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Phases of frustrated quantum antiferromagnets on the square and triangular lattices
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We analyze the zero temperature phase diagrams of the spin S quantum antiferromagnet on square and
triangular lattices with competing nearest and next-nearest exchange interactions as well as biquadratic
couplings. We approach the problem from the large S limit. Our primary focus is on determining the extent
to which the existence and character of any quantum disordered phases can be inferred from this approach.
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I. INTRODUCTION

A host of interesting quantum disordered phases—
including various flavors of quantum spin liquids, valence-
bond solids, or quantum nematics—have by now been shown
to exist as a matter of principle [1–7]. However, the issue
of where they exist in the T = 0 phase diagram of simple
models of quantum antiferromagnets with microscopically
plausible interactions is still incompletely understood. Var-
ious numerical and other approaches have provided strong
evidence [8–22] that there is a narrow quantum disordered
regime in spin S = 1/2 and even S = 1 antiferromagnets
near the point at which the classical (S → ∞) model would
undergo a transition from an ordered state favored by the
nearest-neighbor interaction J1 and that favored when the
second-neighbor interaction, J2 is sufficiently large [23–25].

With this physics in mind, we have studied the ground-
state phase diagrams of a family of frustrated quantum an-
tiferromagnets on the 2D square and triangular lattices. The
classical S → ∞ limit is readily analyzed, and indeed for all
the models considered here, this analysis has been carried out
previously [26]. We have extended these results by computing
the leading order (and in some cases higher order) corrections
to various quantities in powers of 1/S. Much of this analysis
has been carried out previously as well [27–32]. However, by
extending the class of models we have considered, and by
taking seriously into account the asymptotic character of the
1/S expansion [33], we have managed to obtain a fuller and
more readily justified picture of the phase diagrams. Since
for the classical pure J1 − J2 model, the transition point at
J2 = 1

2 J1 is highly multicritical, we have augmented the model
studied by including a weak-biquadratic interaction.

Our principle results, as we will discuss, are summarized
in the schematic phase diagrams shown in Fig. 1. For the
most part at large S (where our results are most reliable),
instead of an intermediate quantum disordered phase, we find
direct first order transitions, for instance between a Neel and
stripe phase on the square lattice or the three-sublattice 120◦
antiferromagnet and the stripe phase on the triangular lat-
tice. However, an exponentially narrow regime of a quantum
disordered phase appears on the square lattice between the
spin-vortex crystal (SVC) and the conical spin-vortex crystal
(CSVC) phases (described in Fig. 2) and between the CSVC

and the Neel phase. On the other hand, if we extrapolate our
results to smaller S, we find evidence for regimes of quantum
disordered phases in the same regime of couplings suggested
by earlier numerical studies, as also shown in the figure. Not
reflected in the figure are a number of subtleties—including
the effects of specific topological considerations associated
with the quantization of S—that can alter the nature of the
transitions and of the various quantum disordered phases
in the phase diagrams in Fig. 1; we discuss some of these
subtleties and other ambiguities in Sec. VI below.

II. THE MODEL

We considered interacting spin S operators on a regular 2D
lattice, with nearest and next-nearest-neighbor quadratic inter-
actions as well as nearest-neighbor biquadratic interactions

H = 1

S2

∑
〈i j〉

�Si · �S j + J2

S2

∑
〈〈ik〉〉

�Si · �Sk

− K

S4

∑
〈i j〉

( �Si · �S j )
2 − K ′

S4

∑
〈i jkl〉

(�Si · �S j )(�Sk · �Sl ), (1)

where �S j satisfy canonical commutation relations for spin
operators, [Sa

j , Sb
k ] = iδi jε

abcSc
j with �S j · �S j = S(S + 1). Since

we will always assume that the nearest-neighbor exchange
coupling, J1 > 0, we can chose units of energy such that
J1 = 1 as in the above. We will consider explicitly the cases
of a square and a triangular lattice. Here 〈i j〉 and 〈〈i j〉〉 denote
nearest and next-nearest neighbors, respectively, and 〈i jkl〉
signifies sites forming minimal squares on the lattice. We have
normalized the interactions so that the ground-state energy
density has a well defined S → ∞ limit, when the spins can
be treated as classical Heisenberg rotors.

For large S the effects of K and K ′ are very similar.
For the most part, we will report explicit results for K ′ = 0,
as this is slightly more convenient for the large S analysis.
However, there is a significant difference for S = 1/2, where
K can be incorporated exactly into a renormalized value of
J1, while K ′ remains an independent coupling constant. Thus,
when extrapolating our results to S = 1/2, one should loosely
interpret K as a proxy for K ′.
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(a) K > 0 square lattice (b) K < 0 square lattice

(c) K > 0 triangular lattice (d) K < 0 triangular lattice

FIG. 1. Schematic ground-state phase diagrams for the square
lattice spin S antiferromagnet with K > 0 and K < 0 are shown
in panels (a) and (b), respectively. Panels (c) and (d) are for the
triangular lattice with K > 0 and K < 0, respectively. The large
S portions of the phase diagrams follow directly from the present
analysis—the small S portions involve extrapolation and plausibility
arguments. In the “nematic,” “chiral,” and “quantum disordered”
phases, quantum fluctuations are sufficient to destroy magnetic long-
range order, but in the first two of these we present suggestive
evidence that vestigial order of the indicated variety survives from
the nearby ordered phases. Moreover, in the quantum disordered
phases, additional forms of order, including valence-bond crystalline
and topological order may arise in ways that depend crucially on
whether S is even or odd integer or half-integer.

III. CLASSICAL PHASE DIAGRAMS

A. The square lattice

The zero temperature classical phase diagram in the J2-K
plane for square lattice was discussed in Ref. [26] and is
summarized in Fig. 2. When K > 0, there is a first order
phase transition between the collinear Neel and the collinear

FIG. 2. Classical phase diagram for the square lattice. Collinear
Neel and stripe phases are preferred by positive K . The coplanar
(noncolinear) spin-vortex-crystal (SVC) and noncoplanar conical
spin-vortex-crystal (CSVC) phases are preferred by negative K . In
the CSVC the (spontaneously chosen) XY components of the spins
order as in the SVC, and the z components exhibit Neel order.

FIG. 3. Classical phase diagram for the triangular lattice. The
120◦ phase has three-sublattice coplanar spin order, and the stripe
phase has two-sublattice collinear spin order, as shown in the figure.
The spin-tetrahedron-crystal (STC) phase has noncoplanar order in
which the spins on the four sublattices point to distinct vertices of a
tetrahedron.

stripe phases at J2 = J1/2. By contrast, for K < 0 and of
small magnitude, there are three phases as a function of
increasing J2: a Neel phase, a noncoplanar conical spin-vortex
crystal (CSVC) phase, and a coplanar (noncollinear) spin-
vortex crystal (SVC) phase. The SVC state, illustrated in
Fig. 2, consists of alternating spin vortices on neighboring
plaquettes, oriented with respect to a spontaneously chosen
“X -Y ” plane in spin space. The CSVC can be thought of
as a linear combination of the Neel and SVC states, with
spin components in the preferred X -Y plane oriented as in a
SVC state, while the z components exhibit Neel-type order.
It can thus be viewed as a state with coexisting Neel and
SVC order, and correspondingly the two phase transitions
at J2 = J1/2 + K and J2 = J1/2 are continuous. As we will
focus only on reasonably small |K|, we will neglect the spiral
phase that arises when K is large and negative.

