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Modulation of the probe signal in coherent phonon detection revisited:
Analytical and first-principles computational analyses
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Modulation of probe signals in pump-probe measurements of coherent phonons in dielectrics, with and
without spectral resolution, are investigated theoretically taking diamond as an example. Analytical investigation
as well as first-principles calculations based on time-dependent density-functional theory is utilized to clarify the
mechanism of the modulation of the probe signals. Boundary and bulk effects are investigated systematically,
putting emphasis on the phase relation between the modulation and the atomic motion of the coherent phonon.
They are summarized as follows: Modulation by the boundary effect is in phase with the coherent phonon
amplitude, while that by the bulk effect shows π/2 phase difference. Strong frequency dependence appears
in the modulation by the bulk effect, while no frequency dependence by the boundary effect. First-principles
calculations support the reliability of the analytical result.
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I. INTRODUCTION

Coherent phonon generation is commonly observed when
an intense and ultrashort light pulse irradiates on the surface
of a bulk material. It is usually measured using a pump-probe
method in the following way. A strong pump pulse generates
the vibrational motion of atoms in the medium that has a
coherence in space and time. A weak probe pulse is then
used to detect the coherent phonon through a measurement of
the modulation of the optical response induced by the atomic
displacements. Mechanisms for the generation of coherent
phonons in simple crystalline solids have been extensively
discussed since the middle of the ’80s in both theoretical and
experimental perspectives [1–24].

Recent research has been extended to further manipula-
tions by, for example, using multipump pulses to control the
phonon amplitude [11,13,25], using stronger pulses to give
rise to a large amplitude oscillation that may possibly realize
a photoinduced phase transition [26–33]. Investigations have
also been extended to systems other than bulk materials
such as graphene and two-dimensional materials [34–36], and
solids composed of biological molecules [37].

In this paper, we devote ourselves to theoretical investi-
gations of the probe stage of pump-probe measurements of
coherent phonons in transparent materials. For the generation
of coherent phonons in transparent materials, an impulsive
stimulated Raman scattering (ISRS) mechanism has been
widely accepted [5,13,17]. In this mechanism, the pump pulse
brings virtual electronic excitations in the medium during the
irradiation that causes the impulsive force acting on atoms. In
the probe stage, modulations of the reflectivity or the transmit-
tivity are usually measured and analyzed using a simple and
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intuitive formula [5],

�R

R
∝ ∂R

∂n

∂n

∂Q
Q(t ), (1)

where n is the index of refraction and Q is the phonon am-
plitude. It can be derived assuming that the modulation takes
place at the surface of the medium. Using this formula, the
modulation is proportional to the phonon amplitude. Below,
we call this mechanism of the modulation the boundary effect.
In the probe state, the significance of the bulk effect has also
been discussed immediately after the observation of the co-
herent phonon generation by the ISRS mechanism [2,3]. It has
been pointed out that it shows a phase shift of π/2 with respect
to the phonon oscillation, that is, the modulation is maximum
when the phonon amplitude is zero [2,3,5,38]. However, the
bulk effect has not been observed much since the effect is
suppressed by phase mismatch in practical systems [5,38].

In measurements of modulations of the probe signal, spec-
trally resolved signals have also been reported [5,9,10,16]. In
these measurements, it has been reported that the measured
spectra show a phase difference of π between Stokes and anti-
Stokes frequency components that correspond to above and
below the central frequency of the probe pulse, respectively.
In Ref. [5], it was clearly discussed that the phase difference
can be explained as the bulk effect mentioned above. In the
works afterward [9,10,16], however, the bulk effect was not
discussed. In Ref. [10], instead, it has been argued that the
quadratic dispersion of the Raman tensor is responsible for
the modulation. At present, we consider that it is important to
organize the effects that appear in the probe stage of coherent
phonon measurements, the boundary and the bulk effects, and
signals with and without spectral resolution.

In this paper, we will investigate the modulation of the
probe signal employing two approaches. We first discuss an
analytic treatment that has been developed previously [5,38].
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Starting with a propagation equation that describes the probe
process of the coherent phonon, an approximate analytic
solution is constructed. Using the solution, analytic formulas
for the modulation of the reflection and transmission rates
are constructed, separating the boundary and the bulk effects,
with and without spectral resolution. We next present a first-
principles computational approach based on time-dependent
density-functional theory (TDDFT) [39,40]. Based on the
TDDFT, a formalism and computational methods to calculate
electron dynamics in real time have been developed [41,42].
For the coherent phonon generation, it was shown that the
TDDFT is capable of describing two generation mechanisms
of coherent phonons, ISRS and displacive excitation mech-
anisms [43,44]. Recently, it has been further extended to
describe ionic motion as well as electromagnetic fields si-
multaneously. There are two approaches to realize it: One
is the multiscale approach where the coupled dynamics of
macroscopic electromagnetic fields and microscopic dynam-
ics of electrons and ions are described [45,46]. The other is
the microscopic approach where the coupled dynamics are
described at the same scale [47,48]. In our analysis, we utilize
the former multiscale approach.

The organization of the present paper is as follows. In
Sec. II, an analytic approach for the modulation of the probe
process of coherent phonon is developed. In Sec. III, the first-
principles computational approach is explained. In Sec. IV,
results by the first-principles calculations and by the analytical
theory are compared. Discussions on previous publications
are also given. A summary is presented in Sec. V.

II. ANALITICAL CONSIDERATION

A. Setup of the system

We consider a pump-probe measurement of coherent
phonon generation in diamond and focus on the probe stage.
We set the coordinate system such that the [100] direction
of the cubic diamond crystal structure coincides with the x
axis. The surface of the diamond locates at the x = 0 plane, a
medium in x > 0, and a vacuum in x < 0 regions. We set the
[010] direction parallel to the y axis, and [001] to the z axis.

The coherent phonon is assumed to be generated by a
pump pulse in the ISRS mechanism as described below. The
pump pulse is linearly polarized in the [011] direction and
propagates along the [100] direction. The duration of the pulse
is much shorter than the period of the optical phonon and
the average frequency is much below the band gap of the
diamond. The pump pulse reaches the surface of the diamond
at t = 0, and propagates with the group velocity of vg = c/ng,
where ng is the group index of refraction of the diamond. In the
following development, we ignore frequency dependence of
the susceptibility. Therefore, we use the index of refraction n
instead of ng below. The atomic displacements of the coherent
phonon are along the [100] direction.

