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Zero-energy excitation in the classical kagome antiferromagnet NaBa2Mn3F11
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We performed inelastic neutron scattering measurements on a polycrystalline sample of a classical kagome
antiferromagnet NaBa2Mn3F11 to investigate the possibility of a dispersionless zero-energy excitation associated
with rotation of spins along the chains. The observed spectra indeed exhibit such an excitation with strong
intensity at low energy, as well as dispersive excitations with weak intensity at high energy. Combining the
measurements with calculations from linear spin-wave theory reveals that NaBa2Mn3F11 is a good realization of
the classical kagome antiferromagnet which exhibits a dispersionless mode lifted by the magnetic dipole-dipole
interaction.
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I. INTRODUCTION

Geometrical frustration has been extensively studied in
terms of both its theoretical and experimental aspects in
condensed-matter physics [1,2]. Frustrated systems retain
macroscopic degeneracy even at low temperatures, providing
diverse and exotic spin states [3]. One of the remarkable phe-
nomena is localization of spin-wave excitations. For classical
spin systems, i.e., continuous spins, magnetic structures at
the ground state are largely degenerate due to the frustra-
tion. The degenerate magnetic structures allow a continuous
rearrangement of the spins with no energy cost, generating
a dispersionless mode in the spin-wave excitation spectrum.
This means that the spin wave is localized in momentum
space. Away from geometrically frustrated magnets, disper-
sionless bands have attracted great interest. They have been
proposed to be key to a variety of exotic phenomena, in-
cluding the unconventional topological orders in fermionic
systems [4–6] and the magnon Hall effect in ferromagnetic
insulators [7–10].

The classical kagome antiferromagnet is the prototypical
system for a dispersionless mode in the spin-wave excitations.
It has an infinite degeneracy of 120◦ structures in the ground
state [11–14]. This degeneracy allows a continuous change of
the spin arrangement. For example, in the case of the so-called
q = 0 structure, two spins in a triangle can rotate about the
direction of the rest of the spins, while retaining the 120◦
configuration. There is therefore no energy cost associated
with the excitations. The rotating spins form a chain, as
illustrated in Fig. 1(a). A set of spins in each chain are excited
independently on spins in different chains, meaning that the
excitation is localized in the chain. The spin rotation with no
energy cost is a localized mode, namely a zero-energy mode
[11,12,15]. This produces zero-energy lines in the magnetic
Brillouin zone.

In real kagome antiferromagnets, the macroscopic degen-
eracy of the 120◦ structures is solved by some types of
magnetic anisotropy such as the Dzyaloshinskii-Moriya in-
teraction, single-ion anisotropy, and magnetic dipole-dipole
(MDD) interaction. Then, the zero-energy mode becomes
visible as an excited state lifted by those anisotropies. In
potassium iron jarosite KFe3(OH)6(SO4)2, an excitation at
7 meV was found to be a zero-energy mode lifted by
the Dzyaloshinskii-Moriya interaction through linear spin-
wave calculations [16]. It is, however, made dispersive
by the second-neighbor exchange interaction, which cou-
ples the chains. To our knowledge, the zero-energy mode
in the kagome antiferromagnet has been reported only in
KFe3(OH)6(SO4)2. Further study in different materials is thus
important.

Our target compound is a classical kagome antiferromag-
net NaBa2Mn3F11. This compound crystallizes in a hexagonal
structure with the space group R3̄c [17]. The Mn2+ ions
carry spin S = 5/2, and MnF7 pentagonal bipyramids form
a kagome lattice in the crystallographic ab plane. Thermo-
dynamic measurements exhibit a Curie-Weiss temperature of
θCW = −32 K and an antiferromagnetic transition at TN =
2 K [18]. Neutron powder diffraction identified that the basic
magnetic structure is the 120◦ structure with the magnetic
propagation vector k0 = (0, 0, 0) in Fig. 1(a), and it is modu-
lated incommensurately [19]. A calculation of the ground state
including the nearest-neighbor antiferromagnetic interaction
J1, the second-neighbor antiferromagnetic interaction J2, and
a MDD interaction JMDD showed that the identified 120◦
structure was selected by the MDD interaction.

