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Electric field controllable high-spin SrRuO3 driven by a solid ionic junction
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Controlling magnetism and spin structures in strongly correlated systems by using electric fields is of
fundamental importance but challenging. Here, a high-spin ruthenate phase is achieved via a solid ionic chemical
junction at the SrRuO3/SrTiO3 interface with distinct formation energies and diffusion barriers of oxygen va-
cancies, an analog to electronic band alignment in the semiconductor heterojunction. Oxygen vacancies trapped
within this interfacial SrRuO3 reconstruct the Ru-4d electronic structure and orbital occupancy, leading to an
enhanced magnetic moment. Furthermore, this emergent interfacial magnetic phase can be switched reversibly
by electric-field-rectifying oxygen migration in a solid-state ionic gating device, providing a framework for the
atomic design of functionalities in strongly correlated oxides using a method of solid chemistry.

DOI: 10.1103/PhysRevB.101.214401

I. INTRODUCTION

Controlling magnetism and low-dimensional spin tex-
tures in strongly correlated systems by electric fields has a
widespread potential for many information processing appli-
cations requiring low-power consumption [1–4]. Over past
decades, the spin degree of freedom has been effectively con-
trolled by electric fields in magnetoelectrics and multiferroic
heterostructures [5–11]. However, the control of these ferroic
orderings and direct characterization of their coupled behav-
iors by using advanced approaches are still fundamentally
challenging [1,3]. Therefore, it is desirable to design new
correlated electron systems with atomic precision by engi-
neering material chemistries and architectures [3]. Transition-
metal oxides (TMOs) with strong d-electron correlations and
spin-orbit coupling (SOC) may provide an effective platform
towards emergent magnetism with controllable spin textures
[12–20].

SrRuO3 (SRO) is a 4d TMO with a coexistence of SOC
and itinerant ferromagnetism [21], leading to a large variety of
physical behaviors which have been experimentally observed,
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such as high-spin states driven by crystal orientations [22–24],
magnetic skyrmions due to the broken symmetry [25–28],
and metal-insulator transition [29–31], etc. More importantly,
emergent physical behaviors have been theoretically proposed
in SRO recently [13,15,32,33], triggering broad attention to
discover the potential quantum states in this material. Among
these theories, heavy electron doping in SRO seems to be
effective to further enhance magnetism and change electronic
structure [15], which is, however, experimentally challenging
in this oxide with a metallic ground state. Although a high
concentration of the oxygen vacancy (vO) is equivalent to
electron doping, it is hard to be achieved in bulk SRO. This
gives a strong impetus to explore an alternative pathway to
build upon the above physical scenario. Inspired by electrons
rectifying at solid-state junctions, such as the well-known
diode at p-n junctions [34], a solid ionic chemical junction
may be used to rectify vO by using its chemical discontinuity
across the interface [35].

II. EPITAXIAL SRO THIN FILMS WITH
MONOCLINIC STRUCTURE

Atomically flat SRO thin films with accurate thicknesses
of 5, 10, 30, and 50 uc (where uc is the unit cell) were
grown on (001)-oriented SrTiO3 (STO) substrates with TiO2

termination by pulsed laser deposition with in-situ reflection
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FIG. 1. High-quality monoclinic SRO thin films without strain relaxation. (a) The θ -2θ SXRD spectra for (002)-oriented sets of peaks.
The SRO thin film is the pseudocubic phase (pc). (b) High-resolution cross-section STEM image of the 50-uc SRO thin film. (c) Line profiles
of the SrO layers below 15 uc at the pseudo-[001] orientation (top panel) and line profiles of the SrO layers for the first uc and the 15th uc of
the SRO thin film (bottom panel). (d) RSM for the 50-uc SRO on STO (001) around (002) and {103} STO Bragg reflection in the reciprocal
lattice units of STO with the thickness fringes. The dissimilar values (�L) indicate the monoclinic structure where cell parameters measured
for the 50-uc SRO thin film are apc = 3.905, bpc = 3.905, cpc = 3.967 Å, α = 90◦, β = 89.82◦, and γ = 90◦.