We express the atomic displacement at the position x as

�R± ∝ ±(Q(x, t ), 0, 0), (2)

where the sign ± indicates that there are two possible direc-
tions of the atomic displacements in the optical phonon. The

phonon displacement Q(x, t ) is given by

Q(x, t ) = θ (x)q
(

t − n

c
x
)
, (3)

where the step function θ (x) is introduced to indicate the
spatial region of the medium. The function q(t ) describes
the phonon amplitude at the surface x = 0. We assume a
sinusoidal form,

q(t ) = q0 sin(�t ), (4)

with the phonon amplitude q0 and the frequency of the optical
phonon �. We ignore the damping of the coherent phonon for
simplicity.

The coherent phonon induces anisotropy in the refractive
index of the diamond in which the optical axes are given by the
[011] and [011̄] directions. The anisotropy is measured in time
domain using the probe pulse whose duration is much shorter
than the period of the phonon. As the probe process, we con-
sider the electro-optic (EO) sampling method that has often
been used to detect the signal of the coherent phonon [4,7,19].
In the method, the probe pulse is linearly polarized along the
[010] direction that is 45◦ to the polarization direction of the
pump pulse ([011] direction). The Raman scattering wave po-
larized in the [001] direction is then induced by the interaction
between the incident probe pulse and the coherent phonon.
The probe signal is then decomposed into the parallel ([011])
and the perpenducular ([011̄]) components with respect to
the direction of the pump polarization. The difference in the
modulations that are recorded in the two components provides
the information on the coherent phonon.

We investigate the modulation of the probe signal, classi-
fying into four cases for reflection and transmission signals
with and without spectral resolution. For the reflected and the
transmitted probe pulses, we introduce the frequency-resolved
fluences, F (r)

‖,⊥(ω; δ), and F (t )
‖,⊥(ω; δ), respectively, where ‖,⊥

indicate parallel and perpendicular components, ω is the
frequency of the probe pulse, and δ specifies the delay time
between the pump and the probe pulses. The reflected and
transmitted intensities in the absence of the coherent phonon
are denoted as F (r)

0 (ω) and F (t )
0 (ω), respectively. The subscript

0 is used also for other quantities to denote the absence of the
coherent phonon.

The spectrally resolved modulation of the reflectance is
defined by

�R‖,⊥(ω; δ)

R0(ω)
= �F (r)

‖,⊥(ω; δ)

F (r)
0 (ω)

, (5)

where �R‖,⊥ and �F‖,⊥ indicate the difference from those
without the coherent phonon, that is, �R‖,⊥ = R‖,⊥ − R0 and
�F (r)

‖,⊥ = F (r)
‖,⊥ − F (r)

0 . We also introduce a modulation without
spectral resolution:

�R‖,⊥(δ)

R0
=

∫
dωF (r)

‖,⊥(ω; δ)∫
dωF (r)

0 (ω)
. (6)

The signal of the EO sampling is then given by

�REO(δ)/R0 = (�R⊥(δ) − �R‖(δ))/R0. (7)

We introduce similar quantities for the transmission.
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B. Propagation equation

To describe the modulation of the probe pulse, we start
from the one-dimensional equation for light propagation,(

∂2

∂x2
− 1

c2

∂2

∂t2

)
E(x, t ) = θ (x)

4π

c2

∂2P(x, t )

∂t2
, (8)

where E(x, t ) and P(x, t ) are the electric field of the probe
pulse and the induced polarization at position x and at time
t . The step function θ (x) indicates that the medium is in the
x > 0 region. For the polarization, we assume a linear and
instantaneous relation to the electric field as follows:⎛⎝Px

Py

Pz

⎞⎠ = χ

⎛⎝Ex

Ey

Ez

⎞⎠ + ∂χyz

∂Q
Q

⎛⎝0 0 0
0 0 1
0 1 0

⎞⎠⎛⎝Ex

Ey

Ez

⎞⎠, (9)

where χ is the linear isotropic susceptibility at the equilibrium
atomic configuration, and ∂χyz/∂Q is the coefficient of the
Raman tensor. We denote ∂χyz/∂Q as χR below to simplify
the formula. We ignore any retardation effects in the analyses
in the following development. It is equivalent to ignoring
the frequency dependence of χ and χR in the frequency
representation.

Equation (8) can be decoupled by introducing parallel and
perpendicular components of the electric field,

E‖,⊥ = 1√
2

(Ey ± Ez ). (10)

The propagation equations for the E‖ and E⊥ are given by

∂2

∂x2
E‖,⊥ − n(x)2

c2

∂2

∂t2
E‖,⊥ = ±4πχR

c2

∂2

∂t2
[QE‖,⊥], (11)

where the positive sign (+) is for E‖ and the negative sign (−)
for E⊥ on the right-hand side. The index of refraction n(x) is
given by

n(x) =
{

1 (x < 0)
n (x > 0), (12)

where n is given by n = √
1 + 4πχ .

In the following, we treat the modulation of the suscepti-
bility caused by the coherent phonon, the right-hand side of
Eq. (11), as a perturbation. First we construct the unperturbed
solution, ignoring the right-hand side of Eq. (11). We express
the time profile of the incident electric field as e(i)(t ), which
is a pulsed field centered at t = 0. The unperturbed solution
which we denote as E0(x, t ) is given as follows:

E0(x, t ) =
{

e(i)
(
t − δ − x

c

) − n−1
n+1 e(i)

(
t − δ + x

c

)
, (x < 0)

2
n+1 e(i)

(
t − δ − n

c x
)
. (x > 0),

(13)
where the center of the incident pulse, e(i)(t − δ − x/c), is set
to arrive at the surface x = 0 at time t = δ.

