accomplish the thermodynamic-limit calculation [68,69].

Figure 2 shows the polarized Raman spectra of gauge-
ground Kitaev spin balls with light polarization vectors vary-
ing within the xy plane. The polarization dependence of the
intensity is very weak in the dodecahedron but significant and
individual in the truncated tetrahedron and octahedron. The
former observations are similar to the case for the honeycomb
Kitaev QSL [24]. For polarization vectors in the xy plane,
ϑin = ϑsc = π

2 with varying ϕin and ϕsc, we have
2∑

μ=1

(
EC6v

E2:μ

)2 = 1

2
, (25)

5∑
μ=1

(
E I

H:μ

)2 = cos2(ϕin − ϕsc)

6
+ 1

2
, (26)

2∑
μ=1

(
ET

E:μ

)2 =
2∑

μ=1

(
EOh

Eg:μ

)2

= cos2(ϕin − ϕsc)

6
+ cos2(ϕin + ϕsc)

2
,

3∑
μ=1

(
ET

T:μ

)2 =
3∑

μ=1

(
EOh

T2g:μ

)2 = sin2(ϕin + ϕsc)

2
; (27)

hence the perfect depolarization of Raman scattering in a
honeycomb QSL. While the Ĩ gauged dodecahedron also has
one and only a Raman-active multidimensional irreducible
representation and all three relevant direct-product represen-
tations of Ĩ contain this H mode, the sum of its five basis
functions no longer reduces to a constant, resulting in similar
shapes peaked at the three fixed frequencies h̄ω/2J = 2, 1 +√

6, and 2
√

6 but different weights varying as Eq. (26) of
the polarized spectra. The T̃ and Õh gauged polyhedra each
have two Raman-active modes to yield spectra peaking and
weighing differently according to the light polarization. Such
observations are also the case for D̃2h harmonic honeycomb
Kitaev QSLs in three dimensions [42,62]. Full details of the
polarized Raman intensity profiles of all the gauged polyhedra
in question are given in Appendix D.

B. Projective symmetry argument

The T̃ and Õh gauged polyhedra each have three spinon
modes to yield geminate excitations of 3 +3C2 types. There
are six pair-spinon-resonant frequencies in each of them. In
the case of T̃, one of them, {E 1

2
⊗ E 1

2
} (h̄ω/2J = 2

√
2), is

a Rayleigh channel, while all the rest contain the Raman-
active E (detectable with ϕin ± ϕsc �= π

2 ) and/or T (detectable
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with ϕin + ϕsc �= 0, π ) modes where the two-dimensional real
irreducible representation E ≡ E(1) ⊕ E(2) splits into two one-
dimensional complex ones, E(1) and E(2), causing nonvan-
ishing Raman intensities at all six frequencies but h̄ω/2J =
2
√

2. In the case of Õh, all the direct-product representations
contain the Raman-active T2g mode (detectable with ϕin +
ϕsc �= 0, π ), causing nonvanishing Raman intensities at all six
frequencies. On the other hand, only the three direct-product

representations Gg
3
2

⊗ G 1
2 + 5

2
(h̄ω/2J = 1 +

√
4 − √

3), Gu
3
2
⊗

G 1
2 + 5

2
(h̄ω/2J = 1 +

√
4 + √

3), and Gg
3
2

⊗ Gu
3
2

(h̄ω/2J =√
4 − √

3 +
√

4 + √
3) contain another Raman-active mode,

Eg (detectable with ϕin ± ϕsc �= π
2 ). In this context, we should

pay special attention to the geminate excitations, labeled

{Gg
3
2

⊗ Gg
3
2

} (h̄ω/2J = 2
√

4 − √
3) and {Gu

3
2
⊗ Gu

3
2
} (h̄ω/2J =

2
√

4 + √
3). If we describe this gauged polyhedron in terms

of Õ, rather than Õh, these two direct-product representa-
tions degenerate into {G 3

2
⊗ G 3

2
} = {A1} ⊕ {E} ⊕ {T2} (see

Table I), leading to misunderstanding as if outgoing photons
of ϕsc = ϕin cause nonvanishing Raman intensities at the two

frequencies h̄ω/2J = 2
√

4 ∓ √
3 as well. Under the pertinent

Õh description, the Raman intensities at the two frequencies

h̄ω/2J = 2
√

4 ∓ √
3 in the gauged truncated octahedron be-

long definitely to the T2g symmetry species, because they
are mediated by spinon geminate excitations belonging to the
direct-product representations {Gg

3
2

⊗ Gg
3
2

} and {Gu
3
2
⊗ Gu

3
2
},

both of which decompose into {A1g} ⊕ {Eu} ⊕ {T2g}, i.e.,

the Raman-active T2g, LF-Raman-inactive A1g, and Raman-
inactive Eu (instead of Raman-active Eg) symmetry species
(see Table I).

In an attempt to describe partons in the Kitaev truncated
octahedron, MPT [49] restrict their symmetry argument to
gauged rotations R̃ ⊂ SU(2) ∼= Spin(3), i.e., double covers of
pure rotation groups R ⊂ SO(3), because they employ projec-
tive symmetry groups with the aim of characterizing an itin-
erant parton as a charged particle in quantized orbital motion
and, therefore, require the isomorphism SU(2)/Z2

∼= SO(3).
For partons emergent in a gauged truncated octahedron, they
consider gauging the subgroup O of the full octahedral group
Oh. On the other hand, in order to describe spinon geminate,
rather than single, excitations in the context of Raman scat-
tering, we construct and have to construct the double cover of
Oh ⊂ O(3) [70] instead of that of O ⊂ SO(3). Not until we
analyze the projective symmetry of Majorana spinons to the
fullest extent can we correctly understand Raman scattering
in a time-reversal-invariant gauged polyhedron.

V. SUMMARY AND FUTURE ASPECTS

Our approach to Raman observations of QSLs is feasible
regardless of the geometry. Kitaev nanoribbons [45,46], for
instance, are describable with gauged space groups, L ∧ P̃,
where L is a one-dimensional translation group [71]. Their
eigenspectra are no longer discrete but consist of continuous
bands. Intraband and interband spinon geminate excitations
are distinguished and identified by light polarizations and
direct-product representations of L ∧ P̃ [72].