Note that K = 0 is a nongeneric line along which the
classical ground states at J2 > J1/2 are highly degenerate.
Here the 1/S analysis is subtle, involving effects of “order
from disorder.”

B. The triangular lattice

The zero temperature classical phase diagram in the J2-K
plane for the triangular lattice is summarized in Fig. 3. For
K > 0 there is a first order phase transition from a 120◦ three-
sublattice phase for J2 < J1

8 − 9K
16 to a two-sublattice stripe

phase for larger J2. For K < 0, the system undergoes a first
order phase transition from the 120◦ phase to a four-sublattice
noncoplanar spin-tetrahedron crystal (STC) phase at a critical
value of J2 = J1

8 + 5K
48 .

The 120◦ and stripe phases are shown schematically in
Fig. 3. The STC has a four sublattice structure, as also
shown, such that the four spins (up to a global rotation) point
in the direction of the four vertices of a tetrahedron. It is
easily checked that this configuration minimizes the repul-
sive biquadratic interaction in the four-sublattice decomposi-
tion. We will restrict attention to relatively small biquadratic
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interactions K and small |J2 − J1/8|; other interesting phases
could appear for stronger interactions.

IV. FIRST ORDER (1/S) QUANTUM CORRECTIONS

A systematic formalism for computing quantum fluctua-
tions about the classical ground state can be accomplished
using a Holstein-Primikoff (HP) transformation to map the
problem into a problem of weakly interacting bosons. The first
order corrections in powers of 1/S are obtained by keeping
terms to quadratic order in the bosonic fields, i.e., treating
the quantum fluctuations as noninteracting spin waves. Higher
order corrections in powers of 1/S can be computed, in prin-
ciple, by treating the interactions between bosons perturba-
tively. This formalism, and the details of specific calculations,
are reviewed in the Appendix. In this section, we report on the
quantum corrections to various quantities computed to first
order in 1/S.

The ground-state energy per lattice site of a system in a
given state labeled by a (for example, a = Neel) is

Ea = Ecl,a + 1

SN

[∑
k

ωk,a + CK,a

]
. . .

= Ecl,a + S−1Ea + . . . , (2)

where Ecl,a is the classical ground-state energy, N is the
number of sites, ωk,a are the normal mode frequencies, k
(which specifies the Bloch wave-number and possibly other
quantum numbers where necessary) labels the individual
normal modes, CK,a is a constant term proportional to K
from �Si · �Si = S(S + 1) terms in various noncollinear states,
and . . . indicates higher order terms in powers of 1/S. In
particular, the noninteracting part of the HP Hamiltonian can
be expressed in terms of bosonic creation operators, b†

k, as
H0 = ∑

k [Akb†
kbk + Bkb†

−kb†
k + H.c.] where the coefficients

Ak and Bk depend on the nature of the classical ordered state
that serves as the starting point, and

ωk,a =
√

|Ak|2 − |Bk|2 − Ak . (3)

Manifestly, this calculation only makes sense so long as
ωk,a is real for all k, i.e., that |Ak|2 − |Bk|2 � 0. This is
equivalent to the condition that the classical configuration be
at least metastable. The specifics of the calculations of Ea,cl

and Ea for each of the relevant states are discussed in the
Appendix.

Similarly, we will compute the anomalous expectation val-
ues of the various order parameters that characterize aspects
of the broken symmetries of the various phases:

|〈Oa〉| = 1 − SaS−1 + . . . , (4)

where we will always normalize Oa so that the classical
expectation value of its magnitude is 1, and Sa is a function
of J2 and K . In particular, the sublattice magnetization of the
various phases is defined as

ma ≡ 1

SN

∑
R

〈�SR · n̂cl
R

〉
, (5)

where n̂cl
R is a unit vector in the direction (in spin space)

of the corresponding classical orientation of spin at site R.
Again, the explicit calculations pertinent to computing Sa are
summarized in the Appendix.

Needless to say, this expansion is strictly justified only
when the corrections to the classical results are small. Where
there is a first order transition, the order parameter is generally
nonzero even proximate to the transition. We can determine
the location of such phase boundaries by comparing the
energy per site, Ea = Ea′ , of the two relevant phases. Thus, the
first order corrections to the position of such a phase boundary
(e.g., the critical value of J2) can be directly computed from
the first order expression for the ground-state energies.

We will also make estimates of the points at which quan-
tum fluctuations become sufficiently large that they cause
a classical order parameter to vanish. Here we are always
extrapolating our results beyond the range in which the
spin-wave expansion is controlled. Moreover, since the 1/S
expansion is known to be an asymptotic series, there is no
reason to think that this estimate would be improved by
keeping higher order terms in the expansion (at least without
employing additional information to allow a resummation of
the series). Nonetheless, it is instructive to extrapolate the
results to the point at which the leading order expression for
each order parameter would vanish; in this way, we interpret
Sa as an estimate of the critical value of Scrit ≈ Sa at which
each of these order parameters would vanish (baring any
other preemptive phase transition that destroys the order at
larger S).

A. Square lattice with K > 0

The two pertinent phases for K > 0 are the Neel and the
stripe phase. Both are states with nonzero sublattice mag-
netization, ma, with a = Neel and a = str (for stripe order).
The stripe phase also breaks the lattice fourfold rotational
symmetry in a manner that is characterized by the nematic
order parameter,

〈Onem〉 = 1

2NS2

∑
�R

〈�SR · �SR+x − �SR · �SR+y〉. (6)

The factor of 1/2NS2 is included so that in the classical
stripe-ordered state, |〈Onem〉| = 1, so that Snem is defined as
in Eq. (4).

The first order quantum corrections to all these orders
were computed previously [28]. We have added to these
results expressions for the first order shifts in the ground-state
energies, Ea.

Since the classical transition between the Neel and stripe
phases is first order, the 1/S correction to the location of the
phase boundary can be computed directly by identifying the
point at ENeel = Estr

ENeel − Estr = −2(J1 − 2J2) + S−1[ENeel − Estr] + . . . (7)

This is indicated by the heavy purple line in Fig. 4. Note
that quantum fluctuations stabilize the Neel state relative to
the stripe-ordered state. The line terminates at a value of J2
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FIG. 4. First order quantum corrections to various order param-
eters as a function of J2/J1 for the square lattice with K = 0.05.
The thick solid purple line indicates a first order boundary between
the Neel and stripe phases, computed from Eq. (7). The other solid
lines represent 1/Sa for a = Neel (blue), stripe (orange), and nematic
(green). Interpreted as a generalized phase diagram, with 1/S along
the y axis, the green and red regions in the large S portion of the phase
diagram represent the portion that can be determined without further
argument. Other regions of the phase diagram are labeled with letters
for use in the discussion in Sec. V.

at which the classical Neel state ceases to be metastable; to
determine the nature of the phase boundary at larger values of
1/S (smaller S) we will need to rely on indirect arguments, as
we will discuss below. The remaining lines in Fig. 4 show the
calculated values of 1/Sa vs J2. As is clear from the figure, for
all three orders, the values of 1/Sa vanish as J2 → a critical
value that depends on the nature of the order involved. This
would seem to indicate that at this point the corresponding
classical phase is unstable to quantum disordering even for
arbitrary large S so long as S is not infinite. However, for
large S (where our calculations are controlled) these putative
quantum disordering transitions are pre-empted by the first
order transition already discussed. In addition, it is worth
noting that Snem is negative for intermediate J2 (J2 = 0.5 to
0.9 at K = 0.05), which means first order quantum correction
could enhance the nematic order. We will return to these
results in Sec. V below, where we will present arguments to
determine the nature of the phases in various regions labeled
by letters in Fig. 4.