We denote the electric field including the perturbed field
generated by the coherent phonon as

E‖,⊥(x, t ) = E0(x, t ) + δE‖,⊥(x, t ). (14)

The perturbed fields, δE‖,⊥(x, t ), satisfy

∂2

∂x2
δE‖,⊥ − n(x)2

c2

∂2

∂t2
δE‖,⊥ = ±4πχR

c2

∂2

∂t2
[QE0]. (15)

As is easily verified, the solution of this equation is given by

δE‖,⊥(x, t ) =
{

∓ 4πχR

n(n+1)2 q
(
t + x

c

)
e(i)(t + x

c − δ) (x < 0)

∓ 4πχR

n(n+1)2

{
1 + (n+1)x

c
d
dt

}
q
(
t − nx

c

)
e(i)

(
t − nx

c − δ
)

(x > 0).
(16)

We note that the transmitted wave includes the stimulated
Raman wave whose amplitude increases linearly with the
propagation distance x.

C. Modulation effects

We evaluate the modulation of the reflectivity in the vac-
uum region, x < 0, and the modulation of the transmittivity
in the medium region, x > 0. To evaluate the fluence of the
pulse, we utilize the Poynting vector S(x, t ) that is given in
terms of the electric and the magnetic fields by

S(x, t ) = c

4π
E (x, t )H (x, t ). (17)

The fluence of the pulsed light is given as the time integration
of the Poynting vector:

F (x) =
∫

dtS(x, t ). (18)

To analyze the frequency component of the fluence, we intro-
duce the spectral decomposition of the fluence as

F (x) =
∫ ∞

0
dωF (x, ω), (19)

F (x, ω) = c

4π2
Re[E (x, ω)H∗(x, ω)], (20)

where E (x, ω) and H (x, ω) are the Fourier transforms of
E (x, t ) and H (x, t ), respectively.

We first consider the reflectivity and transmittivity in the
absence of the coherent phonon and confirm that we obtain
well-known results. The fluences for the incident, reflected,
and transmitted waves that are resolved in frequency, F (i)

0 (ω),
F (r)

0 (ω), F (t )
0 (ω), respectively, are given by

F (i)
0 (ω) = c

4π2
|e(i)(ω)|2, (21)

F (r)
0 (ω) = c

4π2

(
n − 1

n + 1

)2

|e(i)(ω)|2, (22)

F (t )
0 (ω) = c

4π2

4n

(n + 1)2
|e(i)(ω)|2, (23)

where e(i)(ω) is the Fourier transformation of the incident
pulse e(i)(t ). The sign of F (r)

0 is defined as positive for the
backward direction from the material region. The frequency-
resolved reflectivity and transmittivity are obtained as

R0(ω) = F (r)
0 (ω)

F (i)
0 (ω)

=
(

n − 1

n + 1

)2

, (24)

T0(ω) = F (t )
0 (ω)

F (i)
0 (ω)

= 4n

(n + 1)2
. (25)
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We note that the reflectivity and transmittivity show no fre-
quency dependence if we ignore the frequency dependence in
the index of refraction.

We next move to the perturbative contributions generated
by the coherent phonon. We calculate them by Eq. (20) using
the electric field of Eq. (16) and corresponding magnetic field.
The modulation in the fluence of reflected wave is calculated
as

δF (r)
‖,⊥(ω) = ±cχR(n − 1)q0

πn(n + 1)3
ImW (ω, δ), (26)

where W (ω, δ) is introduced by

W (ω, δ) = e(i)∗(ω){ei�δe(i)(ω + �) − e−i�δe(i)(ω − �)}.
(27)

From this result, the modulation of the frequency-resolved
reflectivity is calculated as

�R‖,⊥(ω, δ)

R0(ω)
= ± 4πχRq0

n(n2 − 1)

ImW (ω, δ)

|e(i)(ω)|2 . (28)

The modulation of the reflectivity without the frequency reso-
lution is given by

�R‖,⊥(δ)

R0
= ± 8πχR

n(n2 − 1)

∫
q(t + δ)(e(i)(t ))2dt∫

(e(i)(t ))2dt
. (29)

Assuming that the probe pulse is much shorter than the period
of the coherent phonon, 2π/�, the equation is approximated
to a simpler form:

�R‖,⊥(δ)

R0

 ± 8πχRq0

n(n2 − 1)
sin(�δ). (30)

We note that the modulation is in phase with the phonon
amplitude and that this expression coincides with an intuitive
expression of Eq. (1), assuming the instantaneous modulation
of the susceptibility given by χ (t ) = χ + χRq(t ) at the sur-
face:

�R‖,⊥(δ)

R0
= 1

R0

∂R

∂n‖,⊥

∂n‖,⊥
∂Q

q0 sin(�δ). (31)

The signals of the EO sampling defined by Eq. (7) are then
written by

�REO(ω, δ)

R0(ω)
= − 8πχRq0

n(n2 − 1)

ImW (ω, δ)

|e(i)(ω)|2 , (32)

�REO(δ)

R0
= − 16πχR

n(n2 − 1)

∫
q(t + δ)(e(i)(t ))2dt∫

(e(i)(t ))2dt
, (33)

∼ − 16πχRq0

n(n2 − 1)
sin(�δ). (34)

For the transmittivity, there appear two terms in the modu-
lation of the fluence at x = l (> 0),

δF (t )
‖,⊥(ω) = ∓ cχR

πn(n + 1)3
q0Im

± 2χRωl

π (n+ 1)2
q0ReW (ω, δ)[nW (ω, δ)+ W ∗(ω, δ)].

(35)

The first term is generated at the surface x = 0 and the second
term originates from the stimulated Raman wave which is
proportional to the propagation length, l . We call the former

the boundary contribution and the latter the bulk contribution.
The modulation with the frequency resolution is given by

�T‖,⊥(ω, δ)

T0(ω)
= ∓ πχRq0

n2(n + 1)

Im[nW (ω, δ) + W ∗(ω, δ)]

|e(i)(ω)|2

± 2πχRωlq0

cn

ReW (ω, δ)

|e(i)(ω)|2 . (36)

Using Eq. (19), the modulation without the frequency resolu-
tion is given by

�T‖,⊥(δ)

T0
= ∓2πχR(n − 1)

n2(n + 1)

∫
q(t + δ)(e(i)(t ))2dt∫

(e(i)(t ))2dt

∓ 2πχRl

cn

∫ dq
dt (t + δ)(e(i)(t ))2dt∫

(e(i)(t ))2dt
, (37)

and a simpler expression is obtained by using the short pulse
limit approximation as

�T‖,⊥(δ)

T0

 ∓2πχR(n − 1)q0

n2(n + 1)
sin(�δ) ∓ 2πχRlq0

cn
cos(�δ).