Another extension of our approach is going beyond the LF
vertices [26,27]. In the T̃ Kitaev spin ball, the direct-product
representation {E 1

2
⊗ E 1

2
} is Raman inactive within the LF

scheme (Table I), but an E 1
2

multiple direct-product represen-
tation may become Raman active in higher-order scatterings
to visualize the Majorana spinon spectrum in a wider range.
Optical observation of partons in QSLs will be even more
attractive with the language of projective symmetry.
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APPENDIX A: PROJECTIVE SYMMETRY OPERATIONS
ON GAUGE-GROUND KITAEV POLYHEDRA

Dodecahedral, truncated-tetrahedral, and truncated-
octahedral lattices belong to the point symmetry groups
Ih, Td, and Oh, respectively. We illustrate their symmetry
operations in Fig. 4. When we consider Kitaev models of
these lattices, their free Majorana fermionic Hamiltonians
with given gauge fields are not generally invariant under
the point group actions of their belonging lattices. Let
us find gauged point symmetry operations of the ground
gauge sectors of these Hamiltonians. We illustrate symmetry
operations of gauge-ground polyhedra in Fig. 5. Every
gauge-ground Kitaev spin ball is such that all Wp’s of Np = 0
mod 4 are −1, all Wp’s of Np = 2 mod 4 are +1, and all Wp’s
of odd Np are either of +i and −i [49]. Since the Kitaev spin
Hamiltonian is time reversal invariant, its ground state is at
least doubly degenerate unless all Np’s are even [52].

Figure 5(a) illustrates a gauged rotation of the
gauge-ground Kitaev dodecahedron. Suppose we rotate it
by 2π

3 about one of the threefold axes n, which we denote
by R( 2π

3 , n), and then gauge some Majorana fermions
as cl → −cl or, equivalently, change the signs of their
relevant bonds as u〈l,l ′〉λ → −u〈l,l ′〉λ (λ = x, y, z), so as to
recover the initial bond configuration. When the rotational
symmetry operation R(ϕ, n) (0 � ϕ < 2π ) is performed,
there exist two such local gauge operations, which we
denote by ±Λ[R(ϕ, n)], remembering the double-valued
nature of rotation operators acting on half-integral spin
states. In the example in Fig. 5(a), −Λ[R( 2π

3 , n)] acts on
two sites, while +Λ[R( 2π

3 , n)] acts on all the rest, where
we make site assignment to ±Λ[R(ϕ, n)] in accordance
with SU(2) rotations. How many and which sites to
operate depend not only on the rotation axis n and angle
ϕ but also on the initial bond configuration. We have
2

L
2 +1 flux configurations {Wp} including the ground two,

each available from a set of 2
3L
2 /2

L
2 +1 = 2L−1 different

bond configurations {u〈m,n〉λ}. We denote a couple of
these serial transformations as +Λ[R( 2π

3 , n)]R( 2π
3 , n) ≡

R( 2π
3 , n) and −Λ[R( 2π

3 , n)]R( 2π
3 , n) ≡ R( 2π

3 , n).

Note that [R( 2π
3 , n)]

3{u〈m,n〉λ} = −{u〈m,n〉λ}, while

[R( 2π
3 , n)]

3{u〈m,n〉λ} = {u〈m,n〉λ}.
Figure 5(a) illustrates inversion of the gauge-ground

Kitaev dodecahedron as well, resulting in all Wp’s being
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FIG. 4. Point symmetry operations on (a) dodecahedral, (b) truncated-tetrahedral, and (c) truncated-octahedral lattices belonging to the
full icosahedral (Ih), tetrahedral (Td), and octahedral (Oh) groups, respectively.

reversed, {Wp = +i; p = 1, . . . , 12} → {Wp = −i; p =
1, . . . , 12}. The constituent pentagons each initially have a
flux of π

2 and all their fluxes Φp are reversed into −Φp by
inversion. The flux variables Wp ≡ eiΦp are also all reversed.
Any local gauge transformation cl → −cl results in reversing
the signs of bonds in pairs in the three surrounding polygons
and therefore causes no change in their Wp’s. We find that the
symmetry group of the gauge-ground Kitaev dodecahedron
is not the double cover of the full point symmetry group, Ĩh,
but that of an SO(3) subgroup, Ĩ. This is the case with the
gauge-ground Kitaev truncated tetrahedron as well [Fig. 5(b)].
Since the mirror operation σ ∈ Td reverses the Wp’s of its
four constituent triangles, its symmetry group is not T̃d but
T̃. On the other hand, inversion causes no change in Wp’s of
the gauge-ground truncated octahedron [Fig. 5(c)]. This is
because the truncated octahedron consists of only 2l-sided
polygons (l ∈ N), whose fluxes are either 0 or π . Even
though inversion reverses such fluxes as Φp → −Φp, the
corresponding flux variables Wp ≡ eiΦp remain unchanged.
Any two bond configurations {u〈m,n〉λ} yielding the same
set of fluxes {Wp} can be converted to each other by local

gauge operations. Inversion of the gauge-ground truncated
octahedron is also followed by two local gauge operations so
as to recover the initial bond configuration, which we denote
by ±Λ(I ), each to act on different halves of the lattice sites.
We generally denote a couple of gauged point symmetry
operations ±Λ(P)P unifiedly as P̃ and distinguishably by P
and P.

APPENDIX B: IRREDUCIBLE REPRESENTATIONS OF
DOUBLE GROUPS FOR GAUGE-GROUND KITAEV

POLYHEDRA

We denote the orders of a point symmetry group P and its
double covering group P̃ by gP and g̃P, respectively. Suppose
the double cover P̃ is the Z2-gauge extension of P ⊂ O(3).
Two group elements, P̃1 ∈ P̃ and P̃2 ∈ P̃, are conjugate when
we find such an element P̃ ∈ P̃ as to satisfy

P̃2 = P̃P̃1P̃−1. (B1)

Every set of conjugate elements forms a class. The classes
of the double groups of our interest read as follows.

