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Experimental observation of third-order effect in magnetic small-angle neutron scattering
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A recent theory [Metlov and Michels, Phys. Rev. B 91, 054404 (2015)] predicts a qualitative effect in the
magnetic small-angle neutron scattering (SANS) cross section of statistically isotropic disordered ferromagnetic
media. The effect is due to the third-order terms in the amplitude of the inhomogeneities. Here, its existence
is demonstrated both numerically via large-scale micromagnetic simulations and analyzed experimentally in a
two-phase iron-based nanocomposite. The previous model is extended to an arbitrary spatial defect profile, which
allows us to describe the experimental field dependence of the third-order SANS effect quantitatively.
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I. INTRODUCTION

Magnetic small-angle neutron scattering (SANS) is a pow-
erful tool for investigating nonuniform magnetization struc-
tures on a mesoscopic length scale (∼1−300 nm) inside
magnetic materials (see Ref. [1] for a recent review). An
advantage of the SANS technique, compared, e.g., to electron-
microscopy-based methods, is that it provides statistically
averaged information about a large number of scattering ob-
jects. When conventional SANS is supplemented by ultra-
or very small-angle neutron scattering, the spatial resolution
can be extended up to the micrometer range [2,3]. This is
an important size regime in which many macroscopic mate-
rial properties are realized. Magnetic SANS has previously
been applied to study the spin structures of a wide range
of materials such as magnetic nanoparticles [4–15], hard
and soft magnetic nanocomposites [16–19], proton domains
[20–22], magnetic steels [23–26], reentrant spin glasses [27],
or Heusler-type alloys [28–31].

In Ref. [32], based on the analytical solution of the cor-
responding micromagnetic problem, we have derived expres-
sions for the SANS cross section of a ferromagnetic medium
with a weakly inhomogeneous uniaxial magnetic anisotropy,
saturation magnetization, and exchange stiffness, which is
valid up to the third order in the (small) amplitudes of
the inhomogeneities. It follows, e.g., that the second-order
SANS cross section at sufficiently small values of the ap-
plied magnetic field inevitably displays a prominent UFO-like
shape [33]. For periodic systems of defects, this theory also
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reproduces magnetic configurations (see Fig. 5 in Ref. [34]),
in which the positions of vortices and saddles satisfy certain
constraints [35,36], whose topological origins can be traced
back to Abel’s theorem. But the central result of Ref. [32]
is that under very general assumptions regarding the type,
distribution, and magnitude of random inhomogeneities of
material parameters in a magnet, a specific combination of
SANS cross-section values as a function of the scattering
vector length is exactly zero in the second order, whereas
the third-order contribution to this combination is nonzero
and has a nontrivial functional dependence on the scattering
vector, magnetic field, and the average exchange length.

Normally, the higher-order contributions are insignificant
as compared to the larger, lower-order ones. But the cancella-
tion of the second-order terms allows one to unmask the third-
order effect and opens it for direct experimental observation
and analysis, which is the main purpose of the present paper.

In Sec. II A, we provide the basic equations for the mag-
netic SANS cross section in the perpendicular scattering
geometry. Sections II B and II C then briefly summarize the
expressions for the second- and higher-order terms in the
SANS cross sections. Our numerical and experimental results
are presented and discussed in Sec. III. This section also
includes the expression for the third-order effect function
for an arbitrary spatial defect profile and our analysis of the
experimental data.

II. SUMMARY OF PREVIOUS RESULTS

A. Magnetic SANS cross section

Magnetic SANS experiments are commonly performed
in a setup schematically shown in Fig. 1. The experiment
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FIG. 1. Schematic drawing of the SANS setup (see main text for
explanations).

measures the scattering cross section as a function of the
scattering vector q = k1 − k0, being the difference between
the wave vectors of the scattered (k1) and incident (k0)
neutrons; its magnitude q = |q| = (4π/λ) sin(ψ/2) depends
on the mean wavelength λ of the neutrons (selected by
the velocity selector) and on the scattering angle ψ . The
applied-field direction H0 is parallel to the ez direction of a
Cartesian laboratory coordinate system and perpendicular to
the incident neutron beam (k0 ‖ ex ⊥ H0). In the small-angle
approximation, the component of q along k0 is neglected,
i.e., q ∼= {0, qy, qz} = q{0, sin θ, cos θ}, where the angle θ

specifies the orientation of q on the two-dimensional detector.
It is well known that the discrete atomic structure of

matter is generally of no relevance for small-angle scatter-
ing. The cross sections are therefore expressed in terms of
suitably coarse-grained continuum variables, represented by
their Fourier transforms. The latter are denoted here by a
tilde over the symbol so, for the nuclear scattering-length den-
sity, we have Ñ (q) = ∫∫∫