The K dependence of the various quantities at fixed S are
shown in Fig. 5. The thin lines indicate Sa = S and the heavy
purple line marks the point at which one would conclude
ENeel = Estr from the expressions computed to first order in
1/S. The solid lines show results for S = 1/2 while the dashed
lines are for S = 2. The dashed-dotted line is where the
classical Neel state starts/ends to be metastable. It is not the
true boundary between nematic and stripe regime but will later
be useful in Sec. V to estimate the true boundary.

B. Square lattice with K < 0

The relevant phases for K < 0 are the Neel, spin-vortex
crystal (SVC), and conical spin-vortex crystal (CSVC). All
are states with nonzero sublattice magnetization, ma, with

FIG. 5. Contours (thin lines) of constant Sa(J2, K ) = S for the
square lattice with K > 0. The solid lines are for S = 1/2, and
the dashed lines are for S = 2. The heavy purple line indicates the
contour along which ENeel = Estr as computed from Eq. (7). The
dashed-dotted line and letters identify different regions, as discussed
in Sec. V.

a = Neel, a = SVC, and a = CSVC. In addition, we define
composite order parameters that capture specific aspects of
the broken symmetry of various phases. As with the more
familiar case of nematic order arising as “vestigial order [34]”
upon partial melting of a stripe-ordered state, it is possible to
conceive [5] of phases with vestigial broken symmetries that
arise by partial melting of, respectively, a SVC or a CSVC
phase such that the primary order parameter vanishes but the
composite order parameters remain finite. Specifically, we
define

�OSNVC ≡ 1

4NS2

∑
R

eiQ·R〈�SR+ŷ × �SR + �SR × �SR+x̂

+ �SR+x̂ × �SR+x̂+ŷ + �SR+x̂+ŷ × �SR+ŷ〉

Ochir ≡ 1

Nchir

∑
R

〈�SR · (�SR+x × �SR+y)〉 (8)

which we will refer to as the spin-nematic vortex crystal
(SNVC) and chiral (chir) order parameters. Here Q ≡ (π, π ).
These order parameters are, respectively, an axial vector
and a pseudoscalar in spin space, both normalized so that
their magnitude is 1 in a corresponding classically ordered
state. A phase with 〈 �OSNVC〉 �= 0 but mSVC = 0 thus breaks
spin-rotational order in the same sense as a spin nematic,
as well as breaking translational symmetry. (From a broken
symmetry perspective, it is equivalent to a triplet d-density
wave [35].) A phase with 〈Ochir〉 �= 0 but mCSVC = 0 preserves
spin-rotational and translational symmetries but has net spin
chirality.

The dashed lines in Fig. 2 represent continuous transitions
at S = ∞ between states that break distinct symmetries; since
the CSVC interpolates between the Neel and the SVC phase,
such transitions are in principle consistent with Landau theory.
However, what is not generic is that upon approaching the
transition from either side, both phases cease to be metastable
(i.e., an appropriate spin-wave velocity vanishes) along the
phase boundaries. Consequently, we expect that for finite 1/S,
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FIG. 6. First order quantum corrections to various order param-
eters as a function of J2/J1 for square lattice with K = −0.03. The
solid lines represent 1/Sa for a = Neel (blue), conical spin-vortex
crystal (orange), and spin-vortex crystal (green), as well as for
a = chiral (purple) and spin nematic vortex crystal (brown) phases.
Interpreted as a generalized phase diagram, with 1/S along the y
axis, the shaded regions in the large S portion of the phase diagram
represent the portion of the inferred phase diagram that can be
determined without further argument. Other regions of the phase
diagram are labeled with letters for use in later discussions of how
to interpret the results for smaller S.

an intermediate region with neither form of magnetic order
occurs.1

Indeed, as shown in Fig. 6, the curves of 1/Sa vs J2 for the
various phases diverge from each other slowly as J2 is tuned
away from its critical value, J2c(K ) as

1

Sa
∼ −Ga

ln |J2 − J2c| as |J2 − J2c| → 0, (9)

where in this expression J2c = J1/2 + K near the convergence
of the solid blue and solid orange lines (for a = Neel and
a = CSVC) and J2c = J1/2 near the convergence of the solid
orange and solid yellow lines (for a = CSVC and a = SVC).
Note that for each value of a, this expression only applies
as one approaches the critical value J2c from the appropriate
direction and that in all cases Ga > 0 with values that we
compute explicitly in the Appendix. These results strongly
suggest that, even for large S, quantum disordered phases
arise near J2 = J1/2 + K between the Neel and CSVC phases,
shown as the green shaded regions in Fig. 6, and near J2 =
J1/2 between the CSVC and SVC phases, which is too narrow
to show up as a shaded region but is also indicated in the
figure. Note that the purple line marking the contour at which
the extrapolated chiral order vanishes lies inside a quantum
disordered region suggesting that there are (at least) two
distinct phases here—one with vestigial chiral order and one
that is more fully quantum disordered. We will return to these
results in Sec. V below for smaller S, where we will present

1Another possibility, which is however not suggested by the spin-
wave analysis, is that this transition could be replaced by a fluctuation
driven first order transition.

FIG. 7. Contours of constant Sa(J2, K ) = 1/2 for the square
lattice with K < 0. The letters identify different regions discussed
in Sec. V.

arguments to determine the nature of the phases in the various
regions labeled by letters in Fig. 6.

The K dependence of the various quantities at fixed spin
S = 1/2 are shown in Fig. 7. Solid lines indicate Sa = S from
the expressions computed to first order in 1/S. Classical (S →
∞) phase boundaries are added as dashed lines.

C. Triangular lattice with K > 0

The two pertinent phases for K > 0 are the 120◦ and the
stripe phase. Both are states with nonzero sublattice magneti-
zation, ma, with a = 120◦ and a = str (for stripe order). The
stripe phase also breaks the lattice sixfold rotational symmetry
in a manner that is characterized by the (three-state) nematic
order parameter,

Onem ≡ 1

2NS2

∑
�R

{〈SR · SR+δ1〉

+ ei2π/3〈SR · SR+δ2〉 + e−i2π/3〈SR · SR+δ3〉}. (10)

Here, ±δi with i = 1, 2, or 3 are the unit vectors on the
triangular lattice, and Onem = 1 in the classical stripe-ordered
state in which the spins on site R + δ2 and R + δ3 have the
opposite spin orientation as the spins on sites R and R + δ1,
while Onem = (1 ± i

√
3)/2 for the two other classical stripe

ordered states. Like the spin vortex crystal phase in the square
lattice, 120◦ phase also breaks the spin rotational symmetry.
The vestigial phase can be characterized by the spin-nematic
vortex crystal order:

�OSNVC ≡ 2

3
√

3NS2

×
∑
�

〈�S1 × �S2 + �S2 × �S3 + �S3 × �S1〉. (11)

The sum is among all set of spins (�S1, �S2, �S3) in clockwise
order (vorticity), within type A triangles (�). The sum for
spins also in clockwise order within type B triangles (�) can
be shown to be exactly opposite. A phase with 〈 �OSNVC〉 �=
0 but m120◦ = 0 thus breaks spin-rotational order, but, in
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FIG. 8. First order quantum corrections to various order parame-
ters as a function of J2/J1 for triangular lattice with K = 0.003. The
thick solid purple line indicates a first order boundary between the
120◦ and stripe phases, computed from Eq. (12). The other solid lines
represent 1/Sa for a = 120◦ (blue), stripe (orange), SNVC (brown),
and nematic (green). Interpreted as a generalized phase diagram, with
1/S along the y axis, the gray and red regions in the large S portion of
the phase diagram represent the portion of the inferred phase diagram
that can be determined without further argument. Other regions of the
phase diagram are labeled with letters for use in later discussions of
how to interpret the results for smaller S.

contrast with the SNVC phase on the square lattice, it does
not break translational symmetry.