Ĩ: {E}, {E}, {12C5}, {12C5}, {12C2
5 }, {12C2

5 }, {20C3}, {20C3}, {15C2, 15C2}.
T̃: {E}, {E}, {3C2, 3C2}, {4C3}, {4C3}, {4C2

3 }, {4C2
3 }.

Õ: {E}, {E}, {6C4}, {6C4}, {3C2, 3C2}, {6C′
2, 6C′

2}, {8C3}, {8C3}.
Õh: {E}, {E}, {6C4, 6C4}, {3C2, 3C2}, {6C′

2, 6C′
2}, {8C3}, {8C3},

{I, I}, {6IC4, 6IC4}, {3IC2, 3IC2}, {6IC′
2, 6IC′

2}, {8IC3}, {8IC3}.

Supposing the qth class Cq (q = 1, . . . , nP̃
C) of P̃

consists of hq elements, it reads {hqPq}, {hqPq}, or

{ hq

2 Pq,
hq

2 Pq}.
The number of (complex) irreducible representations

equals the number of classes in the group. Since all the single-
valued (complex) irreducible representations of P, amounting
to nP

C , remain unchanged in P̃, we find nP̃
C − nP

C double-valued
(complex) irreducible representations in P̃. When we denote

the ith (complex) irreducible representation of P (̃P) by Ξi

(Ξ̃i) and its dimensionality by dP
Ξi

(d P̃
Ξ̃i

), we have
nI
C≡5∑
i=1

(
d I

Ξi

)2 = gI = 60,

ñI
C≡9∑
i=1

(
d Ĩ

Ξ̃i

)2
= gI +

ñI
C≡9∑

i=nI
C+1

(
d Ĩ

Ξ̃i

)2
= g̃I = 120, (B2)
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FIG. 5. Gauged rotations, (gauged) inversion, and mirror operations of gauge-ground Kitaev spin balls consisting of (a) dodecahedral,
(b) truncated-tetrahedral, and (c) truncated-octahedral lattices, whose symmetry groups read Ĩ, T̃, and Õh, respectively. Inversion I ∈ Ih of the
gauged dodecahedron and mirror operations σ ∈ Td of the gauged truncated tetrahedron can be followed by no such gauge operation as to
recover the initial bond configuration.
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TABLE II. Irreducible representations of the double group Ĩ and their characters.

nT
C≡4∑
i=1

(
dT

Ξi

)2 = gT = 12,

nT̃
C≡7∑
i=1

(
d T̃

Ξ̃i

)2 = gT +
nT̃
C≡7∑

i=nT
C+1

(
d T̃

Ξ̃i

)2 = gT̃ = 24, (B3)

nO
C≡5∑
i=1

(
dO

Ξi

)2 = gO = 24,

nÕ
C≡8∑
i=1

(
d Õ

Ξ̃i

)2 = gO +
nÕ
C≡8∑

i=nO
C+1

(
d Õ

Ξ̃i

)2 = gÕ = 48, (B4)

n
Oh
C ≡10∑
i=1

(
dOh

Ξi

)2 = gOh = 48,

n
Õh
C ≡13∑
i=1

(
d Õh

Ξ̃i

)2 = gOh +
n

Õh
C ≡13∑

i=n
Oh
C +1

(
d Õh

Ξ̃i

)2 = gÕh = 96 (B5)

in an attempt to determine the dimensionalities of the double-
valued (complex) irreducible representations d P̃

Ξ̃i
(i = nP

C +
1, . . . , nP̃

C ). The characters of Ξ̃i are such that

χ P̃
Ξ̃i

(P) = χ P̃
Ξ̃i

(P)
(
i = 1, . . . , nP

C
)
, (B6)

χ P̃
Ξ̃i

(P) = −χ P̃
Ξ̃i

(P)
(
i = nP

C + 1, . . . , nP̃
C
)
. (B7)

When P and P belong to the same class, i.e., χ P̃
Ξ̃i

(P) = χ P̃
Ξ̃i

(P),
we immediately find

χ P̃
Ξ̃i

(P) = χ P̃
Ξ̃i

(P) = 0
(
i = nP

C + 1, . . . , nP̃
C
)
. (B8)

The character orthogonality theorems of the first and second
kinds read [61]

nP̃
C∑

q=1

hqχ
P̃
Ξ̃i

(Cq)∗χ P̃
Ξ̃ j

(Cq) = g̃Pδi j, (B9)

nP̃
C∑

i=1

χ P̃
Ξ̃i

(Cq)∗χ P̃
Ξ̃i

(Cr ) = g̃P

hq
δqr . (B10)

When we denote the hq elements of Cq distinguishably as

{P̃(1)
q , . . . , P̃

(hq )
q }, we can define structure constants as

hq∑
i=1

P̃(i)
q

hr∑
j=1

P̃( j)
r =

nP̃
C∑

s=1

cqr:s

hs∑
k=1

P̃(k)
s (B11)

TABLE III. Irreducible representations of the double group T̃ and their characters.
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TABLE IV. Irreducible representations of the double group Õ and their characters.

to have another relation,

hqhrχ
P̃
Ξ̃i

(Cq)χ P̃
Ξ̃i

(Cr ) = d P̃
Ξ̃i

nP̃
C∑

s=1

hscqr:sχ
P̃
Ξ̃i

(Cs). (B12)

With Eqs. (B8), (B9), (B10), and (B12) in mind, we can
obtain characters of both single- and double-valued (complex)
irreducible representations of any double group P̃, which are
listed in Tables II–V, with particular emphasis on the relation
between P̃ and P.