high-energy electron diffraction. Through a synchrotron-
based x-ray-diffraction (SXRD) study, a set of (002)-oriented
peaks in Fig. 1(a) reveals SRO thin films with a c-axis lattice
constant of 3.967 Å (thickness up to 50 uc). The epitaxial
growth of SRO thin films is shown in Fig. S1 of the Supple-
mental Material [36]. High-resolution scanning transmission
electron microscopy (STEM) in Fig. 1(b) indicates a high-
quality and dislocation-free epitaxy for the SRO thin films.
The out-of-plane and in-plane lattice structures in STEM
[Fig. 1(c)] illustrate that there is an in-plane compressive
strain (∼ − 0.45%) without any relaxation and phase sepa-
ration across the whole SRO thin films, which are consistent
with the results obtained from the x-ray reciprocal space
mapping (RSM) [Fig. 1(d)]. The monoclinic structure of the
SRO thin films [37] has been further revealed by the x-ray
RSM. The details of growth and measurements can be seen in
the Supplemental Material [36].

III. EMERGENT HIGH-SPIN SRO DRIVEN BY
INTERFACIALLY TRAPPED OXYGEN VACANCIES

The ferromagnetic Curie temperature (TC) was measured
as a function of thickness by temperature-dependent magne-
tization and resistivity (M-T and R-T ) [21,40]. As shown in
Figs. 2(a) and 2(b), TC ∼ 125 K is observed for the 50-, 30-,
and 10-uc SRO thin films, whereas another TC ∼ 153 K is
observed in thin films with thicknesses of 30, 10, and 5 uc.
The TC ∼ 125 K is ascribed to the fully strained monoclinic
structure as studied previously [37,41], which is lower than
the bulk orthorhombic SRO (TC is ∼160 K) [42]. The two
distinct TC values maintain in all films, although a single TC ∼
153 K exists in a 5-uc SRO thin film. The thickness-dependent
magnetic hysteresis loops along the pseudo-[001] axis were
measured with a superconducting quantum interference de-
vice magnetometer [Fig. 2(c)]. Upon increasing the thickness
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FIG. 2. Emergent interfacial magnetic phase with an enhanced magnetization. (a) Temperature-dependent magnetization (M-T curves)
shows two TC values determined by the discontinuity in dM/dT (red and purple arrows). (b) Temperature-dependent differential resistivity
(dR/dT -T ) at a constant magnetic field of 1 T (helpful to obtain well-defined peaks at TC) shows that the TC’s are consistent with the ones
from M-T curves, indicating that the interfacial SRO contributes to the high TC. (c) Out-of-plane magnetic-field-dependent magnetization
(M-H curves) at 10 K. The insets are the schematics of the interfacial-SRO and top-SRO phases. (d) Thickness-dependent out-of-plane Ms

(red curves) and its contribution from the interfacial SRO (blue curves). As the thickness increases, the Ms decreases, which indicates that the
interfacial SRO contributes to the enhancement of Ms. All the above data obtained from the SRO thin films with thicknesses of 5, 10, 30, and
50 uc.

from 5 to 10 uc, a steplike hysteresis with two coercive fields
appears, which is more obvious in the 30- and 50-uc thin films.
For the 5-uc SRO, the out-of-plane saturated moment (Ms)
is ∼2.18 μB/formula unit (f.u.), which is higher than the one
of low-spin state of SRO (∼1.1−2.0 μB/f.u. in experiments
and theories, 2.0 μB/f.u. from the full Hund’s rule) [43–46].
As the thickness increases, Ms decreases to ∼2.06, ∼1.75,
and ∼1.28 μB/f.u. for 10-, 30-, and 50-uc SRO, respectively,
indicating that the SRO at the interface contributes to the
enhancement of Ms as shown in insets of Figs. 2(c) and
2(d). The magnetic domain switching, corresponding to the
hysteresis, has been characterized by using low-temperature
magnetic force microscopy (MFM) at 10 K. For the 5-uc SRO,