(38)
From Eqs. (37) and (38), the first sine function terms that
originate from the surface come from the phonon amplitude
q(t + δ). It causes in-phase modulation on the time delay
as that in the reflection. The second cosine function terms
that originate from the stimulated Raman wave are due to
the phonon velocity dq

dt (t + δ) which induces the π/2 phase-
shifted modulation. This expression of the first term again
coincides with an intuitive expression of Eq. (1), assuming
the instantaneous modulation of the susceptibility χ (t ) = χ +
χRq(t ) at the surface,

�T B
‖,⊥(δ)

T0
= 1

T0

∂T

∂n‖,⊥

∂n‖,⊥
∂Q

q0 sin(�δ), (39)

where the superscript B indicates that this originates from the
boundary effect.

From Eqs. (36)–(38), the transmission change in the EO
sampling is written by

�TEO(ω, δ)

T0(ω)
= −4πχRωlq0

cn

ReW (ω, δ)

|e(i)(ω)|2

+ 2πχRq0

n2(n + 1)

Im[nW (ω, δ) + W ∗(ω, δ)]

|e(i)(ω)|2 ,

(40)

�TEO(δ)

T0
= 4πχR(n − 1)

n2(n + 1)

∫
q(t + δ)(e(i)(t ))2dt∫

(e(i)(t ))2dt

+ 4πχRl

cn

∫ dq
dt (t + δ)(e(i)(t ))2dt∫

(e(i)(t ))2dt
, (41)


 4πχR(n − 1)q0

n2(n + 1)
sin(�δ)

+ 4πχRlq0

cn
cos(�δ). (42)

To simplify the result for the frequency-resolved mod-
ulation, we introduce an assumption that e(i)(ω) is a real-
valued function except for a multiplicative complex number.
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For example, for a symmetric function, e(i)(t ) = e(i)(−t ), we
have real-valued e(i)(ω). For an antisymmetric function,
e(i)(t ) = −e(i)(−t ), e(i)(ω) is a pure imaginary function. Un-
der the assumption and expressing e(i)(ω), removing the com-
plex phase, we have

W (ω, δ) = cos(�δ)e(i)(ω){e(i)(ω + �) − e(i)(ω − �)}
+ i sin(�δ)e(i)(ω){e(i)(ω + �) + e(i)(ω − �)}.

(43)

We may further introduce an expansion with respect to � that
is justified when the probe pulse is much shorter than the
period of the coherent phonon. Then W (ω, δ) is approximated
as

W (ω, δ) 
 cos(�δ)�
d

dω
(e(i)(ω))2 + i sin(�δ)(e(i)(ω))2.

(44)
Using this approximation, we get the following simplified
expressions for the spectrally resolved modulations:

�REO(ω, δ)

R0(ω)

 − 8πχRq0

n(n2 − 1)
sin �δ, (45)

�TEO(ω, δ)

T0(ω)

 −4πχRω�lq0

cn
cos �δ

d
dω

(e(i)(ω))2

(e(i)(ω))2

+ 2πχR(n − 1)q0

n2(n + 1)
sin �δ. (46)

We note that the terms originating from the boundary, the
modulation of the reflection, and the second term of the modu-
lation of the transmission, are independent of the frequency in
the first-order approximation, while the term originating from
the stimulated Raman wave causes the frequency-dependent
modulation.

We here mention the relation of our results with previous
works. The bulk effect as well as the boundary effect was
discussed by Merlin et al. [5,38]. Corresponding expressions
to Eqs. (28) and (36) were presented there. In particular,
the appearance of the frequency dependence as well as the
phase change between the bulk and the boundary effects
have been stressed. In the present derivation, we provide a
unified and detailed explanation of the formula with a precise
expression for the amplitude of the modulation, which was
not presented in Ref. [5]. In Ref. [10], it was argued that the
frequency-dependent modulation cannot be described without
introducing a frequency dependence in the Raman tensor. This
conclusion contradicts with the present result: The frequency-
dependent modulation can be explained if we include the bulk
effect.

III. FIRST-PRINCIPLES SIMULATION BASED ON
TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY

In the previous section, we used several assumptions and
approximations to derive the analytical formula. For example,
we ignored the frequency dependence of the Raman tensor as
well as the dielectric function. We also take a lowest-order
perturbation theory. Harmonic motion is assumed for the
phonon motion. In this section, we present a complimentary
computational approach based on first-principles TDDFT. We

FIG. 1. Schematic illustration of the multiscale model.

develop a multiscale formalism [49] that allows a descrip-
tion of the pump-probe measurement of coherent phonons
without any empirical parameters related to materials [45]. A
formalism and numerical method are written in this section
and calculated results will be presented and compared with
analytical results in the next section.

A. Multiscale simulation method

Here we briefly explain our multiscale simulation method.
A full explanation has been given in our previous publica-
tion [45]. Calculations have been carried out using SALMON,
an open source software developed in our group [50,51].

Our simulation describes the pump-probe measurement of
the coherent phonon generation faithfully mimicking the setup
of the problem. We show the scheme of our simulation in
Fig. 1. For an incident pulse propagating along the x axis, we
utilize two coordinate systems: The light propagation is de-
scribed using a one-dimensional coordinate X , which we call
the macroscopic coordinate. Microscopic three-dimensional
coordinates r are used to describe the dynamics of electrons
and ions.