APPENDIX C: DIRECT-PRODUCT REPRESENTATIONS
OF DOUBLE GROUPS FOR GAUGE-GROUND KITAEV

POLYHEDRA

Since Raman scattering within the LF scheme [24,53–55]
is caused by spinons in pairs, we make direct-product rep-

resentations out of double-valued irreducible representations
of double covers P̃ of the corresponding point symmetry
groups P ⊂ O(3). Direct-product representations of a non-
abelian group are not necessarily irreducible even though the
constituent representations are irreducible. We take interest
in spinon-geminate-excitation-relevant direct-product repre-
sentations Ξ̃i ⊗ Ξ̃ j (i, j = nP

C + 1, . . . , nP̃
C ) of P̃, which are

decomposed into single-valued irreducible representations of
the corresponding point symmetry group P,

Ξ̃i ⊗ Ξ̃ j =
nP̃
C⊕

k=1

Ξ̃k

nP̃
C∑

q=1

hq

g̃P
χ P̃

Ξ̃k
(Cq)∗χ P̃

Ξ̃i⊗Ξ̃ j
(Cq)

=
nP
C⊕

k=1

Ξk

nP̃
C∑

q=1

hq

g̃P
χP

Ξk
(Cq)∗χ P̃

Ξ̃i⊗Ξ̃ j
(Cq), (C1)

TABLE V. Irreducible representations of the double group Õh and their characters. Those of the direct-product group Õ × Ci are also listed.
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TABLE VI. Direct-product representations composed of double-valued irreducible representations of the double group Ĩ and their characters.

Ξ̃i ⊗ Ξ̃ j {E} {E} {12C5} {12C5} {12C2
5 } {12C2

5 } {20C3} {20C3} {15C2,

15C2 }
[I 5

2
⊗ I 5

2
] 21 1 1 0 −3

{I 5
2

⊗ I 5
2
} 15 0 0 0 3

I 5
2

⊗ G 3
2

24 −1 −1 0 0

[G 3
2

⊗ G 3
2
] 10 0 0 1 −2

{G 3
2

⊗ G 3
2
} 6 1 1 0 2

[E 1
2

⊗ E 1
2
] 3 1+√

5
2

1−√
5

2 0 −1
{E 1

2
⊗ E 1

2
} 1 1 1 1 1

E 1
2

⊗ E 7
2

4 −1 −1 1 0

E 1
2

⊗ G 3
2

8 1+√
5

2
1−√

5
2 −1 0

E 1
2

⊗ I 5
2

12 − 1+√
5

2 − 1−√
5

2 0 0

[E 7
2

⊗ E 7
2
] 3 1−√

5
2

1+√
5

2 0 −1

{E 7
2

⊗ E 7
2
} 1 1 1 1 1

E 7
2

⊗ G 3
2

8 1−√
5

2
1+√

5
2 −1 0

E 7
2

⊗ I 5
2

12 − 1−√
5

2 − 1+√
5

2 0 0

bearing in mind that

χ P̃
Ξ̃i⊗Ξ̃ j

(P) = χ P̃
Ξ̃i

(P)χ P̃
Ξ̃ j

(P) = χ P̃
Ξ̃i

(P)χ P̃
Ξ̃ j

(P)

= χ P̃
Ξ̃i⊗Ξ̃ j

(P)
(
i, j = nP

C + 1, . . . , nP̃
C
)
. (C2)

Direct-product representations made of the two same irre-
ducible representations consist of symmetric (bosonic) and
antisymmetric (fermionic) parts,

Ξ̃i ⊗ Ξ̃i = [Ξ̃i ⊗ Ξ̃i] ⊕ {Ξ̃i ⊗ Ξ̃i}, (C3)

which are decomposed into symmetric and antisymmetric
single-valued irreducible representations of the corresponding

TABLE VII. Direct-product representations composed of
double-valued irreducible representations of the double group T̃ and
their characters.

Ξ̃i ⊗ Ξ̃ j {E} {E} {3C2,

3C2 } {4C3} {4C3} {4C2
3 } {4C2

3 }

[G(2)
3
2

⊗ G(2)
3
2

] 3 −1 0 0

{G(2)
3
2

⊗ G(2)
3
2

} 1 1 e−i 2
3 π e−i 4

3 π

G(2)
3
2

⊗ E 1
2

4 0 e−i 4
3 π e−i 2

3 π

[E 1
2

⊗ E 1
2
] 3 −1 0 0

{E 1
2

⊗ E 1
2
} 1 1 1 1

G(1)
3
2

⊗ G(2)
3
2

4 0 1 1

G(1)
3
2

⊗ E 1
2

4 0 e−i 2
3 π e−i 4

3 π

[G(1)
3
2

⊗ G(1)
3
2

] 3 −1 0 0

{G(1)
3
2

⊗ G(1)
3
2

} 1 1 e−i 4
3 π e−i 2

3 π

point symmetry group P, respectively:

[Ξ̃i ⊗ Ξ̃i] =
nP
C⊕

k=1

[Ξk]
nP̃
C∑

q=1

hq

g̃P
χP

Ξk
(Cq)∗χ P̃

[Ξ̃i⊗Ξ̃i]
(Cq), (C4)

{Ξ̃i ⊗ Ξ̃i} =
nP
C⊕

k=1

{Ξk}
nP̃
C∑

q=1

hq

g̃P
χP

Ξk
(Cq)∗χ P̃

{Ξ̃i⊗Ξ̃i}(Cq). (C5)

Note that characters of symmetric and antisymmetric direct-
product representations are given by

χ P̃
[Ξ̃i⊗Ξ̃i]

(P̃) = 1
2

[
χ P̃

Ξ̃i
(P̃)2 + χ P̃

Ξ̃i
(P̃2)

]
, (C6)

χ P̃
{Ξi⊗Ξi}(P̃) = 1

2

[
χ P̃

Ξ̃i
(P̃)2 − χ P̃

Ξ̃i
(P̃2)

]
. (C7)

We can obtain characters of any direct-product repre-
sentation using Eqs. (C6) and (C7) as well as (C2); those
of our interest are listed in Tables VI–IX. Direct-product

TABLE VIII. Direct-product representations composed of
double-valued irreducible representations of the double group Õ and
their characters.