a monodomain switching occurs (Fig. S2 of the Supplemen-
tal Material [36]). However, for the SRO thin film with a
thickness above 10 uc, there is a distinctive switching with
two coercive fields at low/high magnetic field (Fig. S3 of the
Supplemental Material [36]), which further indicates that the
steplike magnetic hysteresis could be attributed to a separation
of magnetic phases: interfacial SRO (high TC/moment) and
top SRO (low TC/moment). The hysteresis behavior as a
function of top-SRO thickness is simulated in Fig. S4 of
the Supplemental Material [36], which is consistent with our
experimental observations in Fig. 2(c). The details of mea-
surements for magnetic/electrical characterizations are given
in the Supplemental Material and Fig. S5 [36].
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line profile for the detailed atomic structure of SrO layers in the interfacial SRO (bottom panel, green curve) and top SRO (top panel, orange
curve). The yellow, dark gray, and light gray dots represent the positions of Sr, O, and vO, respectively. The shallow valleys in the orange curve
represent oxygen sites, which are negligible in the green curve, indicating more vO’s located at the interface. (c) Schematic of the depth-profile
XPS measurements with in situ Ar+ etching. (d) Depth-profile binding energies of Ru 3d3/2 shows a dramatic change in binding energies for
Ru 3d3/2. (e) Calculation of the formation energies and diffusion barriers of vO across the SRO/STO interface. The black dots are the formation
energies EOF of the vO’s located at different layers across SRO/STO interface. The red lines are the bulk values of SRO and STO at

√
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dimension. The gray sphere indicates that vO prefers to diffuse from STO into SRO and be prevented at the position of the green dashed line
(diffusion length).

In these fully strained SRO thin films without lattice re-
laxation, slight alternation of the chemical structure at the
interface may play a key role in the enhanced magnetization
[47]. As seen from bright-field STEM in Figs. 3(a) and
3(b), the interfacial-SRO phase presents more vO which is
negligible in the top SRO. Depth-profiling x-ray photoelectron
spectroscopy (XPS) with in situ etching of surface layers
without damaging underlying layers [see Fig. 3(c) for the
schematics] shows the valence states of Ru at various etching
depths for the 50-uc SRO in Fig. 3(d). The binding energy of
Ru 3d3/2 remains at ∼282.82 eV whereas etching away up to
30 uc. However, it starts to dramatically decrease by ∼1.3 eV
when the etching depth reaches about 45 uc, indicating that
Ru3+ appears at the interfacial SRO [48]. At all conditions,
there is no change for the binding energies of Sr 3d from the
top SRO to the interfacial SRO and then STO (see Fig. S6 of
the Supplemental Material [36]). Therefore, the appearance

of Ru3+ at the interfacial SRO is induced by the vO based
on the above analysis of STEM and XPS results [48]. The
detailed measurements for chemical structures are given in the
Supplemental Material [36].

The microscopic origin of this vO-dominant interfacial-
SRO phase with enhanced Ms can be understood by calculat-
ing the formation energy (EOF ) and the diffusion barrier (Eb)
of the vO in both SRO and STO. The EOF is defined as

EOF = ESC (vO)-ESC + E (O2)/2

for both SRO and STO in density functional theory (DFT).
Here, ESC (vO) and ESC are the energies of supercells with
and without a vO, respectively, and E (O2) is the energy of a
single O2 molecule. The EOF of bulk SRO is ∼4.7 eV, which
is ∼2 eV lower than that of bulk STO, indicating that vO

prefers to be on the SRO side. Near the SRO/STO interface,
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gray lines are the upper limit of the low-spin state and the projected moment on Ru atoms in bulk SRO, respectively.