N (r)e−ıqrdV . Similarly, the Fourier
image of the coordinate-dependent saturation magnetization
of the material Ms(r) is denoted as M̃s(q), and M̃(q) =
{M̃x(q), M̃y(q), M̃z(q)} is the Fourier transform of the mag-
netization vector field M(r) = {Mx(r), My(r), Mz(r)}. Then,
the total unpolarized elastic SANS cross section d�/d� can
be written as [1]

d�

d�
(q) = d�res

d�
(q) + d�SM

d�
(q), (1)

where

d�res

d�
(q) = 8π3

V

(|Ñ |2 + b2
H |M̃s|2 sin2 θ

)
(2)

represents the nuclear and magnetic residual SANS cross
section, which is measured at complete magnetic saturation
(large applied field), and the remaining term,

d�SM

d�
(q) = 8π3

V
b2

H (|M̃x|2 + |M̃y|2 cos2 θ

+ [|M̃z|2 − |M̃s|2] sin2 θ

− (M̃yM̃∗
z + M̃∗

y M̃z ) sin θ cos θ ), (3)

denotes the spin-misalignment SANS cross section, which
vanishes at saturation when the real-space magnetiza-
tion is given by M = {0, 0, Mz = Ms(r)}. In the preced-
ing expressions, V is the scattering volume and bH =
2.91×108 A−1m−1 is the magnetic scattering length in the
small-angle regime (the atomic magnetic form factor is

approximated by 1, since we are dealing with forward scat-
tering). Note that Ref. [32] uses a different definition of the
Fourier transform, so there appears an insubstantial difference
in the prefactors.

B. Second-order magnetic SANS

The Fourier images of the magnetization components
M̃(q) for a particular material (class of materials) at different
values of the applied field can be found by solving the
corresponding micromagnetic problem. When the material is
uniform and boundless, its magnetization will also be uniform
under any nonzero applied field. For small deviations from
uniformity, it is possible to build the analytical solution of the
micromagnetic problem for M̃(q) on top of the well-known
theory of the approach-to-magnetic saturation [37,38]. The
chief difference is that the latter is concerned with the value of
the average magnetization M̃(0), whereas the magnetic SANS
cross section Eq. (3) depends on all its Fourier harmonics. Yet,
the setting of the micromagnetic problem is very similar. It is
assumed that the local saturation magnetization is a function
of the position r = {x, y, z} inside the material:

Ms(r) = Ms[1 + Im(r)], (4)

where Im is an inhomogeneity function, small in magni-
tude, which describes the local variation of Ms(r). Simi-
lar spatial inhomogeneities can be present in the magne-
tostatic exchange length l2

M (r) = 2A(r)/[μ0M2
s (r)] = l2

0 [1 +
Ie(r)] and in the dimensionless quality factor Q(r) =
2K (r)/[μ0M2

s (r)] = Q0Ik (r), where A and K are the spatially
dependent exchange stiffness and the uniaxial anisotropy con-
stant, respectively. The spatial averages of the inhomogeneity
functions are assumed to be zero: 〈Im,e,k (r)〉 = 0. Conse-
quently, 〈Ms(r)〉 = Ms is the average saturation magnetization
of the sample, which can be measured with a magnetometer.

Assuming that the inhomogeneity functions are small
quantities Im,e,k � 1 of the same order, the solution of the
micromagnetic problem can be expressed as a Taylor series,

M̃ = {0, 0, Ms}δ(q) + M̃(1) + M̃(2) + · · · , (5)

where δ(q) is the Dirac’s delta function, and M̃(i) contains
the terms of the order i in Ĩm,e,k (q). The first term in Eq. (5)
corresponds to the saturated state. Solving the micromagnetic
problem up to the first order and obtaining expressions for
M̃(1) allows one to express the magnetic SANS cross section
up to the second order because Eq. (3) is quadratic in M̃.
The first set of such expressions was obtained in Ref. [39]
for the case of inhomogeneous saturation magnetization and
anisotropy. They were verified and extended in many follow-
up works (including Ref. [32]) and admit a very convenient
representation,

d�SM

d�
(q) = SH (q)RH (q, Hi ) + SM (q)RM (q, Hi ), (6)

where the contribution SH RH is due to perturbing magnetic
anisotropy fields and the part SMRM is related to magnetostatic
fields; Hi is the internal magnetic field, consisting of H0 and
of the average demagnetizing field due to the shape of the
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sample. The anisotropy-field scattering function,