Ξ̃i ⊗ Ξ̃ j {E} {E} {6C4} {6C4} {3C2,

3C2 }
{6C′

2,

6C′
2 } {8C3} {8C3}

[E 1
2

⊗ E 1
2
] 3 1 −1 −1 0

{E 1
2

⊗ E 1
2
} 1 1 1 1 1

E 1
2

⊗ E 5
2

4 −2 0 0 1

[E 5
2

⊗ E 5
2
] 3 1 −1 −1 0

{E 5
2

⊗ E 5
2
} 1 1 1 1 1

G 3
2

⊗ E 1
2

8 0 0 0 −1

G 3
2

⊗ E 5
2

8 0 0 0 −1

[G 3
2

⊗ G 3
2
] 10 0 −2 −2 1

{G 3
2

⊗ G 3
2
} 6 0 2 2 0
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TABLE IX. Direct-product representations composed of double-valued irreducible representations of the double group Õh and their
characters.

Ξ̃i ⊗ Ξ̃ j {E} {E} {6C4,

6C4 }
{3C2,

3C2 }
{6C′

2,

6C′
2 } {8C3} {8C3} {I,

I }
{6IC4,

6IC4 }
{3IC2,

3IC2 }
{6IC′

2,

6IC′
2 } {8IC3} {8IC3}

[G 1
2 + 5

2
⊗ G 1

2 + 5
2
] 10 0 −2 −2 1 −2 0 2 −2 1

{G 1
2 + 5

2
⊗ G 1

2 + 5
2
} 6 0 2 2 3 2 0 −2 2 −1

Gg
3
2

⊗ G 1
2 + 5

2
16 0 0 0 −2 0 0 0 0 0

[Gg
3
2

⊗ Gg
3
2
] 10 0 −2 −2 1 −2 0 2 −2 1

{Gg
3
2

⊗ Gg
3
2
} 6 0 2 2 0 2 0 −2 2 2

Gu
3
2

⊗ G 1
2 + 5

2
16 0 0 0 −2 0 0 0 0 0

Gg
3
2

⊗ Gu
3
2

16 0 0 0 1 0 0 0 0 −3

[Gu
3
2

⊗ Gu
3
2
] 10 0 −2 −2 1 −2 0 2 −2 1

{Gu
3
2

⊗ Gu
3
2
} 6 0 2 2 0 2 0 −2 2 2

representations for geminate excitations of different Majorana
spinon eigenmodes are not necessarily made of different
irreducible representations but may be made of the same
ones. Those made of different irreducible representations can
be decomposed into irreducible representations by Eq. (C1);
those made of the same ones, by Eqs. (C4) and (C5). Direct-
product representations for geminate excitations of degenerate
Majorana spinon eigenmodes fall into the latter case. The
thus-obtained decompositions into irreducible representations
are all listed in Table X.

APPENDIX D: POLARIZATION DEPENDENCES OF
RAMAN SPECTRA

The ground-state Raman scattering intensity of a Kitaev
gauged lattice within the LF scheme [24,53–55] reads

I (ω) = 1

2π h̄L

∫ ∞

−∞
〈0|e iH t

h̄ R†e− iH t
h̄ R|0〉eiωt dt

= 1

2π h̄L

∫ ∞

−∞
〈0|e iH t

h̄ Re− iH t
h̄ R|0〉eiωt dt,

R ≡
∑

μ=x,y,z

∑
ν=x,y,z

eμ
ineν

scRμν ≡ teinResc,

Rμν ≡ −J
∑

λ=x,y,z

∑
〈m,n〉λ

dμ
mndν

mnσ
λ
mσλ

n , (D1)

where ein ≡ t[ex
in ey

in ez
in] and esc ≡ t[ex

sc ey
sc ez

sc] are the unit
column vectors indicating the polarizations of incoming and
outgoing photons, respectively, while R ≡ [Rμν] is the ma-
trix representation of the Raman operator in Cartesian coor-
dinates. The matrix elements Rμν are expressed in terms of
Majorana fermions and spinons:

Rμν = iJ
∑

λ=x,y,z

∑
〈m,n〉λ

dμ
mndν

mnû〈m,n〉λcmcn

= iJ
∑

λ=x,y,z

∑
〈m,n〉λ

L/2∑
k=1

L/2∑
k′=1

dμ
mndν

mnû〈m,n〉λ [(ψm,2k−1

+ iψm,2k )α†
k + (ψm,2k−1 − iψm,2k )αk][(ψn,2k′−1

+ iψn,2k′ )α†
k′ + (ψn,2k′−1 − iψn,2k′ )αk′]. (D2)

The LF vertex can be decomposed in terms of single-valued
irreducible representations of the double group P̃ of the back-
ground gauged lattice, i.e., irreducible representations of the
corresponding point symmetry group P [64–66],

R =
∑

i

′
d P̃

Ξ̃i∑
μ=1

E P̃
Ξ̃i :μ

RP̃
Ξ̃i:μ

=
∑

i

′
dP

Ξi∑
μ=1

EP
Ξi :μR

P
Ξi:μ, (D3)

where E P̃
Ξ̃i :μ

(EP
Ξi:μ

) is the μth polarization-vector basis func-

tion for the Ξ̃i (Ξi) irreducible representation of P̃ (P), RP̃
Ξ̃i:μ

(RP
Ξi:μ

) is the symmetry-definite LF vertex accompanying it,
and

∑′
i runs over the LF-active real irreducible representa-

tions. Within the LF formulation, the nonvanishing vertices
and corresponding basis functions read

EC6v
A1:1 = ex

inex
sc + ey

iney
sc√

2
,

EC6v
E2:1 = ex

inex
sc − ey

iney
sc√

2
,

EC6v
E2:2 = ex

iney
sc + ey

inex
sc√

2
,

RC6v
A1:1 = Rxx + Ryy

√
2

,

RC6v
E2:1 = Rxx − Ryy

√
2

,

RC6v
E2:2 = Rxy + Ryx

√
2

(D4)

for the two-dimensional C̃6v gauged honeycomb and

E I
A:1 = ET

A:1 = EOh
A1g:1 = ex

inex
sc + ey

iney
sc + ez

inez
sc√

3
,

E I
H:1 = ET

E:1 = EOh
Eg:1 = 2ez

inez
sc − ex

inex
sc − ey

iney
sc√

6
,
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TABLE X. Direct-product representations composed of double-valued irreducible representations Ξ̃i ⊗ Ξ̃ j (i, j = nP
C + 1, . . . , nP̃

C ) and
their decompositions into single-valued irreducible representations Ξ̃k (k = 1, . . . , nP

C ), which are doubly or singly underlined when they are
relevant to inelastic (Raman) or elastic (Rayleigh) light scatterings, respectively, for various double groups P̃. Note that Ξ̃k of P̃ is nothing but
Ξk of P.