Theoretical studies have shown that the classical kagome
antiferromagnet with the MDD interaction has the zero-
energy mode as its lowest excited state [20,21], as shown in
Fig. 1(b). Since the flatness of the excitation is robust against
long-range MDD interactions [21], the observation of a dis-
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FIG. 1. (a) Magnetic structure having k = 0 of NaBa2Mn3F11.
The red arrows represent directions of spins. Dashed loops illustrate
the zero-energy mode as described in the text. Solid and dashed lines
are the nearest-neighbor and second-neighbor paths, respectively.
(b) Spin-wave excitation having the nearest-neighbor exchange in-
teraction J1 and MDD interaction JMDD = J1/100. The energy is
normalized by the magnitude of the interaction J1 and the spin S.

persionless zero-energy mode is expected in NaBa2Mn3F11.
In the present paper, we investigate the zero-energy mode
in NaBa2Mn3F11 through a combination of inelastic neutron
scattering (INS) experiments and spin-wave calculations.
The observed energy of the dispersionless mode matches the
anisotropy gap originating from the MDD interaction.

II. EXPERIMENTAL DETAILS

A 19 g polycrystalline sample of NaBa2Mn3F11 was pre-
pared by a solid-state reaction method [18]. We loaded the
sample in a copper cell, which was installed in a 4He cryostat
which achieves 1.5 K. The INS experiment was performed
at the cold-neutron time-of-flight (TOF) spectrometer IN6 at
the Institut Laue-Langevin (ILL) in Grenoble, France. The

energy of the incident neutron beam was Ei = 3.1 meV,
yielding a Gaussian energy resolution of �E = 0.07 meV at
the elastic position. A preliminary experiment was performed
at the thermal-neutron TOF spectrometer IN4C at the same
institution to measure the magnetic excitations up to 6 meV.
The absence of magnetic excitations above 2.5 meV was
confirmed. These INS spectra are shown in the Appendix.

III. EXPERIMENTAL RESULTS

In the magnetic ordered state at 1.5 K, excitations with
strong intensity at 0.2 meV and weak intensity at 1.5 meV are
observed, as shown in Fig. 2(a). The center of mass in Q of
the strong spectral weight is at Q ∼ 1 Å−1, which is observed
as a broad peak in the constant energy cut at 0.21 meV in
Fig. 3(a). The Q position of the peak maximum coincides
with the strongest magnetic Bragg reflection (1 0 1). The peak
splits into two peaks with increasing energy, as indicated by
the dashed lines in Fig. 3(a). This implies that a spin-wave
excitation disperses from (1 0 1). In a series of constant-Q cuts
in Fig. 3(b), the strong peak is identified at 0.21 meV. This
peak position is attributed to an anisotropy energy gap, which
is compatible with the scale of the ordering temperature TN =
2 K. It is notable that this peak does not shift on varying Q,
indicating that the excitation at 0.21 meV is dispersionless. As
the MDD interaction creates a gap in the excitation spectrum,
with the zero-energy mode immediately above it [20,21], the
excitation at 0.21 meV is expected to be the zero-energy
mode. The upper boundary of the spin-wave dispersion is
evaluated to be 1.57 meV. Weak intensity is observed up to
2.5 meV, and it is well fit by a Lorentzian tail of the peak
at 1.57 meV. Note that the intensity remains even at 60 mK,
which was found in the spectrum in the IN4C [see Fig. 6(a) in
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FIG. 2. INS spectra of NaBa2Mn3F11 at (a) 1.5 K, (b) 2.0 K, (c) 5 K, and (d) 30 K. The incident neutron energy is Ei = 3.1 meV. Calculated
spin-wave spectra with (e) J1 = 0.28 meV, J2 = 0 and JMDD = 4.9 μeV and with (f) J1 = 0.27 meV, J2 = J1/10 and JMDD = 4.9 μeV. Solid
and dashed curves in (e) and (f) are spin-wave dispersions along [1 0 0] and [1 1 0] directions, respectively.
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FIG. 3. (a) Constant-energy cuts at h̄ω = 0.21, 0.43, 1.23, and
1.57 meV and at 1.5 K. The data are integrated in the range of h̄ω ±
0.05 meV. (b) Constant-Q cuts at Q = 1.0, 1.2, 1.4, and 1.6 Å−1 and
at 1.5 K. The data are integrated in the range of Q ± 0.2 Å−1. The
dashed lines are guides for eyes.

the Appendix]. This implies that the spin waves are damped
by persistent spin-fluctuations much below TN = 2 K.