SH (q) = 8π3

V
b2

H |H̃p|2, (7)

depends on the Fourier transform H̃p(q) of the local magnetic
anisotropy field, whereas the scattering function of the longi-
tudinal magnetization,

SM (q) = 8π3

V
b2

H |M̃z|2, (8)

characterizes the spatial variations of the saturation magneti-
zation. The latter can be related to the mean magnitude 	M ∝
M̃z of the magnetization jump at internal (e.g., particle-matrix)
interfaces. The dimensionless micromagnetic response func-
tions are given by

RH (q, θ, Hi ) = p2

2

(
1 + cos2 θ

(1 + p sin2 θ )2

)
(9)

and

RM (q, θ, Hi ) = p2 sin2 θ cos4 θ

(1 + p sin2 θ )2
+ 2p sin2 θ cos2 θ

1 + p sin2 θ
, (10)

where p = 1/(h + l2
Mq2), h = Hi/Ms, and the magnetostatic

exchange length equals lM ∼ 3−10 nm (Ref. [40]). Alter-
natively, the function p = Ms/[Hi(1 + l2

H q2)] can be ex-
pressed via the micromagnetic exchange length lH (Hi ) =√

2A/(μ0MsHi ), which characterizes the range over which
perturbations in the spin structure decay [39,41,42].

We emphasize that it is d�SM/d� which depends on the
magnetic interactions (exchange, anisotropy, magnetostatics,
etc.), while d�res/d� is determined by the geometry of the
underlying grain microstructure (e.g., the particle shape or
the particle-size distribution). One way to access the magnetic
interactions is to subtract the residual scattering cross section
measured at a large saturating field from the total d�/d�

at a lower field. This is not always possible in experimental
situations because of the difficulty to achieve complete mag-
netic saturation of the sample. The other approach [39] is to
use the bilinearity of Eq. (6) in RH and RM , which are simple
functions of q, H0, and lM only. Linear regression allows then
to compute SM , SH , and by extrapolation d�res/d� at each
q without the necessity to magnetically saturate the sample.
Analyzing in this way azimuthally-averaged SANS cross sec-
tions at different fields as functions of the magnitude of the
scattering vector is a reliable and very precise method [39] for
obtaining the value of the exchange-stiffness constant A.

C. Third-order effect in magnetic SANS

Normally, the higher-order effects are masked by the
lower-order ones. But in magnetic SANS, the third-order
contribution can be unmasked by considering the following
combination of the perpendicular unpolarized cross-section
values [32]:

	�SM = d�SM

d�

∣∣∣∣
θ=0

− 2
d�SM

d�

∣∣∣∣
θ=π/2

. (11)

The second-order contribution in 	�SM is exactly zero, which
can also be seen from Eqs. (6)−(10). This cancellation is a
universal property of the SANS cross section from disordered

ferromagnets, independent of the specific spatial profile of
the defects. Assuming for simplicity that the inhomogeneity
functions are related via Im = I and Ik = κI with κ � 1, the
remaining third-order contribution is nonzero and takes on an
especially simple form [32],

	�SMV

32π3b2
H

=
〈

M̃ (1)
x ⊗ M̃ (1)

x + M̃ (1)
y ⊗ M̃ (1)

y

2
Ĩ

〉∣∣∣∣
qz=0
qx=0

, (12)

where ⊗ denotes the discrete convolution in q-space q = qy

and the angular brackets denote a triple (configurational, di-
rectional, and anisotropy direction) average. Each of the M̃ (1)

x
and M̃ (1)

y is proportional to Ĩ in the first order, so their product
multiplied by Ĩ is of the third order in Ĩ . Note that in Ref. [32]
discrete Fourier transforms were used with the dimensions of
M̃i and Mi being the same. For spherical Gaussian defects with
a spatial defect profile ∝e−r2/s2

, where s is the defect size,
it is possible to split the κ-dependent terms and obtain the
following expression for 	�SM [32]:

	�SM ∝ κ2gA(μ, h, λ) + gMS(μ, h, λ), (13)

where the dimensionless functions gA and gMS depend on
the reduced scattering vector μ = qs, the reduced magnetic
field h, and on the dimensionless parameter λ = lM/s. These
functions are plotted in Figs. 4 and 5 of Ref. [32].