P̃ Ξ̃i ⊗ Ξ̃ j
⊕

k Ξ̃k = ⊕
k Ξk

Ĩ I 5
2

⊗ I 5
2

{A}⊕2[T1]⊕2[T2]⊕[G]⊕{G}⊕[H]⊕2{H}
I 5

2
⊗ G 3

2
T1⊕T2⊕2G⊕2H

G 3
2

⊗ G 3
2

{A}⊕[T1]⊕[T2]⊕[G]⊕{H}
E 1

2
⊗ E 1

2
{A}⊕[T1]

E 1
2

⊗ E 7
2

G

E 1
2

⊗ G 3
2

T1⊕H

E 1
2

⊗ I 5
2

T2⊕G⊕H

E 7
2

⊗ E 7
2

{A}⊕[T2]

E 7
2

⊗ G 3
2

T2⊕H

E 7
2

⊗ I 5
2

T1⊕G⊕H

T̃ G(2)
3
2

⊗ G(2)
3
2

{E(1)}⊕[T]

G(2)
3
2

⊗ E 1
2

E(2)⊕T

E 1
2

⊗ E 1
2

{A}⊕[T]

G(1)
3
2

⊗ G(2)
3
2

A⊕T

G(1)
3
2

⊗ E 1
2

E(1)⊕T

G(1)
3
2

⊗ G(1)
3
2

{E(2)}⊕[T]

Õ E 1
2

⊗ E 1
2

{A1}⊕[T1]

E 1
2

⊗ E 5
2

A2⊕T2

E 5
2

⊗ E 5
2

{A1}⊕[T1]

G 3
2

⊗ E 1
2

E⊕T1⊕T2

G 3
2

⊗ E 5
2

E⊕T1⊕T2

G 3
2

⊗ G 3
2

{A1}⊕[A2]⊕{E}⊕2[T1]⊕[T2]⊕{T2}
Õh G 1

2 + 5
2

⊗ G 1
2 + 5

2
{A1g}⊕{A1u}⊕[A2g]⊕{A2u}⊕[T1g]⊕[T1u]⊕{T2g}⊕[T2u]

Gg
3
2

⊗ G 1
2 + 5

2
Eg⊕Eu⊕T1g⊕T1u⊕T2g⊕T2u

Gg
3
2

⊗ Gg
3
2

{A1g}⊕[A2g]⊕{Eu}⊕[T1g]⊕[T1u]⊕{T2g}⊕[T2u]

Gu
3
2

⊗ G 1
2 + 5

2
Eg⊕Eu⊕T1g⊕T1u⊕T2g⊕T2u

Gg
3
2

⊗ Gu
3
2

A1u⊕A2u⊕Eg⊕T1g⊕T1u⊕T2g⊕T2u

Gu
3
2

⊗ Gu
3
2

{A1g}⊕[A2g]⊕{Eu}⊕[T1g]⊕[T1u]⊕{T2g}⊕[T2u]

E I
H:2 = ET

E:2 = EOh
Eg:2 = ex

inex
sc − ey

iney
sc√

2
,

E I
H:3 = ET

T:1 = EOh
T2g:1 = ex

iney
sc + ey

inex
sc√

2
,

E I
H:4 = ET

T:2 = EOh
T2g:2 = ey

inez
sc + ez

iney
sc√

2
,

E I
H:5 = ET

T:3 = EOh
T2g:3 = ez

inex
sc + ex

inez
sc√

2
,

RI
A:1 = RT

A:1 = ROh
A1g:1 = Rxx + Ryy + Rzz

√
3

,

RI
H:1 = RT

E:1 = ROh
Eg:1 = 2Rzz − Rxx − Ryy

√
6

,

RI
H:2 = RT

E:2 = ROh
Eg:2 = Rxx − Ryy

√
2

,

RI
H:3 = RT

T:1 = ROh
T2g:1 = Rxy + Ryx

√
2

,

RI
H:4 = RT

T:2 = ROh
T2g:2 = Ryz + Rzy

√
2

,

RI
H:5 = RT

T:3 = ROh
T2g:3 = Rzx + Rxz

√
2

(D5)
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for the Ĩ, T̃, and Õh gauged polyhedra, where RC6v
A1:1

and RI
A:1 = RT

A:1 = ROh
A1g:1, belonging to the identity

representations in two and three dimensions, respectively, all
commute with the corresponding Hamiltonians to contribute
merely to elastic (Rayleigh) scattering.

Decomposing the Raman operator into irreducible repre-
sentations (D3) and taking account of their orthogonality (21),
we write the Raman scattering intensity as

I (ω) =
∑

i

′∑
j

′
dP

Ξi∑
μ=1

dP
Ξ j∑

ν=1

EP
Ξi :μEP

Ξ j :ν

∫ ∞

−∞

dt eiωt

2π h̄L
〈0|e iH t

h̄ RP
Ξi:μe− iH t

h̄ RP
Ξ j :ν |0〉

=
∑

i

′
dP

Ξi∑
μ=1

(
EP

Ξi:μ

)2
∫ ∞

−∞

dt eiωt

2π h̄L
〈0|e iH t

h̄ RP
Ξi :μe− iH t

h̄ RP
Ξi:μ|0〉 ≡

∑
i

′
dP

Ξi∑
μ=1

(
EP

Ξi :μ

)2
IP
Ξi:μ(ω). (D6)

We write the Raman vertices in Cartesian coordinates (D5) and then in terms of spinon operators (D2). Having in mind that
αk|0〉 = 0 and discarding Rayleigh terms, we can express I (ω) by Fermi’s golden rule,