In the paramagnetic state at 30 K, strong magnetic diffuse
scattering indicative of short-range correlations is observed,
as shown in Fig. 2(d). This means that the spin correlation
develops at much higher temperature than the transition tem-
perature TN = 2 K. In Figs. 2(b) and 2(c) still above TN, the
diffuse scattering is suppressed and the spectra are split into
low and high energy parts with decreasing temperature. In
other words, the magnetic excitation becomes structured upon
approaching the transition temperature, owing to the further
development of longer ranged spin correlations.

The temperature evolution of constant-Q cuts at Q = 1 Å−1

are shown in Figs. 4(a) and 4(b). The quasielastic scattering
spectra in the paramagnetic state are fitted by the dynamical
structure factor S(Q, ω, T ) [22,23] with an exponential spin
relaxation in the form of a Lorentzian-shaped function as
follows:

S(Q, ω, T ) = 1

1 − e−h̄ω/kBT

χ0(Q, T )ω�(Q, T )

ω2 + �(Q, T )2
, (1)

where the first term represents the detailed balance factor
accounting for thermal population of the excited state and �

is the line width. χ0(Q, T ) is the static susceptibility. The INS

0 1 2−1−2
ħω (meV)

In
te

ns
ity

 (a
rb

. u
ni

ts
)

1

0

1

0

2
−1Q (Å ) = [0.9, 1.1](a) 30 K

(b) 5 K

FIG. 4. Constant-Q scans at Q = 1 Å−1 for (a) 30 K and (b) 5 K.
The spectra are integrated in the range of Q = [0.9, 1.1]. The dashed
curves are elastic lines fitted by Gaussian functions. The solid curves
are fits to data by Lorentzian functions. The red curves are the sum
of the black solid curves.

spectra are fitted by an additional damped harmonic oscillator
(DHO), considering detailed balance and corresponding to the
double Lorentzian function [23,24] represented as follows:

S(Q, ω, T )

= 1

1 − e−h̄ω/kBT

ADHO(Q, T )ω�(Q, T )(
ω2 − ω2

DHO

)2 + (ω�(Q, T ))2
, (2)

where ADHO(Q, T ) is the oscillator strength, and ωDHO is the
eigenfrequency.

The spectrum at 30 K, which is close to the Curie-Weiss
temperature θCW = −32.3 K [18], is well described by a
quasielastic Lorentzian and an inelastic double Lorentzian as
shown in Fig. 4(a). While the quasielastic spectrum coming
from heavily damped spin waves in the paramagnetic state is
expected, the inelastic feature centered at 1.3 meV is more
surprising. This means that the spin correlations with respect
to time develops significantly even at 30 K. The quasielastic
spectrum is suppressed and the inelastic spectrum is enhanced
at 5 K, as indicated in Fig. 4(b), i.e., longer ranged correlations
are present. This means that the paramagnetic response trans-
fers to the inelastic as the spin correlations further develop on
approaching the transition temperature.

IV. ANALYSIS

To identify the magnetic model of NaBa2Mn3F11, we
calculate the spin-wave excitation spectra in linear spin-wave
theory. We assume that the 120◦ structure mainly contributes
to the spectra, and the incommensurate modulation is not
considered for simplicity. We consider the following Hamil-
tonian:

H =
∑
n.n.

J1Si · S j +
∑
n.n.n.

J2Si · S j

+
∑
n.n.