Now we have all the tools at hand to address the main
questions of this paper: (1) whether the third-order magnetic
SANS effect can be detected in experimental data and nu-
merical micromagnetic simulations, so the difference 	�SM

is nonzero, and (2) whether the measured 	�SM can indeed
be described by Eqs. (12) and (13).

III. RESULTS AND DISCUSSION

First, to confirm the existence of the third-order effect,
we have performed micromagnetic simulations of the mag-
netic SANS cross section in an artificial system of mag-
netic holes. These numerical computations (see Ref. [43] for
details) were adapted to the microstructure of porous iron
with a volume fraction of 32% and with randomly placed
pore centers. The simulation code takes into account the
four standard contributions to the total magnetic energy, i.e.,
energy in the external magnetic field, magnetic anisotropy,
exchange and dipolar interaction energies. The sample vol-
ume V = 0.2×0.75×0.75 μm3 was divided into N ∼ 5×105

mesh elements, comprising both pores and nanocrystallites.
Due to the flexibility of the mesh-generation algorithm, the
shape of the pores can be controlled and was taken to be
polyhedronlike. The pore-size distribution was assumed to be
lognormal [44] with a median of 15 nm and a variance of 1.16,
which yields a maximum of the distribution at 12 nm. The
local saturation magnetization of each Fe nanocrystallite was
taken as μ0Ms = 2.2 T, which in conjunction with the above-
mentioned porosity value yields μ0Ms

∼= 1.5 T for the entire
sample. For the exchange-stiffness constant and the first cubic
anisotropy constant of Fe, we have, respectively, assumed
values of A = 25 pJ/m and K1 = 47 kJ/m3 (Ref. [45]). The
direction of anisotropy axes varies randomly from crystallite
to crystallite. The energy-minimization procedure provides
(at some particular value of the applied magnetic field) the
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magnetization vector field M(r) = {Mx(r), My(r), Mz(r)} of
the sample on an irregular lattice. This distribution is then
mapped onto a regular lattice, which permits us to calculate
the magnetization Fourier coefficients and the ensuing neutron
scattering cross section using fast Fourier transformation.
Further details can be found in Refs. [46–48].

Nuclear scattering was not considered and only the total
magnetic SANS cross section [Eq. (1)] without the nuclear
term was computed. Numerical simulations are not limited by
the series expansion and include the terms of all orders in the
inhomogeneity amplitude.

The spin-misalignment SANS cross section Eq. (3) was
obtained by taking the difference between the total magnetic
d�/d� at 0.6 T and at a larger magnetic field of 10 T, which
approximates the magnetically saturated state. The resulting
difference pattern exhibits the clover-leaf anisotropy with
maxima roughly along the diagonals of the detector (upper
row in Fig. 2). This angular anisotropy is related to the dipolar
fields which emerge from the jump of the magnetization
magnitude at the pore-matrix interface [43].

The quantity 	�SM was computed by subtracting twice
the spin-misalignment SANS cross section values along the
vertical (qz = 0) direction from its values along the hori-
zontal (qy = 0) direction. These curves (including the re-
sulting 	�SM) are shown in Figs. 2(a) and 2(b). The sim-
ulations yield nonzero values of 	�SM, which cannot be
described by the second-order SANS theory. The plot of
	�SM on a semilogarithmic scale, shown in Fig. 2(b), is
mostly linear, which generally fits well with the prediction
of Ref. [32].

To perform a quantitative analysis of the theoretical pre-
dictions for the third-order magnetic SANS effect, we have
used an existing experimental data set from the two-phase

FIG. 2. Results of micromagnetic simulations of nanoporous Fe
for the third-order magnetic SANS effect [43]. Upper row: Illus-
tration of the subtraction procedure between the total d�mag/d� at
0.6 T and at 10.0 T (logarithmic color scale). (a) Spin-misalignment
SANS cross section along the horizontal and vertical directions
(see inset). (b) Resulting 	�SM(q) computed according to Eq. (11)
(log-linear scale).