The light electromagnetic field is expressed by using a
vector potential AX (t ). It satisfies the Maxwell equation on
the macroscopic scale,[

1

c2

∂2

∂t2
− ∂2

∂X 2

]
AX (t ) = 4π

c
JX (t ), (47)

where JX (t ) is the electric current density at the point X .
In solving Eq. (47), we discretize the coordinate X using a

uniform grid. At each macroscopic grid point X , we consider a
microscopic dynamics of electrons and ions. In our multiscale
description, each microscopic dynamics is assumed to be
regarded as infinitely periodic. Since the wavelength of the
pulsed light is much longer than the typical spatial scale of
the microscopic dynamics, we assume a dipole approximation
where electrons and ions move under a spatially uniform elec-
tric field, EX (t ) = −(1/c)(∂AX (t )/∂t ). Then we may apply
the Bloch theorem in the microscopic dynamics: The electron
motion at macroscopic position X is described using Bloch
orbitals unk,X (r, t ) specified by the macroscopic position X ,
band index n, and the crystalline momentum k. Ionic motion
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is described by the coordinates of ions in the unit cell, Rα,X (t ),
where the index α distinguishes different ions in the unit cell.

The Bloch orbitals satisfy the TDKS equation,

ih̄
∂

∂t
unk,X (r, t )

=
[

1

2m

{
−ih̄∇r + h̄k + e

c
AX (t )

}2
− eφX (r, t )

+ δEXC[ne,X ]

δne,X
+ v̂ion,X (r, t )

]
unk,X (r, t ) (48)

where ne,X is the electron density given by ne,X (r, t ) =∑
n,k |unk,X (r, t )|2. φX (r, t ) and EXC[ne,X ] are the Hartree

potential and the exchange-correlation energy, respectively.
v̂ion,X (r, t ) is the electron-ion potential for which we use
norm-conserving pseudopotential [52]. The ionic potential
v̂ion,X depends on the ionic coordinates {Rα,X (t )} as param-
eters.

To describe the dynamics of ions, we use a so-called
Ehrenfest method [40] where the ionic motion is described
by the Newtonian equation,

Mα

d2Rα,X

dt2
= −eZα

c

dAX

dt
− ∂

∂Rα,X

∫
dr[enion,X φX ], (49)

where Mα is the mass of the αth ion, nion,X is the charge
density of ions given by nion,X (r, t ) = ∑

α Zαδ(r − Rα,X (t )),
with Zα the charge number of the αth ion.

The electric current density at point X , JX (t ), consists of
electronic and ionic contributions:

JX (t ) = Je,X (t ) + Jion,X (t ). (50)

The electronic component Je,X (t ) is expressed in terms of
the Bloch orbitals unk,X (r, t ) [49], and the ionic component
Jion,X (t ) is given by the velocity of the ion, (d/dt )Rα,X (t ).
Since the ionic motion induced by the pump pulse is along
the x axis in the present system, the ionic current does
not contribute to the one-dimensional Maxwell equation that
propagates to the x direction.

We solve Eqs. (47)–(50) simultaneously to obtain the
whole dynamics at once. The initial condition is so prepared
that the electronic state at each macroscopic point X is set
to the ground-state solution of the static density-functional
theory, the ionic positions are set to their equilibrium positions
in the electronic ground state, and the vector potential of
the incident pump- and probe-pulsed light is prepared in the
vacuum region in front of the film.

We note that the light propagation Eq. (8) can be identified
with Eq. (47), if we make several assumptions and approxi-
mations. They includes: we need to we need to assume that
the amplitude of the ionic motion is sufficiently small. The
amplitude of the incident pulsed light needs to be sufficiently
small so any nonlinear optical effects other than the Raman
process can be ignorable. We also need to assume that there is
no retardation effects in the electronic response that are equiv-
alent to ignoring the frequency dependence of the susceptibil-
ities. We will compare the first-principles calculations and the
analytic formula to assess the validity of the approximations
that are required to derive the analytic formula in the previous
section.

B. Computational details

We carry out the simulation in the setting of the EO
sampling. As the time profiles of the incident pump and probe
pulses, we choose a cosine-squared-shaped envelope given as

Apump(t ) = Apump cos2

(
πt

T

)
cos(ω0t )e011, (51)

Aprobe(t ) = Aprobe cos2

(
πt

T

)
cos(ω0t )e010

(−T/2 < t < T/2), (52)

where e011(= eyz = (ey + ez )/
√

2) and e010(= ey) are the spa-
tial unit vectors of the polarization direction of the pump
and probe pulses, respectively. The incident probe pulse is
given as Aprobe(t − δ) with the pump-probe delay time δ.
The delay time is chosen to be 83.0, 89.5, and 96.0 fs. The
average frequency ω0 of the pump and the probe pulses are
chosen to be a common value, h̄ω0=1.55 eV. The pulse
duration of T = 18 fs [from the beginning to the end of
the pulse as defined in Eqs. (51) and (52)] is used for all
pulses. This amounts to the pulse duration of 7 fs in FWHM.
It is much shorter than the period of the optical phonon
of diamond that is about 25 fs. The incident intensities of
the pump and the probe pulses are set to 2 × 1012 W/cm2

and 1 × 1010 W/cm2, respectively. At these intensities, non-
linear electronic excitations across the band gap are not
significant.

In practical calculations, we carry out calculations of
the pump and the probe processes separately. In the pump
stage, we calculate the propagation of the pump pulse in
the medium of thickness 10 μm and the duration of 80
fs. At the final time, the pump pulse stays in the spatial
region 6 μm < X < 10 μm. In the probe stage, we prepare
a diamond medium in the spatial region of 0 μm < X <

6 μm. In this spatial region, the initial ionic motions is pre-
pared from the coherent phonon obtained in the pump-stage
calculation.

Due to the separate calculations of the pump and the probe
stages, there are several effects that are ignored in the present
simulation. They include effects of nonadiabatic and nonlinear
electronic excitations caused by the pump pulse on the probe
pulse, although it can be ignored in the present case. Also
ignored are the interaction of the probe pulse with the pump
pulse reflected at the surface(s) and the effect of the reflected
pump pulse on the phonon. We do not include these mixed
effects in the present calculations since they would make our
analyses too complicated.

The calculation system and parameters are the same as
those of Ref. [45]. The macroscopic coordinate X is dis-
cretized using the spacing of 15 nm. In the microscopic
calculation, adiabatic local density approximation [53] is used
for the exchange-correlation potential. The unit cell consisting
of eight carbon atoms in the cubic cell with the side length of
3.567 Å is used. The Bloch orbitals are expressed using 163

uniform spatial grids in the unit cell and 123 of k points in the
Brillouin zone. All of the equations of motion are integrated
with a common time step of 0.002 fs.
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FIG. 2. Electric field and atomic displacement in the pump stage.