μ0

4π

(gμB)2

|ri j |3
[

Si · S j − 3
(Si · ri j )(S j · ri j )

|ri j |2
]
, (3)
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where J1 and J2 are the nearest- and second-neighbor ex-
change paths as shown in Fig. 1(a). These are both fixed to
be antiferromagnetic to realize the 120◦ structure with k0 =
(0, 0, 0) [19]. The third term is the nearest-neighbor MDD
interaction with the bond vector ri j between the spins. The
strength of the nearest-neighbor MDD interaction JMDD is
fixed: JMDD = μ0(gμB)2/4πr3

n.n., where rn.n. is the distance
of the nearest-neighbor path. From this, JMDD is estimated to
be 4.9 μeV. Note that we ignore further-neighboring MDD
interactions in this calculation because they insignificantly
affect the spin-wave spectrum [21].

The spin-wave dispersion is calculated based on the linear
spin-wave theory using the Holstein-Primakoff formalism
[25]. The spin-wave spectra were calculated and then pow-
der averaged using the SPINW package [26]. The powder
averaged spectra were convoluted by a Gaussian function
with a full-width half-maximum (FWHM) �Q = 0.03 Å−1

and a Lorentzian function with a FWHM �E = 0.18 meV.
�Q = 0.03 Å−1 is evaluated from a Gaussian fit of the Bragg
peaks. Since the spin waves are damped by persistent spin-
fluctuation, we used a Lorentzian function along the energy.
�E = 0.17 meV is optimized by a chi-squared analysis of
observed and calculated constant-Q cuts at Q = 1 Å−1.

We calculate the full powder-averaged spectra in two
cases: (i) for the J1-JMDD and (ii) for the J1-J2-JMDD mod-
els. In the latter model, we set J2 = J1/10 for simplic-
ity. The strength of J1 is evaluated by setting the upper
boundary of the spectrum as 1.57 meV, and is found to
be 0.28 meV for the J1-JMDD model and 0.27 meV for the
J1-J2-JMDD model. From (J1, J2) = (0.28 meV, 0 meV) and
(0.27 meV, 0.027 meV), the Curie-Weiss temperatures θCW =
−(z1J1 + z2J2)S(S + 1)/3kB are estimated to be −37.9 K and
−38.4 K, where S = 5/2 is the Mn2+ spin, z1 = 4 and z2 = 2
are the coordination numbers of the nearest- and second-
neighboring paths, and kB is the Boltzmann constant. These
values are consistent with the θCW = −32.3 K evaluated by
the magnetic susceptibility [18].

The calculated dispersions show three modes as displayed
in Fig. 2(e) for the J1-JMDD model and Fig. 2(f) for the
J1-J2-JMDD model. The excitation at the lowest energy in
the former model is dispersionless, and it corresponds to
the zero-energy mode lifted to finite energy by the MDD
interaction. This result is consistent with previous theoretical
studies [20,21]. The zero-energy mode becomes dispersive
when J2 is included as shown in Fig. 2(f). Comparing with
the experiment, the observed spectrum at 0.21 meV is more
similar to the calculated spectrum in the J1-JMDD model rather
than the one in the J1-J2-JMDD model. This means that the
observed spectrum at 0.21 meV is probably the dispersionless
excitation lifted by the MDD interaction, and J2 is negligible
compared with J1 in NaBa2Mn3F11. The observed spectrum
around 0.2 meV and at 1.5 K is broader than the calculated
spectrum of the J1-JMDD model, implying that strong spin-
fluctuations and/or disorder in the system remain at 1.5 K.

The calculation and experiment at constant-Q cut are
shown in Figs. 5(a) and 5(b). There are two structures at 0.28
and 1.40 meV in the J1-JMDD model and at 0.50 and 1.42 meV
in the J1-J2-JMDD model. In the J1-JMDD model, the calculated
spectrum semi-quantitatively reproduces the anisotropy gap
of 0.21 meV, which means that the MDD interaction is
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FIG. 5. Comparison of constant-Q cut at Q = 1 Å−1 between the
experimental result at T = 1.5 K and calculations. Blue marks are
the experimental data. The red curves are the calculation in which
the interactions are (a) J1 = 0.28 meV, J2 = 0 meV, and JMDD =
4.9 μeV, and (b) J1 = 0.27 meV, J2 = J1/10, and JMDD = 4.9 μeV.
The spectra are integrated in the range of Q = [0.9, 1.1]. � indicates
the peak position of the low energy at Q = 1 Å−1. (c) J2 variation of
� in the calculation with J1 = 0.28 meV and JMDD = 4.9 μeV. The
red curve is a guide for eye.