Fe-based alloy NANOPERM [49]. This material with a nom-
inal composition of (Fe0.985Co0.015)89Zr7B3 consists of a dis-
persion of Fe nanoparticles, which are embedded in an amor-
phous magnetic matrix (particle size: 15 ± 2 nm; crystalline
volume fraction: 65 %; saturation magnetization: 1.64 T). The
raw SANS cross-section data for this material were already
published in Ref. [50]. The field-dependent azimuthally av-
eraged SANS cross sections can be excellently described by
the second-order magnetic SANS theory (see Fig. 4(b) in
Ref. [50]), yielding information on the magnetic interactions
(exchange-stiffness constant, magnetostatic, and anisotropy
fields).

Figure 3 shows the two-dimensional total unpolarized
SANS cross section d�/d�, computed from the raw data of
Ref. [50], at an external field of 196 mT [Fig. 3(a)] and at a
large value of the magnetic field of 1270 mT [Fig. 3(b)]. The
experimental data set at 1270 mT can be taken as an approxi-
mation to the residual SANS cross section d�res/d� [Eq. (2)],
corresponding to the scattering signal in the completely sat-
urated state [compare the hysteresis loop in Fig. 3(d)]. It
can be seen that the scattering at saturation exhibits a maxi-
mum intensity along the direction perpendicular to the field,
which is due to the term |M̃s|2 sin2 θ in d�res/d�. Reducing
the field to 196 mT results in the emergence of transversal
spin-misalignment fluctuations (in addition to the |M̃z|2 sin2 θ

contribution), which give rise to angular anisotropies with
maxima along the horizontal direction and (roughly) along
the detector diagonals [compare the expressions for both re-
sponse functions in Eqs. (9) and (10)]. This is clearly revealed
by inspection of the spin-misalignment SANS at 196 mT
[Fig. 3(c)], which shows (i) a weak clover-leaf-type anisotropy
and (ii) an elliptical elongation along the field direction. The
scattered dots (speckles) at the outskirts of the cross section
in Fig. 3(c) indicate the presence of a (nearly) q-vector inde-
pendent small random error in the data, which we estimate
to be around ±30 cm−1sr−1. Note that azimuthal averaging,
performed in Ref. [50], smoothes this error out. It has a bigger
impact on the present third-order effect analysis, which is
based on the subtraction of the cross-section values along
only two (vertical and horizontal) directions on the detector
[Eq. (11)]. The origin of the clover-leaf anisotropy is related
to the dipolar stray fields that are due to the jumps in Ms at
particle-matrix interfaces (as in the case of nanoporous Fe, see
Fig. 2). These stray fields decorate the Fe nanoparticles via the
exertion of a magnetic torque on the magnetic moments of the
matrix [23,50,51].

The analysis in Ref. [50] yields a value for the exchange
stiffness of A = 4.7 ± 0.9 pJ/m. Also, the fitted values of
SH (q) are many orders of magnitude smaller than SM (q) (see
Fig. 5 in Ref. [50]). This means that magnetostatic effects (due
to the small spatial variation of the saturation magnetization)
are dominating over the anisotropy ones (due to the small
spatial variation of the anisotropy constant). Thus, we can
ignore the latter and assume κ = 0 in Eq. (13), which makes
it independent of the function gA. Finally, the q dependence
of SM seems to be better described by an exponential function
rather than a Gaussian (Gaussian spatial profile of the defects
remains Gaussian in q space). This was verified by us using
the numerical data of Ref. [50]. The exponential SM (q) cor-
responds to a Lorentzian-squared defect profile in real space,
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FIG. 3. SANS results on NANOPERM [(Fe0.985Co0.015)89Zr7B3]. Total (nuclear and magnetic) unpolarized SANS cross section d�/d� in
units of 100 cm−1sr−1 at (a) μ0H0 = 196 mT and (b) μ0H0 = 1270 mT. (c) Spin-misalignment SANS cross section d�SM/d� at 196 mT, i.e.,
d�SM

d�
(196 mT) = d�

d�
(196 mT) − d�

d�
(1270 mT) (logarithmic color scale) (k0 ⊥ H0). The applied magnetic field H0 is horizontal in the plane.

(d) Solid line: Normalized room-temperature magnetization curve. Data points (1270 mT, 312 mT, 196 mT, 103 mT, 61 mT) specify the fields
where the SANS measurements have been performed.

such as the following model for I (r):

I (r) =
∑

i

ai

(1 + |r − ri|2/s2)2
− const, (14)

where ai � 1 and ri are, respectively, the random amplitudes
and positions of the defects, and the summation runs over the

sample volume. The value of the additive constant is chosen
to ensure that 〈I (r)〉 = 0, which is always possible for the
considered defect profile.