Since the classical transition between the 120◦ and stripe
phase is first order, the 1/S correction to the location of the
phase boundary can be computed directly by identifying the
point at E120◦ = Estr

E120◦ − Estr = −0.5(J1 − 8J2) + S−1[E120◦ − Estr] + . . .

(12)
This is indicated by the heavy purple line in Fig. 8. Note that
quantum fluctuations stabilize the stripe state relative to the
120◦ state. The line terminates at a value of J2 at which the
classical stripe state ceases to be metastable; the remaining
lines in Fig. 8 show the calculated values of 1/Sa vs J2. As
is clear from the figure, for all four orders, 1/Sa approaches
nonzero values as J2 → a critical value that depends on the
nature of the order involved.

The K dependence of the various quantities at fixed S are
shown in Fig. 9. Representative of the large spin case, the line
in the K-J2 plane along which E120◦ = Estr for S = 5 is marked
by the heavy dashed purple line; no solution of this equation
exists in the small spin case, S = 1/2. Conversely, the lines on
which Sa = S in the small spin case, S = 1/2, are marked by
the thin solid lines; no such lines exist at large spin S = 5.

D. Triangular lattice with K < 0

The two pertinent phases for K < 0 are the 120◦ and the
spin-tetrahedron crystal phase. Both are states with nonzero
sublattice magnetization, ma, with a = 120◦ and a = STC (for
spin-tetrahedron crystal order).

Since the classical transition between the 120◦ and STC
phase is first order, the 1/S correction to the location of the

FIG. 9. Contours of constant Sa(J2, K ) = S, as dashed lines for
S = 1/2. The solid heavy purple line indicates the contour along
which E120◦ = Estr as computed from Eq. (12), for S = 5. The letters
identify different regions, as discussed in Sec. V.

phase boundary can be computed directly by identifying the
point at which E120◦ = ESTC. In the classical S → ∞ limit,
this occurs at the limit of metastability of the 120◦ phase.
Moreover, in the entire regime in which both states are clas-
sically metastable, the 120◦ phase always has a lower energy
even when first order quantum corrections are included. Thus,
this first order phase boundary does not vary with S to first
order in 1/S; the first order boundary between 120◦ phase and
STC phases occurs at J2 = J1

8 + K
8 in Fig. 10.

The K dependence of the various quantities at fixed spin
S = 1/2 are shown in Fig. 11. Thin solid lines indicate Sa = S
from the expressions computed to first order in 1/S.

FIG. 10. Phase diagram in the J2/J1-1/S plane, for K = −0.01.
The solid lines represent 1/Sa for a = 120◦ (blue), SNVC (orange),
and STC phase (above S = 1/2 boundary). The shaded regions in
the large S portion of the phase diagram represent the portion of
the inferred phase diagram that can be determined without further
argument. Other regions of the phase diagram are labeled with letters
for use in later discussions of how to interpret the results for smaller
S.
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FIG. 11. Contours of constant Sa(J2, K ) = S, for S = 1/2. The
letters identify different regions discussed in Sec. V. Black line is
where 120◦ phase ceases to be metastable.

V. EXTRAPOLATION TO SMALLER S

While there are surely dangers involved, it is worthwhile
extrapolating the results that are controlled at large S to form
at least a conjectural completion of the phase diagrams, as
shown in Fig. 1. This also allows us to make contact with a
host of numerical studies that have been performed on the
same models for the cases of S = 1/2 and S = 1. In this
section, we outline the logic that leads to this figure. In all
cases, when we refer to “the ground state energy” or “the
magnitude of the order parameter” we are implicitly referred
to quantities that are computed to leading order in 1/S. For
example, when we refer to a region of the phase diagram in
which the Neel order parameter vanishes, we mean a region
where S < SNeel, i.e., where the extrapolated magnitude of the
order parameter would be negative.

A. Square lattice with K > 0

Our analysis of the square lattice with K > 0 is based
on identifying the nature of the ground state in the various
regions shown in Fig. 4 which are labelled by different letters.
Everywhere to the left of the solid purple line (i.e., regions A,
C, and D) the energy of the Neel state is lower than the stripe
phase, implying that the stripe phase is excluded in all these
regions. In region A (i.e., below the blue line) the magnitude
of mNeel is positive, so we identify this as being approximately
the region in which Neel order survives quantum fluctuations.

Conversely, in regions C and D, mNeel vanishes, which we
interpret as meaning that no magnetic order survives in either
region. Indeed, in region D all the orders we have considered
are precluded, so we identify it as a fully quantum disordered
regime. On the other hand, in region C quantum fluctuations
of the nematic order do not cause it to vanish, so we conjecture
that this corresponds to a nematic phase. Similarly all of
region (B) is likely stripe ordered, since the stripe state is
energetically preferred, and its order parameter including first
order quantum corrections is nonzero.

The nature of phase transitions can now be considered. The
transition indicated by the heavy purple line in Fig. 4 between
the Neel and stripe phases is first order and is unambiguously

calculable when S is large. Since we have identified the phase
transitions between different regions separated by thin solid
lines as the points at which quantum fluctuations become large
enough that one or another order parameter vanishes, we have
implicitly assumed that these transitions are all continuous.
For the cases of the Neel to disordered (A to D) and the
nematic to disordered (C to D), these correspond to reasonable
Landau-allowed order to disorder transitions. However, the
implied Neel to nematic transition (A to C) is not Landau
allowed, and indeed to the extent that the first order in 1/S
expressions can be trusted, the nematic order would have
a finite jump across this transition. While, as discussed in
Sec. VI, under special conditions, a “beyond Landau” con-
tinuous deconfined quantum critical transition [36] between a
Neel and a quantum nematic paramagnet is possible [2], far
more likely is that the transition between these two phases is
first order and probably not quite at the same point as the solid
blue line.

The nature of the phase transition between the nematic and
stripe phases is also unclear. This is Landau allowed to be
continuous although at least where it occurs along the heavy
purple line it is probably first order. If we were to extend the
range of parameters shown in Fig. 4 we would find that the
orange line 1/Sstr and the green line 1/Snem cross at J2 ≈
3J1; we interpret this crossing as a bicritical point marking
the end of the first order stripe to nematic phase boundary,
beyond which a direct stripe to quantum disordered transition
is expected.

The K dependence of the phase diagram can be obtained
from the same sort of analysis. Contours of Sa = S and lines
of Ea = Eb in Fig. 5 are now used to estimate the phase
boundaries. Phases (A) Neel, (B) stripe, (C) nematic, and (D)
quantum disordered are explicitly labeled for S = 1/2. For
small K , the width of the “nematiclike” phase (C), and of
the quantum disordered phase (D)—indicated by the black
arrow between blue and dashed-dotted line in the main panel
of Fig. 5)—become exponentially small as S increases, and so
are invisible for S = 2. Together, these considerations lead to
the schematic phase diagram shown in Fig. 1(a).