I (ω) =
∑

i

′
dP

Ξi∑
μ=1

(
EP

Ξi :μ

)2
∫ ∞

−∞

dt eiωt

2π h̄L

2
L
2 +1−1∑
q=0

2
L
2 −1−1∑
κ=0

〈0|e iH t
h̄ RP

Ξi :μe− iH t
h̄ |{nk}〉κ ⊗ |{Wp}〉qq〈{Wp}| ⊗ κ〈{nk}|RP

Ξi:μ|0〉

= 1

L

∑
i

′
dP

Ξi∑
μ=1

(
EP

Ξi:μ

)2 1

2π h̄

∑
1=k′<k′′= L

2

∫ ∞

−∞
ei(ω− εk′

h̄ − εk′′
h̄ )t dt

2
L
2 +1−1∑
q=0

0〈{Wp}|{Wp}〉qq〈{Wp}|{Wp}〉0

× 0〈{nk}|RP
Ξi:μ

∣∣
{u〈m,n〉λ }0(r)

α
†
k′′α

†
k′ |{nk}〉00〈{nk}|αk′αk′′ RP

Ξi:μ

∣∣
{u〈m,n〉λ }0(r)

|{nk}〉0

= 1

L

∑
i

′
dP

Ξi∑
μ=1

(
EP

Ξi:μ

)2 ∑
1=k<k′= L

2

∣∣〈0|αkαk′RP
Ξi:μ|0〉∣∣2

δ(h̄ω − εk − εk′ ), (D7)

where RP
Ξi:μ

|{u〈m,n〉λ }0(r)
are the gauge-ground LF vertices.

The spectral degeneracy within each multidimensional irreducible representation [62] is the case with Kitaev spin balls as
well. Considering the QSL ground state (9) is invariant under every symmetry operation P ∈ P, the Raman response with
Pein ≡ ẽin and Pesc ≡ ẽsc, which we denote by Ĩ (ω), should remain the same as I (ω) with ein and esc, where we denote the
matrix representation in Cartesian coordinates for the point symmetry operation P by P . With Eq. (D1) in mind, a point symmetry
operation of the Raman operator reads

tẽinRẽsc ≡ R̃ =
∑

μ,ν=x,y,z

∑
μ′,ν ′=x,y,z

eμ
in

tPμμ′Rμ′ν ′Pν ′νeν
sc ≡

∑
μ,ν=x,y,z

eμ
inR̃μν (P)eν

sc ≡ teinR̃(P)esc, (D8)

and therefore, we have the intensity

Ĩ (ω) =
∫ ∞

−∞

dt eiωt

2π h̄L
〈0|e iH t

h̄ R̃e− iH t
h̄ R̃|0〉 =

∑
i

′
dP

Ξi∑
μ=1

(
EP

Ξi :μ

)2
∫ ∞

−∞

dt eiωt

2π h̄L
〈0|e iH t

h̄ R̃P
Ξi:μ(P)e− iH t

h̄ R̃P
Ξi:μ(P)|0〉

≡
∑

i

′
dP

Ξi∑
μ=1

(
EP

Ξi:μ

)2
ĨP
Ξi:μ(ω) =

∑
i

′
dP

Ξi∑
μ=1

(
EP

Ξi:μ

)2
IP
Ξi:μ(ω). (D9)

Arbitrary polarization vectors ein and esc yield arbitrary coefficients (EP
Ξi:μ

)
2

and therefore demand that ĨP
Ξi:μ

(ω) = IP
Ξi:μ

(ω) for
every Raman-active mode Ξi : μ. It is instructive to review the Raman-active E2 symmetry species of the C6v honeycomb lattice
[62] on the xy plane. The threefold rotation about the z axis of the polarization vectors reads converting the Raman operator into

C3(z)R ≡ R̃(C3(z) ) =
[
R̃xx(C3(z) ) R̃xy(C3(z) )

R̃yx(C3(z) ) R̃zz(C3(z) )

]
=

⎡⎣ − 1
2

√
3

2

−
√

3
2 − 1

2

⎤⎦[Rxx Rxy

Ryx Rzz

]⎡⎣− 1
2 −

√
3

2√
3

2 − 1
2

⎤⎦. (D10)

Then the Raman vertices of E2 symmetry species behave as

C3(z)RC6v
E2:1 ≡ R̃C6v

E2:1(C3(z) ) = R̃xx(C3(z) ) − R̃yy(C3(z) )√
2

= −1

2
RC6v

E2:1 −
√

3

2
RC6v

E2:2. (D11)
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The Raman response of the Kitaev honeycomb QSL remains unchanged against the symmetry operation C3(z) ∈ C6v,

IC6v
E2:1(ω) = C3(z)I

C6v
E2:1(ω) =

∫ ∞

−∞

dt eiωt

2π h̄L
〈0|e iH t

h̄ R̃C6v
E2:1(C3(z) )e

− iH t
h̄ R̃C6v

E2:1(C3(z) )|0〉 = 1

4
IC6v
E2:1(ω) + 3

4
IC6v
E2:2(ω), (D12)

and therefore, we find that IC6v
E2:1(ω) = IC6v

E2:2(ω). Next we consider rotating the T and Oh polyhedra by 2π
3 about the [111] axis,

which reads converting the Raman operator into

C3(111)R ≡
⎡⎣R̃xx(C3(111)) R̃xy(C3(111)) R̃xz(C3(111))
R̃yx(C3(111)) R̃yy(C3(111)) R̃yz(C3(111))
R̃zx(C3(111)) R̃zy(C3(111)) R̃zz(C3(111))

⎤⎦ =
⎡⎣0 1 0

0 0 1
1 0 0

⎤⎦⎡⎣Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

⎤⎦⎡⎣0 0 1
1 0 0
0 1 0

⎤⎦. (D13)

They each have the two Raman-active symmetry species E/Eg and T/T2g, and the corresponding Raman vertices behave under
the threefold rotation as