Substituting the first-order micromagnetic solutions for
M̃ (1)

x and M̃ (1)
y from Ref. [32] into Eq. (12), passing from a

summation to an integration, and assuming κ = 0 yields the
following expression:

gMS = v

(2π )3

〈
Ĩ (q)

∫∫∫
(xq−q′xq′ + yq−q′yq′ )zq−q′zq′ Ĩ (q − q′ )̃I (q′)
2
(
hq−q′ + x2

q−q′ + y2
q−q′

)(
hq′ + x2

q′ + y2
q′
) d3q′

〉
, (15)

where {xq, yq, zq} = q/q, v = ∫∫∫
1/(1 + r2/s2)2d3r = π2s3

is the volume of the single defect to make the result di-
mensionless, and hq = h + l2

M |q|2. The integral results from
the convolution and the angular brackets correspond to the
directional (over different representative volume orientations)
and the ensemble [over different realizations of the random
process for I (r)] averaging. Unlike the consideration of gMS in
Ref. [32], the Eq. (15) does not assume a specific defect model
I (r). Inserting the Fourier transform Ĩ (q) of Eq. (14) and
performing the averaging results in a slightly more compli-
cated expression, which was used in the actual computations
(see the Supplemental Material [52]).

The main problem in analyzing experimental data, mea-
sured at finite fields, is to find and subtract the field-
independent residual SANS cross section. Even though at
a large magnetic field the average magnetization is close
to saturation, there are still many local fluctuations, which
can be detected by the extremely sensitive SANS technique.
The assumption of magnetic saturation at the largest of the
experimentally achievable magnetic fields can be avoided by
analyzing a combination of the cross-section values similar to
Eq. (11), but constructed from the total (nuclear and magnetic)
cross-section data as opposed to the spin-misalignment part
only:

	� = d�

d�

∣∣∣∣
θ=0

− 2
d�

d�

∣∣∣∣
θ=π/2

= 	�res(q) + � gMS(qs, Hi/Ms, lM/s). (16)

For the same reasons as before, 	� contains no second-order
term. It consists only of the magnetic-field-independent
residual contribution 	�res = 8π3

V [|Ñ |2({0, 0, q}) − 2|Ñ |2
({0, q, 0}) − 2b2

H |M̃s|2({0, q, 0})] and (if fourth and
higher-order terms are neglected) of the third-order term.
In the case of our material with SH � SM the latter is
proportional to gMS with a field and q-independent scaling
parameter �. Because the large nuclear and residual cross
sections are subtracted twice in Eq. (16), both 	� and 	�res

are negative, while � is positive.
Linearity of Eq. (16) (in gMS) suggests the possibility of

fitting the field dependence of the experimental 	� at each
q as a function of the computed value of gMS using linear
regression. The only remaining parameter is the size of the
defects s, which can be adjusted iteratively to minimize the
total error of the fit. This procedure results in the best-fit value
of s = 19.5 nm and in the corresponding 	�res(q) and �(q)
dependencies as shown in Figs. 4(b) and 4(c). The s value
agrees very well with the nominal particle size of 15 ± 2 nm
of the alloy.

It is important to note that, while theoretically the value
of � should be independent of q, this dependence was al-
lowed during the fitting procedure. If the specific choice
of the defect profile and the resulting gMS is viable, a q-
independent � value should come as the result of the fit.
As one can see from Fig. 4(c), this is indeed the case. The
error bars were computed using a Monte Carlo procedure by
adding a random ±30 cm−1sr−1 contribution to the measured
d�/d�-values and computing the standard deviation of the
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FIG. 4. Spin-misalignment SANS cross-section differences of
NANOPERM [(Fe0.985Co0.015)89Zr7B3] at selected applied magnetic
fields. Field values from bottom to top—1270 mT, 312 mT, 196 mT,
103 mT. The points are the experimental data, the solid lines in (a) are
computed from Eq. (16) with � = �0 = 0.29×106 cm−1sr−1 and
gMS, corresponding to the Lorentzian-squared defects [Eq. (14) with
s = 19.5 nm]. Insets show the fitted dependencies of 	�res(q) and
�(q). The horizontal line in (c) is � = �0.

resulting � at each q across many realizations of this random
process. The above value of the assumed absolute error has
been estimated from the scatter of the data at the outskirts
of the cross sections (at q > 0.1 nm−1) shown in Fig. 3(c).
For q � 0.1 nm−1, the �(q) assume a nearly constant value
of � = �0 = 0.29×106 cm−1sr−1, shown by the horizontal
line. The amplification of the error at larger q is due to the
small value of the cross section at these scattering vectors
and, precisely for this reason, is, probably, of no relevance.
This is corroborated by the theoretical lines in Fig. 4(a),
which are plotted according to Eq. (16) using the fixed q-
independent value of � = �0. The solid lines fit the exper-
imental data reasonably well in the approach-to-saturation
regime.