B. Square lattice with K < 0

For the square lattice with K < 0, the analysis that leads
from Figs. 6 and 7 to the schematic phase diagram in Fig. 1(b)
is relatively straightforward. Specifically, as can be seen in
Fig. 6, the basic topology of the phase diagram is already
established when S is large and hence can be interpreted
without need of extrapolating to smaller S. Thus regions A,
B, C, D, and E correspond to Neel, SVC, CSVC, chiral, and
quantum disordered phases, respectively.

The nature of phase transitions can now be considered.
Again, since we have identified the phase transitions as the
points at which quantum fluctuations become large enough
that one or another order parameter vanishes, we have implic-
itly assumed that these transitions are all continuous. All the
phase transitions here are Landau allowed to be continuous.
The K-dependence phase diagram can be obtained from the
same sort of analysis. In common with the K > 0 case, the
width of the quantum disordered phase (E), and of the chiral
phase (D)—indicated by black arrow in Fig. 7—decreases
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exponentially as S increases. However, one noticeable differ-
ence is that the quantum disordered regime is present even at
large |K| in the phase diagram with K < 0. Note that both
CSVC and chiral phases requires sufficiently large |K| to
develop nonzero order parameters. Therefore, at small |K|, the
width of quantum disordered phase increase as |K| increases.
This can be traced back to the fact that “order by disorder”
phenomena [23] effectively add [37] a positive contribution
to K which tends to stabilize the two collinear states (Neel
and stripe). These considerations lead to the schematic phase
diagram shown in Fig. 1(b), in which phase boundary between
chiral and CSVC phase have been extended and connected to
larger 1/S for artistic reasons.

C. Triangular lattice with K > 0

The schematic phase diagram for the triangular lattice
with K > 0 shown in Fig. 1(c) is obtained by identifying
the most likely phase corresponding to the different labeled
regions in Figs. 8 and 9 which are labeled by different letters.
Everywhere to the left of the solid purple line in Fig. 8 (i.e.,
regions A and D) the energy ( where it can be computed)
of the 120◦ state is lower than that of the stripe phase,
implying that the stripe phase is excluded. In region A (i.e.,
below the blue line) the magnitude of m120◦ is positive, so
we identify this as the region in which 120◦ order survives
quantum fluctuations. However, in regions D, m120◦ vanishes,
which we interpret as meaning that no magnetic order survives
in this region. Indeed, in region D all the orders we have
considered are precluded, so we identify it as a fully quantum
disordered regime. Similarly all of region B is likely stripe
ordered, since the stripe state is energetically preferred, and
its order parameter including first order quantum corrections
is nonzero. In region C, the nematic order does not vanish,
while stripe order vanishes and m120◦ phase is energetically
excluded; so we conjecture that this corresponds to a nematic
phase.

The nature of phase transitions can now be considered.
The analysis closely parallels that of the square lattice with
K > 0. The transition indicated by the heavy purple line
in Fig. 8 between the m120◦ and stripe phases is first order
and is unambiguously calculable when S is large. Since we
have identified the phase transitions between different regions
separated by thin solid lines as the points at which quantum
fluctuations become large enough that one or another order
parameter vanishes, we have implicitly assumed that these
transitions are all continuous. For the cases of the m120◦ to
disordered (A to D) and the nematic to disordered (C to
D), these correspond to reasonable Landau-allowed order to
disorder transitions. However, the implied m120◦ to nematic
transition (A to C) is not Landau allowed, and indeed to the
extent that the first order in 1/S expressions can be trusted, the
nematic order would have a finite jump across this transition.
It is thus likely that the transition between these two phases is
first order and probably not quite at the same point as the solid
blue line. The nature of the phase transition between nematic
and stripe phase is also unclear. This is Landau allowed to
be continuous. Different from square lattice, we are unable to
extend the range of parameters shown in Fig. 8 to larger J2,
since there are other relevant phases. Thus, we are unable to

confirm the existence of a bicritical point marking the end of
the first order stripe to nematic phase boundary, beyond which
a direct stripe to quantum disordered transition is expected.

The K dependence of the phase diagram can be obtained
from the same sort of analysis. Contours of Sa = S for S =
1/2 (dashed lines) and line of Ea = Eb for S = 5 (solid line)
in Fig. 9 are now used to estimate the phase boundaries.
Phases (A) 120◦, (B) stripe, (C) nematiclike, and (D) quantum
disordered are explicitly labeled for S = 1/2. Contrary to the
results of the square lattice, since quantum correction S to
order parameter does not have the logarithmic divergence as
J2 approaches the critical value J1/8, the width of the nematic
and quantum disordered phase does not decay exponentially
as S increases. It has been shown in Fig. 8 that these two
phases do not appear at large spin.

D. Triangular lattice with K < 0

Finally, we use the results in Figs. 10 and Fig. 11 to
construct the qualitative phase diagram for the triangular
lattice with K < 0 shown in Fig. 1(d). It should be noted
that the solid line in Fig. 10 indicating the value of 1/Sa

for a = STC is not shown since 1/SSTC > 2 corresponding
to an unphysical value of S < 1/2. For region A under the
blue line the 120◦ order parameter is apparently nonzero.
We thus identify region A with the 120◦ phase. Region B is
identified with the STC phase, since only the STC state is
metastable, and its order parameter is estimated to be nonzero.
Region C is not in the 120◦ nor the STC phase, since the
120◦ order parameter vanishes, and the STC state has a higher
energy than the 120◦ state. It may be in a quantum disordered
phase, or another symmetry breaking vestigial phases that
we have not considered. The K-dependence phase diagram at
fixed S = 1/2 is summarized in Fig. 11. As is the case with
the square lattice, quantum fluctuations tend to stabilize the
positive K phases relative to those with negative K as a form
of order from disorder.

The phase boundaries are now given by two lines. One is
the blue line for 1/S120◦ in Fig. 10 that separates the 120◦
phase and the quantum disordered phase. Another one is
at J2 = J1

8 + K
8 , where the classical 120◦ state ceases to be

metastable, that separates STC phase with other two phases.
The phase transition between the 120◦ phase and the quantum
disordered phase should be continuous, since the order param-
eter O120◦ vanishes continuously upon approaching the phase
boundary. The phase transitions between STC phase and the
other two phases (120◦ and quantum disordered phase) should
be first order, since the STC order parameter OSTC is nonzero
upon approaching the phase boundaries.

E. Comments on the structure of the 1/S expansion

Based on the above extrapolation of the first order in 1/S
expansion to smaller S, we obtained the schematic phase
diagrams in Fig. 1. As stated in the beginning of this sec-
tion, the extrapolation is dangerous and its validity cannot
be guaranteed. However, in this subsection, we would like
to comment on the validity of this extrapolation, by com-
paring the results of the first order 1/S expansion with the
second order 1/S expansion. Since the 1/S expansion is an
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FIG. 12. Stripe order parameter Ostr, calculated from first and
second quantum correction as a function of 1/S. Solid lines are for
J2 = 0.7J1, and dashed lines are for J2 = 0.48J1, under the same K .

asymptotic series [33], where the first and second order results
differ substantially, it is far from clear which is closer to the
correct answer. Therefore, this comparison only functions as
a “comment” rather than any systematic proof of the validity
of the above extrapolations.

For illustration purpose, we only focus on the stability of
the stripe phase on the square lattice with K > 0. This has
been calculated in Ref. [38], for the case without a biquadratic
interaction. In general, the biquadratic interaction can be
approximated by the following quadratic interaction.