IV. CALCULATED RESULTS

The purpose of this section is to compare the results
between the analytical description developed in Sec. II and
the first-principles simulation described in Sec. III. Although
analytical treatments provide formulas that are useful in un-
derstanding mechanisms of probe processes, several assump-
tions and approximations are used in the derivation including
the perturbative expansion and the ignorance of the frequency
dependence of the response. Contrarily, the first-principles
calculation does not require these assumptions and approxi-
mations. Therefore, the comparison between two approaches
will be useful to assess the validity of the analytical approach
and to clarify the significance of the effects that are not
included in the analytical approach.

When we make numerical evaluations of
Eqs. (28), (30), (36), and (38), we use the following values for
the parameters that are chosen to fit the first-principles
TDDFT calculation: n = 2.25, � = 2π/(25.47[fs]),
q0 = 0.95×10−4[Å], and χR = 11.6 [Å−1]. The values
of q0 and χR are so determined that the generation of the
coherent phonon is described consistently by solving Eq. (8)
numerically in the presence of the pump pulse.

A. Generation of coherent phonon by pump pulse

In the analytical approach, we simply assumed a sinusoidal
time profile of the coherent phonon that propagates with the
group velocity of the pump pulse in the medium. We first
compare the time profile of the coherent phonon calculated
by our multiscale simulation with the assumed one. Figure 2
shows a comparison. In panel (a), the electric field and the
atomic displacement are shown two times, t = 10 fs when the
pulse just arrived the surface and t = 50 fs when the pulse
propagates at about X = 4.5 μm. In panel (b), the atomic
displacement at X = 2 μm is shown as a function of time. The

FIG. 3. The transmitted electric field in y and z directions calcu-
lated by the first-principles simulation, corresponding to the transmit-
ted probe wave and stimulated Raman wave, respectively, obtained in
the right vacuum region for (a) δ = 83.0 fs and (b) 89.5 fs, and their
Fourier transformed power spectra for (c) δ = 83.0 fs and (d) 89.5 fs.

calculated displacement shown by a solid curve is well fitted
by a sinusoidal function that is shown by a dashed curve. To
compare the phonon period and the pulse duration, the time
profile of the incident pulse is shown by a red solid curve.
The first-principles calculation describes the coherent phonon
generation without any empirical parameters and including
nonlinear and nonadiabatic effects, if any. The comparison in-
dicates that the simple ISRS mechanism accurately describes
the production stage of the coherent phonon in the present
setting of the multiscale calculation.

B. Modulation in transmission

We move to the probe process. We first consider the mod-
ulation on the transmission. In the first-principles calculation,
we analyze the transmitted wave that appears in the vacuum
region right to the back surface. There may appear delayed
transmitted waves that experience internal reflections inside
the medium. Since we stop our calculation when the end of
the first transmitted wave passes through the back surface, we
do not take into account these waves of multiple reflections at
the surfaces.

We first show shapes of the transmitted waves. Figures 3(a)
and 3(b) show the transmitted electric field for two different
pump-probe time delays, δ = 83.0 fs and 89.5 fs, respectively.
In the former case of δ = 83.0, the probe pulse arrives at
the surface of the diamond when the phonon amplitude is the
maximum. In the latter case of δ = 89.5 fs, the probe pulse
arrives at the surface when the phonon amplitude shows the
node.

In our first-principles calculation, we employ the probe
pulse with the polarization in the y direction. During the
propagation, the stimulated Raman wave grows linearly with
the propagation length and appears as the z component of the
field. In the notation of Sec. II, the z component of the electric
field Ez(x, t ) is equal to

√
2δE‖(x, t ). As is shown in Eq. (16),

the transmitted wave is composed of two terms, the boundary

214313-7



ATSUSHI YAMADA AND KAZUHIRO YABANA PHYSICAL REVIEW B 101, 214313 (2020)

term that is created at the surface of the medium and the bulk
term that is linearly proportional to the propagation distance.
The relative significance of the two terms depends on the du-
ration of the probe pulse, phonon frequency, and propagation
distance. In the present setting with the propagation distance
of 6 μm, the bulk contribution is much more dominant than
the boundary contribution. Therefore, we expect the form

Ez(x, t ) ∝ x
d

dt

[
q
(

t − nx

c

)
e(i)

(
t − nx

c
− δ

)]
. (53)

The pulse shapes in Figs. 3(a) and 3(b) indeed show the
expected behavior. In the case of δ = 83.0 fs, the envelope
shape of the stimulated Raman wave is similar to that of the
transmitted probe pulse. There is a phase shift of π/2 between
the incident [Ey(t )] and the stimulated Raman [Ez(t )] waves.
This is understood as follows: Since the duration of the probe
pulse is shorter than the period of the phonon, the product
q(t )e(i)(t ) is mostly proportional to e(i)(t ). The time derivative
causes the phase shift of π/2. In the case of δ = 89.5 fs the
shape of the stimulated Raman wave is very different from
the probe pulse. This is because the probe pulse propagates
with the nodal point of the phonon so the product q(t )e(i)(t )
behaves approximately as q(t )e(i)(t ) ∝ te(i)(t ). This explains
the nodal behavior in the Raman wave at δ = 89.5 fs.

In Figs. 3(c) and 3(d), frequency-resolved intensities are
shown for Ey(t ) and Ez(t ). At δ = 83.0 fs, the spectrum of
the Raman wave shows a somewhat wider distribution and is
slightly shifted to the higher frequency. At δ = 89.5 fs, the
spectrum of the Raman wave shows a double-peak structure.
This originates from the extra node in the time domain.