the EOF of a single vO in SRO is ∼4 eV, lower than that
in STO [Fig. 3(e)]). Therefore, we expect that vO migrates
into the interfacial-SRO phase when SRO is in contact with
STO. In Fig. S7 of the Supplemental Material [49], we further
calculated the diffusion energy barrier Eb of vO. In SRO,
Eb is ∼1.4 eV, which is much higher than the one in STO
(∼0.6 eV). Whereas for STO, such a barrier height permits
vO diffusion, and, in SRO, it prevents vO diffusing further into
the top-SRO phase [58]. As a result, the vO is trapped at the
interfacial-SRO phase as visualized in Fig. 3(e) and forms a vO

diode in a similar way as electron diffusion in a conventional
electrical diode.

For understanding the role of vO in the enhanced Ms at
the interfacial-SRO phase, we construct a SRO (5-uc)/STO
(4-uc) heterostructure where one oxygen atom is removed
between the second and the third RuO2 layers to model
the vO [see Figs. 4(a) and 4(b)]. There are substantial spin
and orbital reconstructions of the Ru d electrons near the
vO. The occupation of the Ru dz2 orbit arises from the fact
that: (i) vO provides abundant electrons, and (ii) it breaks
the neighboring RuO6 octahedron and changes the crystal-
field splitting. The latter shifts the energy of the dz2 orbit
down by forming bonding and antibonding states. This orbital
reconstruction is pivotal for turning the 4d4 low-spin state
(S = 1, ∼1.5 μB/Ru, far away from vO) into a 4d5 high-spin
state (S = 3/2, ∼2.3 μB/Ru, neighboring vO) as shown in
Figs. 4(c) and 4(d), being compatible with our experimental

results [Fig. 2(d)]. Thus, the interfacial-SRO phase with high
spin can be defined as the vO-SRO phase. The computational
details are attached in the Supplemental Material [49].

IV. ELECTRIC-FIELD CONTROL OF THE MAGNETIC
PHASE TRANSITION

The interfacial high-spin SRO phase originates predomi-
nately from the vO contributions, which could be naturally
controllable in this vO diode across the solid vO-SRO/STO
chemical junction by an electric field [59]. The temperature-
dependent transport measurements with in situ magnetic-
domain characterizations were performed in the 10-uc SRO
thin film under the application of an electric field as schemat-
ically shown in Fig. 5(a). A reversible control of the vO

SRO (TC is ∼153 K) was achieved by electric-field-driven
unidirectional vO migration from SRO to STO as shown in
Fig. 5(b), demonstrating that the vO SRO with high spin
can be erased and rebuilt by applying electric fields. With
a magnetic bias between the coercive fields of vO SRO and
the top SRO, the “soft” vO SRO will switch first and serve as
an effective magnetic field (Heff ). Magnetic domain switching
with and without the application of electric fields has been
performed under a magnetic bias of +0.75 T, which is lower
than the coercive field of the top SRO in the 10-uc film
[∼1 T, see Fig. 2(c)]. With the application of the electric field
of +4 kV cm-1, magnetic domains cannot be switched at the
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same magnetic bias as the vO SRO (namely, Heff ) has been
erased as shown in Fig. 5(c). The details on measurements
can be seen in the Supplemental Material [36].

V. CONCLUSION

To summarize, by designing an oxygen ionic chemical
junction, vO’s are trapped at the interfacial-SRO phase, lead-
ing to an electronic and orbital reconstruction. As a result,
a high-spin state at the vO-SRO phase is achieved, which
is reversibly switchable by an electric-field-induced oxygen
migration in a solid-state ionic gating device. Furthermore,
understanding of electronic and spin states in such a low-
dimensional SRO phase makes this strongly correlated system
a promising candidate for the further exploration and manip-
ulation of emergent magnetism and spin structures.
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