(Si · S j )
2 ≈ [2(Si · S j )〈Si · S j〉 − 〈Si · S j〉2] , (13)

and if the classical configuration is collinear, 〈Si · S j〉 can
then be replaced by its classical expectation value. For the
stripe phase, the above mean-field approximation leads an
anisotropic term, which has already been included in the
previous study [38].

As a function of 1/S, the stripe order parameter Ostr under
first order (orange line) and second order (green line) 1/S
expansion are plotted in Fig. 12. Solid lines are for J2 = 0.7J1,
and dashed lines are for J2 = 0.5J1. As 1/S grows, the second
order results start deviating from the first order quantum
correction. The first order result on Oa should not be trusted
if the deviation is big. Therefore, as J2 → J1/2 − K , the order
parameter Oa from first order quantum correction becomes
trustable only at large spin.

In our previous extrapolations, we use S to estimate the
true phase boundary Scrit. This estimation in general works
better at larger spin and further away from the critical point.

VI. BEYOND SPIN-WAVE ANALYSIS

There are a large number of additional subtleties that we
have overlooked in the present analysis. We have treated 1/S
as a continuous parameter that tunes the extent of the quan-
tum oscillations—this is very similar in spirit to the classic
approach of Ref. [39]. However, S is in fact a discrete variable,
and there can be differences in the physics depending on
whether it is integer or half-integer [40–42] and even whether
it is an even integer or an odd integer [2,43]. This can effect the

nature of the allowed phases and opens up the possibility of
exotic, beyond Landau deconfined quantum phase transitions
[36]. For instance, generalizations of the famous Lieb-Schulz-
Mattis theorem [44–46] imply that the disordered phase for a
half-integer spin must either have a broken symmetry (e.g.,
exhibit valence-bond-crystalline order) or be one or another
of quantum spin liquid with topological order.

Since most of the numerical studies to date have been
carried out for S = 1/2, or, to a lesser extent, for S = 1, these
additional subtleties are likely to be significant. However,
we can still distinguish magnetically ordered phases from
quantum disordered phases. Moreover, within the regime of
quantum disordered phases, we may be able to distinguish
those that exhibit broken symmetries as a form of vestigial
order, if the order is accompanied by reasonably long but still
finite range correlations that reflect the structure of a nearby
magnetically order, vs broken symmetries (such as the before
mentioned topological order) that are more readily identified
with topological terms in the effective field theory [42], rather
than with any proximate magnetically ordered state.

Intense effort and enormous creativity has been mar-
shaled for the numerical search for intermediate nonmagnetic
quantum-disordered states in the J1 − J2 models (with K =
0). For S = 1/2 on the square [9–18] and triangular lattice
[19–22], various numerical works have confirmed the exis-
tence of intermediate quantum disordered states. However,
the nature of the intermediate state(s) is still under debate.
For S = 1 on a square lattice, there is contradictory evidence
concerning the existence of intermediate phases [8,47,48];
notably, in the study [8] that is most strongly indicative of
the occurrence of such a phase, it is found to occur in an
exceedingly narrow range of J2 and to have a clear nematic
character. We are unaware of any studies of the S = 1 model
on the triangular lattice. Since finite S effectively adds a
positive K , one should compare the above numerical studies

FIG. 13. Schematic phase diagram for the square lattice in the
J2-K plane, representative of the expected behavior with a fixed small
value of S. All results are based on speculative extrapolations made
on the basis of the large S results. The results suggest that negative
K is likely to enhance the range of stability of various quantum
disordered phases. Double solid lines denote the first-order phase
transitions. Black lines are imported from Figs. 5 and 7, and green
lines are reasonable continuations. Some forms of vestigial order that
may persist within the quantum disordered regime are indicated in
parentheses.
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with the phase diagrams in our work with K > 0. At least in
terms of the general topology of the phase diagram, the results
of the existing numerical studies appear to be consistent with
those shown in Figs. 1(a) and 1(c).

An interesting future direction for numerical studies sug-
gested by the present study is to investigate the model with
negative K (or K ′ for S = 1/2) where the quantum disordered
phases are found to persist to large S and to have a broader
region of stability. Based on the speculative extension of our
previous discussion to some fixed small S, a schematic phase
diagram in the J2-K plane for the square lattice is shown in
Fig. 13.

VII. CONCLUSION

We have analyzed the Heisenberg antiferromagnet at T =
0 on square and triangular lattice with nearest neighbor

and next-nearest neighbor quadratic interactions, and nearest-
neighbor biquadratic interactions using linear spin wave the-
ory. At large S (where the results are most readily justified)
we found that the classical first order transition between the
Neel and stripe phase is stable. However, the classical contin-
uous phase transitions involving various noncolinear magnetic
phases are eliminated, even at large S, and are replaced by
intermediate quantum disordered phases. Our results indicate
new regimes to search for quantum disordered phases in future
numerical work.
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APPENDIX A: HOLSTEIN-PRIMAKOFF TRANSFORMATION FOR COPLANAR (INCLUDING COLLINEAR)
CONFIGURATION

In this section, we would like to review a systematic way to perform Holstein-Primakoff transformation, if the classical
configuration is coplanar. This will eventually lead to a translational invariant Hamiltonian, in terms of creation and annihilation
operators, for Neel, stripe, and SVC state. Without loss of generality, let us suppose spins in the classical configuration are in the
xz plane �ni = (sin θi, 0, cos θi ).

If θ = 0, the standard Holstein-Primakoff transformation is

(Jx0, Jy0, Jz0) = (
√

2S
b + b†

2
,
√

2S
b − b†

2i
, S − b†b). (A1)

Here, we have already taken the leading order contribution in HP transformation. Generally, for arbitrary θi, we can choose

Jx = Jx0 cos θi + Jz0 sin θi

Jy = Jy0

Jz = Jz0 cos θi − Jx0 sin θi. (A2)

Now we would like to explicitly write down �Ji · �Jj , up to quadratic terms in terms of bosonic operators. The constant term �Ji · �Jj

is S2 cos θ if Ji and Jj are different spin, and S(S + 1) if i = j. This will be important when calculating ground state energy. The
linear terms in �Ji · �Jj are

1

S
(�Ji · �Jj )linear = sin θ√

2
(bi + b†

i − b j − b†
j ), (A3)

which is useful in the biquadratic interaction (�Ji · �Jj )2, which contains the square of the above linear terms. The quadratic terms
in �Ji · �Jj are

1

S
(�Ji · �Jj )quadratic = −(b†

i bi + b†
jb j ) cos θ + 1

2
(1 + cos θ )(b†

i b j + c.c.) + 1

2
(−1 + cos θ )(b†

i b†
j + c.c.). (A4)

θ is the angle difference between i and j in the classical configuration.
For the coplanar Neel, stripe, and SVC phase, cos θ and sin2 θ for nearest neighbored and next-nearest neighbored spins is

invariant under translation. Therefore, a translational invariant Hamiltonian in terms of creation and annihilation operators is
expected.

In the next subsections, we will explicitly derive the resulted Hamiltonian for the Neel and stripe phase. We will include the
result for the SVC phase.

1. Square lattice-Neel and stripe phase

In this section, we consider the general ordering vector �Q = (π, θ ), θ = 0, π , which describes the Neel-stripe transition. For
the nearest neighbored J1 terms, angle difference is ±π along the x direction and ±θ along the y direction. Plugging in the
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Holstein-Primakoff transformation in Eq. (A4), we get

(J1/S) ×
⎡
⎣∑

i

2(1 − cos θ )b†
i bi +

∑
〈i j〉Y

1

2
(1 + cos θ )(b†

i b j + c.c.) +
∑
〈i j〉Y

1

2
(−1 + cos θ )(b†

i b†
j + c.c.) +

∑
〈i j〉X

(−1)(b†
i b†

j + c.c.)