In Fig. 4(a), transmission changes without frequency res-
olution in the first-principles calculation are shown by dots
for three different pump-probe delay times, δ = 83.0, 89.5,
and 96.0 fs. The delay time δ = 96.0 fs corresponds to the
arrival of the probe pulse at the maximum of the phonon
amplitude, as in δ = 83.0 fs. The modulation is large at
δ = 89.5 fs and very small at δ = 83.0 fs and 96.0 fs. This
is reasonable according to Eq. (37), since the phonon velocity
is maximum at δ = 89.5 fs at the nodal point. The modulation
of the transmission signal calculated by the first-principles
calculation coincides accurately with the analytics formula of
Eq. (38) that shows a cosinelike dependence. For the plots of
the analytical calculations, since we consider the transmitted
wave that appears in the right vacuum region, we multiply a
factor of 2 for the term of the boundary effect to take into
account the transmission through two boundaries. This may
be justified for the present comparison where the reflection of
the pump pulse is not taken into account in the pump-stage
calculation. We note that the phonon amplitude at the back
surface is larger than the front surface due to the interference
effect, if we consider the reflection of the pump pulse at the
back surface.

We thus find a satisfactory coincidence between results of
the analytic theory and those by the first-principles calcula-
tion. This fact indicates that the analysis based on the model
presented in Sec. II is sufficient to describe the modulation of
the transmission signal. Namely, the modulation in the present
case that is dominated by the stimulated Raman wave can
be accurately described using the classical model of the light
propagation with harmonic oscillator approximation for the

FIG. 4. (a) Transmission change [�TEO(δ)/T0] and the frequency
components at (b) anti-Stokes and (c) Stokes positions [�TEO(ω0 ±
�, δ)/T0, respectively] as a function of delay time δ obtained by the
simulation(the blue filled circles) and the analytical calculations of
Eqs. (42) and (41) [but T0 is used instead of T0(ω)] (the red lines).
The insets in (a) show the probe pulses (the red lines) and atomic
displacement (the green lines) as a function of t at X = 0 μm in
the simulation for each δ. Spectrally resolved transmission change as
a function of ω: (d) �TEO(ω, δ)/T0, obtained by the simulation and
(e) �TEO(ω, δ)/T0(ω) by the simulations and analytical calculations
[Eqs.(41) and (46)].

phonon motion, first-order expansion in the light intensity, and
ignorance of dispersion effects in both the diagonal dielectric
function and the off-diagonal Raman tensor. The modulation
is caused mainly by the stimulated Raman wave in the present
case.

In Figs. 4(b) and 4(c), modulations at the anti-Stokes and
Stokes frequencies, ω0 ± �, are shown as a function of the
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pump-probe delay time, δ. The first-principles and the analyt-
ical calculations show again excellent agreement. It is noted
that the signal shows a striking phase difference between two
components at anti-Stokes and Stokes frequencies.

To investigate the frequency-dependent modulation in de-
tail, frequency-resolved modulation of the transmission is
shown in Figs. 4(d) and 4(e) for three cases of delayed time,
δ = 83.0, 89.5, and 96.0 fs at which the signals are plotted
in Figs. 4(a)–4(c). As seen in Fig. 4(d), the modulation is
maximum at δ = 89.5 fs when the probe pulse moves with
the nodal point of the coherent phonon. It also shows a
phase change across approximately the central frequency of
the probe pulse, 1.55 eV. The modulation is rather small
at the delay times of δ = 83.0 and 96.0 fs. These findings
are consistent with the first term of Eq. (46) that shows the
differential of the spectrum of the incident pulse.

In Fig. 4(e), the modulation divided by the frequency-
resolved transmission is shown. This is the quantity often
analyzed in experimental analyses. Here three lines are shown
for each pump-probe delay time. Solid thick lines show the
first-principles calculation, solid thin lines show analytical
results using Eq. (36), and thin dashed lines show approximate
analytical results using Eq. (46). The signal is again strong at
δ = 89.5 fs. The modulation shows a nodal structure around
the average frequency of the pulse and becomes larger as
the frequency apart from the average frequency. The first-
principles calculation coincides accurately with the analytic
formula of Eq. (36). The simplified analytic formula of
Eq. (46) somewhat deviates from others. The difference is
not very significant. At δ = 83.0 and 96.0 fs, the signal is
small for all frequencies. As the frequency comes apart from
the central frequency of the probe pulse, the signal becomes
larger. However, the signal showing divergent behavior at
frequencies around 1.1 eV and 2.0 eV will not be physically
significant since the component of the probe pulse in those
frequency region is extremely small. Looking at Fig. 4(e) in
detail, the signal at δ = 96.0 fs shows a negative (positive)
modulation at low- (high-) frequency region in both first-
principles and analytic results. However, at δ = 83.0 fs, though
the analytic formula suggests opposite behavior while the
first-principles calculation shows positive modulation on both
sides. We do not have an explanation for this observation.

C. Modulation in reflection

We next consider the modulation in the reflectivity. In the
first-principles calculation, the reflected wave in the vacuum
region left to the surface is composed of that by the direct
reflection at the front surface (X = 0 μm) and that by the
reflection at the back surface (X = 6 μm) after the propa-
gation inside the medium. The latter component includes a
stimulated Raman wave while the former does not. In the
first-principles calculation, the former reflected wave contains
an extremely weak ẑ component, while the latter reflected
wave accompanying a substantial ẑ component comes from
the stimulated Raman wave. We first discuss the contribution
of the former process without the propagation inside the
medium.

The reflection change is shown in Fig. 5(a) by dots
for three different pump-probe delay times of δ = 83.0,

FIG. 5. (1) Reflection change [�REO(δ)/R0] and the fre-
quency components at (b) anti-Stokes and (c) Stokes positions
[�ReoEO(ω0 ± �, δ)/R0, respectively] as a function of delay time δ

obtained by the simulation(the filled blue circles) and the analytical
calculations of Eqs. (32) and (33) [but R0 is used instead of R0(ω)]
(the red lines). The insets in (a) show the probe pulses (the red
lines) and atomic displacement (the green lines) as a function of t at
X=0 μm in the simulation for each δ. Spectrally resolved reflection
change as a function of ω: (d) �REO(ω, δ)/R0 obtained by the
simulation and (e) �REO(ω, δ)/R0(ω) by simulations and analytical
calculations [Eqs. (32) and (45)].

89.5, and 96.0 fs. The modulation in the reflection cal-
culated by the first-principles calculation coincides accu-
rately with the analytic formula of Eq. (30) that shows a
sinelike dependence. In Figs. 5(b) and 5(c), the frequency-
dependent modulation at ω0 ± � is shown. They show a
similar sinelike behavior and are again well reproduced by
the analytic formula. Therefore, the validity of the analytic
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formula is confirmed with high accuracy for the reflected
wave.