C3(111)RT/Oh
E/Eg:1 ≡ R̃T/Oh

E/Eg:1(C3(111)) = 2R̃zz(C3(111)) − R̃xx(C3(111)) − R̃yy(C3(111))√
6

= −1

2
RT/Oh

E/Eg:1 +
√

3

2
RT/Oh

E/Eg:2,

C3(111)RT/Oh
T/T2g:1 ≡ R̃T/Oh

T/T2g:1(C3(111)) = R̃xy(C3(111)) + R̃yx(C3(111))√
2

= RT/Oh
T/T2g:2,

C3(111)RT/Oh
T/T2g:2 ≡ R̃T/Oh

T/T2g:2(C3(111)) = R̃yz(C3(111)) + R̃zy(C3(111))√
2

= RT/Oh
T/T2g:3,

C3(111)RT/Oh
T/T2g:3 ≡ R̃T/Oh

T/T2g:3(C3(111)) = R̃zx(C3(111)) + R̃xz(C3(111))√
2

= RT/Oh
T/T2g:1. (D14)

The Raman responses of these Kitaev polyhedral QSLs are invariant under their common symmetry operation C3(111),

IT/Oh
E/Eg:1(ω) = C3(111)I

T/Oh
E/Eg:1(ω) = 1

4
IT/Oh
E/Eg:1(ω) + 3

4
IT/Oh
E/Eg:2(ω),

IT/Oh
T/T2g:1(ω) = C3(111)I

T/Oh
T/T2g:1(ω) = IT/Oh

T/T2g:2(ω),

IT/Oh
T/T2g:2(ω) = C3(111)I

T/Oh
T/T2g:2(ω) = IT/Oh

T/T2g:3(ω),

IT/Oh
T/T2g:3(ω) = C3(111)I

T/Oh
T/T2g:3(ω) = IT/Oh

T/T2g:1(ω), (D15)

and therefore, we find that IT/Oh
E/Eg:1(ω) = IT/Oh

E/Eg:2(ω) and IT/Oh
T/T2g:1(ω) = IT/Oh

T/T2g:2(ω) = IT/Oh
T/T2g:3(ω). For the Raman-active H symmetry

species of the Kitaev dodecahedral QSL as well, we can similarly find the spectral degeneracy II
H:1(ω) = II

H:2(ω) = II
H:3(ω) =

II
H:4(ω) = II

H:5(ω).
Now that Eq. (D6) reduces to

I (ω) =
∑

i

′
dP

Ξi∑
μ=1

(
EP

Ξi:μ

)2
IP
Ξi:μ(ω) =

∑
i

′
IP
Ξi:1(ω)

dP
Ξi∑

μ=1

(
EP

Ξi:μ

)2
, (D16)

the number of Raman-active modes possible in the lattice geometry is most decisive of whether and how the scattering intensity
depends on the light polarization. In Eq. (D16), we have

2∑
μ=1

(
EC6v

E2:μ

)2 = 1

2
sin2 ϑin sin2 ϑsc (D17)

for the two-dimensional honeycomb lattice,

5∑
μ=1

(
E I

H:μ

)2 = 1

6
[2 cos ϑin cos ϑsc − sin ϑin sin ϑsc cos(ϕin − ϕsc)]2 + 1

2
[sin ϑin sin ϑsc cos(ϕin + ϕsc)]2

+ 1

2
[sin ϑin sin ϑsc sin(ϕin + ϕsc)]2 + 1

2
(sin ϑin sin ϕin cos ϑsc + cos ϑin sin ϑsc sin ϕsc)2

+ 1

2
(cos ϑin sin ϑsc cos ϕsc + sin ϑin cos ϕin cos ϑsc)2 (D18)
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for the dodecahedral lattice, and

2∑
μ=1

(
ET

E:μ

)2 =
2∑

μ=1

(
EOh

Eg:μ

)2
= 1

6
[2 cos ϑin cos ϑsc − sin ϑin sin ϑsc cos(ϕin − ϕsc)]2 + 1

2
[sin ϑin sin ϑsc cos(ϕin + ϕsc)]2,

3∑
μ=1

(
ET

T:μ

)2 =
3∑

μ=1

(
EOh

T2g:μ

)2 = 1

2
[sin ϑin sin ϑsc sin(ϕin + ϕsc)]2 + 1

2
(sin ϑin sin ϕin cos ϑsc + cos ϑin sin ϑsc sin ϕsc)2

+ 1

2
(cos ϑin sin ϑsc cos ϕsc + sin ϑin cos ϕin cos ϑsc)2 (D19)

for the truncated tetrahedral and octahedral lattices, respectively. For the honeycomb lattice, we are interested only in the
polarization vectors parallel to the plane,

2∑
μ=1

(
EC6v

E2:μ

)2

∣∣∣∣∣∣
ϑin=ϑsc= π

2

= 1

2
, (D20)

and find no polarization dependence of the Raman response within the LF scheme. For the dodecahedral lattice, even if we
restrict the polarization vectors to the xy plane, the Raman response still exhibits weak polarization dependence even within the
LF scheme,

5∑
μ=1

(
E I

H:μ

)2

∣∣∣∣∣∣
ϑin=ϑsc= π

2

= 1

6
cos2(ϕin − ϕsc) + 1

2
, (D21)

i.e., the spectra peak exactly the same but weigh differently according to the light polarization. For the truncated tetrahedral and
octahedral lattices, even if we consider the Raman scattering within the LF scheme and restrict the polarization vectors to the xy
plane, we have two Raman-active symmetry species to find strong polarization dependence of the spectra,

2∑
μ=1

(
ET

E:μ

)2

∣∣∣∣∣∣
ϑin=ϑsc= π

2

=
2∑

μ=1

(
EOh

Eg:μ

)2

∣∣∣∣∣∣
ϑin=ϑsc= π

2

= 1

6
cos2(ϕin − ϕsc) + 1

2
cos2(ϕin + ϕsc),

3∑
μ=1

(
ET

T:μ

)2

∣∣∣∣∣∣
ϑin=ϑsc= π

2

=
3∑

μ=1

(
EOh

T2g:μ

)2

∣∣∣∣∣∣
ϑin=ϑsc= π

2

= 1

2
sin2(ϕin + ϕsc), (D22)

i.e., spectra peak and weigh differently according to the light polarization. Note in this context that we do not have any accidental
degeneracy, i.e., neither does IT

E:1(ω) equal IT
T:1(ω) nor does IOh

Eg:1(ω) equal IOh
T2g:1(ω).
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