⎤
⎦

(A5)

Note that the summation along x and y are separately written down. For second nearest neighbored J2 terms, the angle
difference is ±(π ± θ ). After Holstein-Primakoff transformation, we have

(J2/S) ×
⎡
⎣∑

i

4 cos θb†
i bi +

∑
〈〈i j〉〉

1

2
(1 − cos θ )(b†

i b j + c.c.) +
∑
〈〈i j〉〉

1

2
(−1 − cos θ )(b†

i b j + c.c.)

⎤
⎦. (A6)

For the biquadratic terms, we first perform mean-field approximation and then Holstein-Primakoff transformation:

− K/S4
∑
〈i j〉

(�Ji · �Jj )
2 = 2K/S2

∑
〈i j〉X

�Ji · �Jj − 2K/S2 cos θ
∑
〈i j〉Y

�Ji · �Jj − KN (1 + cos2 θ )

= (2K/S) ×
⎡
⎣∑

i

2(1 + cos2 θ )b†
i bi +

∑
〈i j〉Y

1

2
(−1 − cos θ ) cos θ (b†

i b j + c.c.)

+
∑
〈i j〉Y

1

2
(1 − cos θ ) cos θ (b†

i b†
j + c.c.) +

∑
〈i j〉X

(−1)(b†
i b†

j + c.c.)

⎤
⎦ − KN (1 + cos2 θ ).

(A7)

N is the total number of sites.
Now we can perform Fourier transformation

b†
i = 1√

N

∑
�k

ei�k·Ri b†
�k . (A8)

Dropping the constant terms, we have

H = 1

S

∑
�k

Ak (b†
kbk + b†

−kb−k ) + Bk (b†
kb†

−k + bkb−k )

Ak = [(1 − cos θ ) + 1

2
(cos θ + 1) cos ky]J1 + [2 cos θ + (1 − cos θ ) cos kx cos ky]J2

+
[

(1 + cos2 θ ) + 1

2
(− cos θ − 1) cos θ cos ky

]
(2K )

Bk =
[

1

2
(cos θ − 1) cos ky − cos kx

]
J1 + (−1 − cos θ ) cos kx cos kyJ2

+
[

1

2
(− cos θ + 1) cos θ cos ky − cos kx

]
(2K ).

(A9)

By taking θ = 0, π , we can reproduce the result for the stripe and Neel phase, as obtained in Ref. [28].

2. Square lattice-SVC phase

In the classical configuration for the SVC state, the angle between nearest neighbors is π/2, and the angle difference between
next-nearest neighbors is π . The Hamiltonian in terms of bosonic operators is

H = 1

S

∑
�k

Ak (b†
kbk + b†

−kb−k ) + Bk (b†
kb†

−k + bkb−k ) + const.

Ak = J1

2
(cos kx + cos ky) + 2J2 − K (2 − cos kx − cos ky)

Bk = −J1

2
(cos kx + cos ky) − 2J2 cos kx cos ky − K (2 − cos kx − cos ky). (A10)
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3. Triangular lattice-120◦ phase and stripe phase

In this section, we will apply Holstein-Primakoff transformation to the coplanar 120◦ phase and stripe phase. We will
explicitly derive the 120◦ phase, while providing the result for the stripe phase.

For 120◦ phase, the angle difference is 120◦ for all nearest neighbors. Plugging in the Holstein-Primakoff transformation, we
get

(J1/S) ×
⎡
⎣∑

i

3b†
i bi +

∑
〈i j〉

1

4
(b†

i b j + c.c.) +
∑
〈i j

−3

4
(b†

i b†
j + c.c.)

⎤
⎦. (A11)

For the next-nearest neighbored J2 terms, angle difference is 0◦, that leads to

(J2/S) ×
⎡
⎣∑

i

−6b†
i bi +

∑
〈i j〉

(b†
i b j + c.c.)

⎤
⎦. (A12)

Biquadratic terms can be treated by performing mean-field approximation. Firstly, similar to the derivation of Neel phase for
square lattice, it effectively modifies the nearest neighbor coupling constant J1 as follows:

J1 → J1 − 2K/S2〈Ji · Jj〉 = J1 + K. (A13)

Secondly, since the configuration is not collinear, there is an extra term from the square of the linear term in HP transformation

−K sin2 120◦ ∑
〈i j〉

(Ji,x0 − Jj,x0)2. (A14)

After performing Fourier transformation, the final result for 120◦ phase is

H = Ecl + 1

S

∑
�k

Ak (b†
kbk + b†

−kb−k ) + Bk (b†
kb†

−k + bkb−k ) − 9KN

8S

Ak = (J1 + K )

[
3

2
(1 + 1

2
γk )

]
+ J2(−3 + 3γ ′

k ) − 9K

4
(1 − γk )

Bk = (J1 + K )

(
−9

4
γk

)
− 9K

4
(1 − γk )

γk = 1

6

∑
�δ1

exp(i�k · �δ1) = 1

3

(
cos ky + 2 cos

√
3kx

2
cos

ky

2

)

γ ′
k = 1

6

∑
�δ2

exp(i�k · �δ2) = 1

3

(
cos

√
3kx + 2 cos

√
3kx

2
cos

3ky

2

)
.

The final result for stripe phase is

H = Ecl + 1

S

∑
�k

Ak (b†
kbk + b†

−kb−k ) + Bk (b†
kb†

−k + bkb−k )

Ak = J1(1 + cos ky) + J2(1 + cos
√

3kx ) + 2K (3 − cos ky)

Bk = −2J1

(
cos

√
3kx

2
cos

ky

2

)
− 2J2

(
cos

√
3kx

2
cos

3ky

2

)
− 4K

(
cos

√
3kx

2
cos

ky

2

)
.

APPENDIX B: HOLSTEIN-PRIMAKOFF TRANSFORMATION FOR NONCOPLANAR CONFIGURATION

In this section, we focus on the system with noncoplanar classical configuration. The spins in the classical configuration is in
general �n = (sin θ cos φ, sin θ sin φ, cos θ ).

If θ = 0, standard Holstein-Primakoff transformation for S is

(Jx0, Jy0, Jz0) =
(√

2S
b + b†

2
,
√

2S
b − b†

2i
, S − b†b

)
. (B1)
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Generally, for arbitrary θ and φ, we can set

Jx = Jx0 cos θ cos φ − Jy0 sin φ + Jz0 sin θ cos φ

Jy = Jx0 cos θ sin φ + Jy0 cos φ + Jz0 sin θ sin φ

Jz = −Jx0 sin θ + Jz0 cos θ. (B2)

Note that commutation relationship and classical extrapolation still holds if we perform the following transformation

Jx0 → Jx0 cos α + Jy0 sin α

Jy0 → Jy0 cos α − Jx0 sin α,
(B3)

which is useful when simplifying the result.

1. Square lattice-CSVC phase

For the classical configuration of CSVC state, the z components of spins follow Neel ordering, while xy components follow
SVC ordering. Let the magnitude of the z component be cos φ, so the xy component has magnitude of sin φ. By minimizing the
classical Hamiltonian, we get

cos2 φ = J1 − 2J2

|2K| . (B4)

Here we would like to explicitly write HP transformation for four spins in a square, which corresponds to four sublattices in the
system. Spins in the same sublattice should be expressed in the same way.