the main contributor to the magnetic anisotropy. In contrast,
the J1-J2-JMDD model exhibits a broadened low energy peak
shifted to the high energy, which no longer matches the
position of the anisotropy gap, as shown in Fig. 5(b). J2/J1

dependence of the peak position of the low energy at Q = 1
Å−1, �, is shown in Fig. 5(c). � increases with J2/J1 and devi-
ates from the low-energy gap observed experimentally. These
results reinforce that the observed zero-energy excitation at
0.2 meV is mainly lifted by the MDD interaction, and the
second-neighbor interaction J2 is negligible in NaBa2Mn3F11.
We have also confirmed that inclusion of the third-neighbor
interaction in the ab plane J3 makes the anisotropy gap shift
to higher energy in any combination of J2 and J3, as far as the
combination realizes the 120◦ structure.

V. DISCUSSION

The observed dispersionless mode in NaBa2Mn3F11 is
a unique signature of classical kagome physics. We found
that the energy position of the dispersionless mode is re-
produced solely by the MDD interaction, and that second-
neighbor interaction J2 is negligible. Note that the MDD
interaction is ubiquitous in every real magnet even though
the qualitative behavior of most kagome antiferromagnet can
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be explained by models including only the nearest-neighbor
interaction [11–15]. In addition, further neighbor interactions
significantly influence the dispersionless zero-energy mode. It
suppresses the continuous rearrangement of the spin with no
energy cost, and makes the zero-energy mode dispersive [11].
Therefore, we conclude that the observed dispersionless exci-
tation is the ideal zero-energy mode in the realistic classical
kagome antiferromagnet.

The observed anisotropy gap of 0.21 meV is 25% smaller
than the calculated one of 0.28 meV. This reduction is con-
sistent with other systems in which the anisotropy gap in the
spin-wave excitation closes upon approaching the transition
temperature [27–29]. The temperature dependence of the gap
in antiferromagnets is known to be roughly proportional to
the sublattice magnetization. In the neutron diffraction exper-
iment on NaBa2Mn3F11, the sublattice magnetic moment at
1.5 K is 80% of that at 0.25 K [19]. The reduction of the
anisotropy gap is thus expected to be 20% at 1.5 K. This
value approximately coincides to the 25% reduction of the
gap between the experiment and calculation. Accordingly,
we conclude that the main anisotropy lifting the zero-energy
mode is still the MDD interaction in spite of the reduction of
the gap.

VI. CONCLUSION

In conclusion, the magnetic excitations of NaBa2Mn3F11

measured by inelastic neutron scattering exhibit a disper-
sionless excitation at 0.2 meV. The calculations based on
linear spin-wave theory reveals that the excitation is described
by the zero-energy mode lifted mainly by the MDD inter-
action. Thus, NaBa2Mn3F11 is a unique classical kagome

antiferromagnet exhibiting a truly dispersionless lifted zero-
energy excitation. For future work, further studies such as
measurements using single-crystal samples and more detailed
spin-wave calculations are necessary to elucidate the physical
origin of the unusual magnetic excitations.
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APPENDIX: INELASTIC NEUTRON SPECTRA
MEASURED AT THE IN4C SPECTROMETER

In the INS experiment performed at the IN4C spectrometer,
the same sample as measured by the IN6 spectrometer was
used, and it was installed in a dilution refrigerator achieving
60 mK. The energy of the incident neutron beam was 7.1 meV,
yielding a Gaussian energy resolution of �E = 0.31 meV
at the elastic position. INS spectra measured by the IN4C
spectrometer are displayed in Fig. 6. Below 5 K, there is an
excitation at 1.5 meV in agreement with the weak intensity
observed in Figs. 2(a)–2(c). The strong intensity is also ob-
served below 1 meV but its structure is unclear because of
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overlap with elastic incoherent scattering. Magnetic diffuse
quasielastic scattering is also observed at 25 K, which is

totally consistent with the spectrum at 30 K in Fig. 2(d). At
all temperatures, no intensity is observed above 2.5 meV.
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