In Figs. 5(d) and 5(e), we show modulation of the re-
flectivity in frequency domain. The frequency-resolved mod-
ulation divided by the reflectivity with/without frequency
resolution is shown in the Figs. 5(e)/5(d), respectively. As
seen in Fig. 5(d), the modulation has a similar frequency
dependence with the frequency-resolved flux of the incident
wave. The frequency-resolved reflectivity shown in Fig. 5(e)
indicates that the frequency dependence of the modulation
is rather weak. In the frequency region far apart from the
central frequency, the modulation becomes larger. However,
the incident flux does not have much of a component in such
a frequency region. We find good agreement among three
curves, the first-principles calculation, the analytic formula of
Eq. (32), and the simplified analytic formula of Eq. (45). The
agreement indicates that the analytic formulas are sufficiently
accurate to describe the modulation in the reflectivity.

D. Reflection at the back surface

We next examine the modulation in the reflection, includ-
ing the reflected wave caused by the back surface. In Fig. 6(a),
we show a time profile of the reflection waves reflected from
the front surface and from the back surface of the medium in
the first-principles calculation. The z component of the field
is very small in the first wave from the front surface, while
that of the second wave from the back side is much larger
because of the amplification of the Raman wave during the
propagation. The reflection change �REO(δ)/R0 is shown in
Fig. 6(b) for three pump-probe delay times, δ = 83.0, 89.5,
and 96.0 fs. It can be well fit by a cosinelike function. This
can be understood as follows: In the case of the transmission,
the bulk effect caused by the stimulated Raman wave is
dominated as seen in Fig. 4(a). In the present case, the second
reflected wave includes a similar Raman wave component
as seen in the Fig. 6(a). The modulation in the reflection
is dominated by the bulk effect, if we include the second
reflected wave at the back surface.

Figure 6(c) shows the spectrally resolved signals calculated
by using the first and second reflection waves. A strong oscil-
lation structure is observed in the frequency domain for three
cases of the time delay. The oscillation structure is due to the
interference between the first and second waves: The Fourier
transformed electric field of the reflection wave can be given
as Ẽ1(ω) + Ẽ2(ω)eiω(t2−t1 ), where Ẽ1 and Ẽ2 are of the first and
the second reflection waves, respectively, and t1 and t2 is the
arrival time of the first and second waves, respectively. The
power spectrum is written as I (ω) = |Ẽ1(ω)|2 + |Ẽ2(ω)|2 +
2Re[Ẽ∗

1 (ω)Ẽ2(ω)eiω(t2−t1 )]. It indicates that the oscillation fre-
quency is inversely proportional to the difference of the two
reflected waves, t2 − t1, which is proportional to the thickness
of the sample. The present calculation assumes a sample of
6-μm thickness. The oscillation will not be observed if a much
thicker sample is utilized.

If we average the signals of Fig. 6(c) over rapidly oscil-
lating structures, we obtain a very small signal for δ = 83.0
and 96.0 fs, and a strong signal remains for δ = 89.5 fs. The
averaged feature is very close to the transmission shown in
Fig. 4(d). Namely, the signal is caused mainly by the Raman

FIG. 6. (a) Example of the reflection wave from the front surface
and the back side detected at the left vacuum region (δ = 89.5 fs).
(b) Reflection change as a function of δ taking into account the
reflection waves from both surfaces and (c) their spectrally resolved
reflection changes.

wave that is included in the second wave of Fig. 6(a) and that
is quite similar to that in the transmitted wave.

V. SUMMARY

We have presented a comprehensive theoretical analysis
on the probe stage of pump-probe measurements of coherent
phonon generation in dielectrics. We take a diamond as a typ-
ical case and assume the ISRS mechanism for the generation
process.

We have developed analytical and computational ap-
proaches. In analytical description, we revisited the work
developed in Ref. [5] by Merlin and developed a compre-
hensive formula. We start with a standard description of
light propagation coupled with a phonon motion through the
Raman tensor. We summarize the formula for the modulation
on the reflection and transmission of the probe pulse using
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a perturbative solution for the probe pulse. The modulation
in the transmission is caused by two distinct mechanisms: the
boundary and the bulk effects. The bulk effect is caused by the
stimulated Raman wave that is amplified as the probe pulse
propagates in the medium. The modulation in the reflection is
caused by the boundary effect. However, if we consider the
reflection at the back surface, the bulk effect also contributes
in the reflection.

The modulation is investigated for frequency-resolved and
-integrated signals. The boundary and the bulk effects con-
tribute to the modulation in a qualitatively different way.
The bulk effect produces strong frequency dependence in
the modulation, whereas the boundary effect produces very
weak frequency dependence. The bulk effect causes strong
modulation in the probe signal when the probe pulse moves
with the nodal point of the phonon. It causes a phase shift
of π/2 between the phonon amplitude and the probe signal.
Contrarily, the boundary effect causes a modulation that is
proportional to the amplitude of the phonon. The modulation
of the probe pulse is in phase with the coherent phonon.

The derivation of the analytic formula is based on several
assumptions and approximations. To confirm the validity of
the analytic formula, we performed first-principles calcula-
tions based on TDFFT. In our multiscale formalism, coupled
dynamics of mesoscopic light propagation and microscopic
electronic and ionic motions are described simultaneously
without any empirical parameters.

By comparing results between the analytical theory and
the first-principles calculation, we confirmed the validity and
the reliability of the analytical formula. We thus consider
that our analytic formula provides a reliable basis for the ex-
perimental analysis of frequency-resolved modulation in the
pump-probe measurement of coherent phonon in transparent
dielectrics.

However, we should note that the relative significance of
the surface and the bulk effects in actual experimental condi-
tions is a delicate issue [5,38], as we noted in the Introduction.
Since the bulk effect is proportional to the optical path length
while the surface effect is not, an analysis changing the film
thickness would be useful to clarify their relative significance.
Interference effects may also introduce interesting physics in
thin films. We plan to explore it in our next publication.
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