Ji = (Jz0 sin φ + Jx0 cos φ, Jy0, Jz0 cos φ − Jx0 sin φ)

Jj = (Jy0, Jz0 sin φ + Jx0 cos φ,−Jz0 cos φ + Jx0 sin φ)

Jk = (−Jy0,−Jz0 sin φ − Jx0 cos φ,−Jz0 cos φ + Jx0 sin φ)

Jl = (−Jz0 sin φ − Jx0 cos φ,−Jy0, Jz0 cos φ − Jx0 sin φ)

(B5)

Here Ji and Jl are on one diagonal, while Jj and Jk are on the other. The above HP transformation will produce the following
translational invariant Hamiltonian, in terms of creation and annihilation operators.

H = 1

S

∑
�k

Ak (b†
kbk + b†

−kb−k ) + Bk (b†
kb†

−k + bkb−k ) + const.

Ak = (J1 + 2K cos2 φ)

[
2 cos2 φ − 1

2
sin2 φ(cos kx + cos ky)

]
+ J2[2 − 4 cos2 φ − 2 cos2 φ cos kx cos ky]

− K sin2 φ(1 + cos2 φ)(2 + cos kx + cos ky)

Bk = (J1 + 2K cos2 φ)

[
−1

2
sin2 φ(cos kx + cos ky) − i cos φ(cos kx − cos ky)

]
+ J2[2 sin2 φ cos kx cos ky]

+ K[sin4 φ(2 + cos kx + cos ky) + 2i sin2 φ cos φ(cos kx − cos ky)] (B6)

One can check that the above Ak and Bk can recover spin wave excitation energy for Neel phase and vortex lattice phase by
taking φ = 0 and φ = π/2. Note that the classical configuration has four sublattices, so when comparing spin wave excitation
energies, we need to fold the Brillouin zone back to kx ∈ [−π/2, π/2], ky ∈ [−π/2, π/2].

2. Triangular lattice-STC phase

For STC state, we decompose the system into four sublattices. HP transformation for spins in the four sublattices is

Ji = (x, y, z)

Jj = (cc′x − cs′z + sy,−cy + sc′x − ss′z,−c′z − s′x)

Jk = (−c′x + s′z, y,−c′z − s′x)

Jl = (cc′x − cs′z − sy,−cy − sc′x + ss′z,−c′z − s′x). (B7)

Here, (x, y, z) are short for (Sx0, Sy0, Sz0). c, s = (1/2,
√

3/2) and (c′, s′) = (1/3, 2
√

2/3).
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The Hamiltonian is

H = 1

S

∑
k




[
Ak Bk

B†
k A∗

−k

]

† − 4K

3S
(4N )


 = [b1k, b2k, b3k, b4k, b†
1−k, b†

2−k, b†
3−k, b†

4−k]

Ak =
(

J1 + 2

3
K

)
AJ ◦ M1 + J2AJ ◦ M2 − 8K

9
AK ◦ M1

Bk =
(

J1 + 2

3
K

)
BJ ◦ M1 + J2BJ ◦ M2 − 8K

9
BK ◦ M1. (B8)

Due to the limit of space, we express Ak and Bk using element-wise product ◦. The above 4 × 4 matrices are

AJ =

⎡
⎢⎢⎣

1 −1/6 + i
√

3/6 1/3 −1/6 − i
√

3/6
−1/6 − i

√
3/6 1 1/6 + i

√
3/6 1/6 − i

√
3/6

1/3 1/6 − i
√

3/6 1 1/6 + i
√

3/6
−1/6 + i

√
3/6 1/6 + i

√
3/6 1/6 − i

√
3/6 1

⎤
⎥⎥⎦

AK =

⎡
⎢⎢⎣

3 1/2 − i
√

3/2 −1 1/2 + i
√

3/2
1/2 + i

√
3/2 3 −1/2 − i

√
3/2 −1/2 + i

√
3/2

−1 −1/2 + i
√

3/2 3 −1/2 − i
√

3/2
1/2 − i

√
3/2 −1/2 − i

√
3/2 −1/2 + i

√
3/2 3

⎤
⎥⎥⎦

BJ =

⎡
⎢⎢⎣

0 1/3 − i
√

3/3 −2/3 1/3 + i
√

3/3
1/3 − i

√
3/3 0 2/3 2/3

−2/3 2/3 0 2/3
1/3 + i

√
3/3 2/3 2/3 0

⎤
⎥⎥⎦

BK =

⎡
⎢⎢⎣

0 1/2 − i
√

3/2 −1 1/2 + i
√

3/2
1/2 − i

√
3/2 0 1 1

−1 1 0 1
1/2 + i

√
3/2 1 1 0

⎤
⎥⎥⎦

M1 = 1

2

⎡
⎢⎢⎢⎣

2 1 + e−i
√

3kx+iky 1 + e2iky 1 + ei
√

3kx+iky

1 + ei
√

3kx−iky 2 1 + ei
√

3kx+iky ei
√

3kx+iky + ei
√

3kx−iky

1 + e−2iky 1 + e−i
√

3kx−iky 2 1 + ei
√

3kx−iky

1 + e−i
√

3kx−iky e−i
√

3kx−iky + e−i
√

3kx+iky 1 + e−i
√

3kx+iky 2

⎤
⎥⎥⎥⎦

M2 = 1

2

⎡
⎢⎢⎢⎣

2 e−i
√

3kx−iky + e2iky e−i
√

3kx+iky + ei
√

3kx+iky ei
√

3kx−iky + e2iky

ei
√

3kx+iky + e−2iky 2 ei
√

3kx−iky + e2iky 1 + e2i
√

3kx

ei
√

3kx−iky + e−i
√

3kx−iky e−i
√

3kx+iky + e−2iky 2 ei
√

3kx+iky + e−2iky

e−i
√

3kx+iky + e−2iky 1 + e−2i
√

3kx e−i
√

3kx−iky + e2iky 2

⎤
⎥⎥⎥⎦. (B9)

The Hamiltonian can then be diagonalized using standard Bogoliubov transformation.

APPENDIX C: SQUARE LATTICE-NEMATIC AND SNVC AND CHIRAL PHASE

Let us first consider SNVC phase. Without loss of generality, let us consider Si along x and Si+x̂ along z. The cross product
is then (Y Z + XY,−XX − ZZ, ZY − Y X ). Here letter X is short for Sx0, and we keep the first letter for Si and second letter
for Si+x̂. Now we can plug in HP transformation. After summing over site i, only the second component of the cross product is
nonzero, since x and z components contain integration of odd function of kx. The result is

SSNVC =
∑

�k

(
2 − cos(kx ) + cos(ky)

2

)
v2

k +
(

− cos(kx ) + cos(ky)

2

)
ukvk

v2
k = 1

2

⎛
⎝ |Ak|√

A2
k − B2

k

− 1

⎞
⎠

ukvk = −1

2

Bk√
A2

k − B2
k

sign(Ak ). (C1)
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For the chiral state, we can perform the same calculation. We first write order parameter in terms of Sx0,y0,z0 and then plug in
HP transformation. Eventually we sum up all sites. The result is

Schir = 1

cos φ

∑
�k

[
3 cos φ − cos φ cos(kx − ky) + 1

2
(cos kx + cos ky)

]
v2

k +
[

cos φ cos(kx − ky) + 1

2
(cos kx + cos ky)

]
ukvk .

(C2)
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