The fit in Fig. 4(a) is good, but not perfect. The probable
reason is the sensitivity of the cross-section difference to the
details of the shape of the inhomogeneities. That is why we
have carefully evaluated the second-order SANS cross section
of this sample from Ref. [50] and fitted SM (q) by the Fourier
image of a Lorentzian-squared defect profile. While such a fit
describes the q < 0.1 nm−1 region of SM (q) well, it exhibits
discrepancies at larger q. These discrepancies are irrelevant to
the second-order SANS theory and impact the cross section
at large q values only, where it is very small. However, be-
cause of the convolution in the third-order difference function
Eq. (15), they influence the 	� at smaller q as well. It
means that the interpretation of the third-order SANS cross-
section differences is much more demanding on the precision
of the defect model and can be a valuable tool for gaining

additional insights about the shape of the inhomogeneities in
the material.

While the cross-section values themselves are strictly pos-
itive, the 	� may assume negative values for some q (see
Fig. 5 in Ref. [32]). The 	�SM in Fig. 4(a) also have some
visibly negative points on the lower curves.

We would like to remind the reader that the microstructure
of NANOPERM is very different from the one used in the
simulations. The simulated system has nanopores instead
of nanocrystallites as in the NANOPERM sample. That is
why a direct comparison between Figs. 2 and 3 is not very
useful. It is generally a very difficult problem to simulate a
realistic random nanostructured system on a scale necessary
for computing the SANS cross section. While both the nu-
merical simulations and the analytical theory we use are ap-
proximate, their approximations are different. The simulation
is not limited by the series expansion, but it is limited by
the relatively small statistics of the material nanostructure,
represented in the simulation volume. On the other hand,
the analytical theory includes the full statistical averaging
over an infinite volume, but is limited by the third-order
terms in the material inhomogeneities amplitude. Yet, de-
spite these shortcomings and differences between the simu-
lation and theory, both reveal the presence of the third-order
effect.

An applied field of μ0H0 = 1270 mT seems to be rather
large and polarizes the material close to the saturation, as
can be seen from the hysteresis loop in Fig. 3(d). Yet, the
corresponding third-order spin-misalignment SANS cross-
section difference, shown as the bottom line in Fig. 4(a),
is far from zero (as it should be in the case of infinite
external field). This is another illustration of the extreme
sensitivity of SANS to the inhomogeneities of the sam-
ple’s magnetization, by far exceeding that of traditional
magnetometry.

One of the possibilities which are opened up by the obser-
vation of the third-order effect is the ability to extract the third
statistical moment of the defects-magnitude distribution. This
follows since gMS ∼ 〈a3

i 〉 [compare Eqs. (14) and (15)]. The
third moment measures the skewness in the statistical distribu-
tion of the nanocrystallite sizes (if they are made of the same
material). The skewness is zero if the distribution is symmetric
around its center (e.g., for a Gaussian). It will be interesting
in future studies to explore the evolution of the skewness,
which is expected to develop during the various stages of
nanocrystallization.

IV. CONCLUSIONS

We have demonstrated both numerically and experimen-
tally the existence of the theoretically predicted third-order ef-
fect in the magnetic SANS cross section, which cannot in prin-
ciple be accounted for by the second-order SANS theory. The
model of Ref. [32] is extended and the resulting expressions
describe both the third-order effect and its field dependence
well. Because of the inherent convolution in q space, the
third-order effect is much more sensitive to the details of the
defect profile as compared to the second-order SANS theory.
We have provided here the general expression for its field
and scattering-vector dependence, suitable for an arbitrary
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spatial-inhomogeneity profile, and used a Lorentzian-squared
profile in our analysis. Analyzing the data with the help of
the third-order SANS theory does not require new SANS
measurements. It can make SANS an even more valuable
and powerful tool for the microstructure analysis of magnetic
materials.
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