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Collective modes and gapped momentum states in liquid Ga: Experiment, theory, and simulation
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Collective excitations in liquids are important for understanding liquid dynamical and thermodynamic
properties. Gapped momentum states (GMS) are a notable feature of liquid dynamics predicted to operate
in the transverse collective excitations. Here, we combine inelastic neutron scattering experiments, theory,
and molecular dynamics modeling to study collective excitations and GMS in liquid Ga in a wide range of
temperature and k points. We find that all three lines of enquiry agree for the longitudinal liquid collective
dynamics. In the transverse collective dynamics, the experiments agree with theory, modeling, as well as earlier
x-ray experiments at larger k, whereas theory and modeling agree in a wide range of temperature and k points.
We observe the emergence and development of the k gap in the transverse dispersion relation which increases
with temperature and inverse of relaxation time as predicted theoretically.
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I. INTRODUCTION

Many important properties of solids are related to col-
lective excitations, phonons [1]. For example, solid energy
and heat capacity are consistently understood on the basis
of phonons. For a long time, it remained unclear whether
this approach applies to liquids where dynamical disorder
and the absence of a fixed lattice seemingly preclude the
expansion of vibrational energy around a reference point
required to derive phonons as in the solid theory. Calculating
the liquid energy as an integral over correlation functions and
the interaction potential is highly system dependent due to
strong interactions. For this reason, it is believed that liquid
thermodynamic properties cannot be calculated in general
form, contrary to solids and gases [1]. This singles out the
liquid state as the state not amenable to general theoretical
treatment. Known more generally as the absence of a small
parameter in liquids, this was the long-standing problem in
statistical physics research and teaching [2].

Phonons in the continuum or hydrodynamic limit of small
frequency ω and wave vector k are sound waves [3]. As these
phonons make negligible contribution to the density of states,
they make only a small contribution to the liquid energy. An
important question is whether liquids can support solidlike
phonons with large k and ω approaching the zone boundary
as in solids, therefore setting the system energy as in the
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solid theory. Experiments have ascertained that this is the
case for longitudinal phonons [4,5], but solidlike transverse
phonons have proved to be harder to detect experimentally
and understand theoretically. Propagating transverse modes in
liquids were first detected in viscous liquids. Later inelastic
scattering experiments ascertained the same in low-viscosity
liquids such as Na (see Ref. [6] for review). The transverse
modes are important because (a) transverse modes have been
traditionally viewed as a property of the solid state and are
associated with the system having a well-defined shape set
by the ability to support shear waves and (b) in solid theory,
these modes contribute two thirds of the system energy and
heat capacity.

As compared to solids, it took a long time to understand the
propagation of phonons and in particular solidlike transverse
phonons in liquids. Generalized hydrodynamics [7] was a
popular approach which aims to start with the hydrodynamic
description where the low-frequency longitudinal sound is the
only collective mode in the system and subsequently gener-
alize it to include the nonhydrodynamic solidlike property of
nonzero response to shear stress. This results in the prediction
that liquids are able to support shear modes as solids do, but
only above a finite critical value of the wave vector kg. This is
in interesting contrast to the commonly held view that liquids
are able to support transverse modes above a certain finite
frequency ω = 1/τ rather than above a finite wave vector [8].
In other words, liquids are predicted to have a gap in k space,
rather than ω space.
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The prediction of the k gap was indirectly present in the
Frenkel theory [9] which preceded generalized hydrodynam-
ics by many decades. Using Maxwell interpolation to describe
the viscoelastic liquid response, Frenkel represented viscosity
as an operator in the Navier-Stokes equations [10] but, sur-
prisingly, did not seek the solution of the resulting equation.
The solution was shown to give propagating transverse modes
with the dispersion relation [6,10]

ω =
√

c2k2 − 1

4τ 2
, (1)

where c is the transverse speed of sound in the solid and τ is
liquid relaxation time.

In the Maxwell-Frenkel picture, τ in Eq. (1) is ηs/G∞,
where G∞ is the high-frequency shear modulus and ηs is shear
viscosity. At the atomistic level, Frenkel theory identified τ

with liquid relaxation time, the average time between molec-
ular jumps around quasiequilibrium positions [9]. This has
become an accepted view [8].

Equation (1) predicts that liquids are able to support prop-
agating phonons but only with wave vectors above kg, where

kg = 1

2cτ
(2)

which interestingly and importantly differs from solids where
kg is zero or, to be more precise, is a very small number
set by the system size. Gapped momentum states (GMS) are
interesting on their own: for example, Eq. (1) implies an
anomalous phase and group velocities as compared to the
more common dispersion relation with the energy gap [11].

It has been realized that in addition to liquids, GMS
emerge in a surprising variety of areas [11], including
strongly-coupled plasma, electromagnetic waves, nonlinear
sine-Gordon model, relativistic hydrodynamics and holo-
graphic models. In some of these areas, GMS are central to
the system behavior and are actively studied. In other areas,
GMS are not well understood and are often not discussed. A
recent review [11] suggests that there is likely to be a common
underlying mechanism for GMS in different areas.

As far as liquid theory is concerned, the dispersion relation
(1) is important because it can be used to calculate the liquid
energy as is done in solids [6,12]. This calculation predicts
a decrease of constant-volume liquid heat capacity with tem-
perature, as is seen experimentally. This decrease is caused
by the reduction of the number of phonons propagating above
kg because, according to Eq. (2), the range of k points where
phonons propagate shrinks with temperature (τ decreases with
temperature) [12]. In other words, the phase space of phonons
in liquids decreases with temperature, in notable contrast to
solids.

Although GMS have been seen in simulations of both
liquids and supercritical fluids below the Frenkel line [12–14],
there is no experimental evidence for it in liquids. As re-
cently reviewed [11], the only experimental evidence for GMS
comes from imaging particles in strongly-coupled plasma
[15]. This has set one of the motivations behind this work.

Ga is also a substance with a number of unusual prop-
erties. This trivalent element is one of the few metalliclike
systems that does not crystallize into any simple structure. It

shows an extremely rich polymorphism that includes a stable,
low-pressure phase, α-Ga (orthorhombic structure with eight
atoms per unit cell), and two other phases which are stable
at high pressure: Ga-II (a body centered cubic phase with
twelve atoms per unit cell) and Ga-III (tetragonal phase).
Furthermore, the phase diagram of gallium contains a number
of metastable phases known as β, γ , δ, and ε with melting
points of 256.8, 237.6, 253.8, and 244.6 K all well below that
of 302.93 K for α-Ga. The wide temperature range of the ex-
istence of the liquid phase (303–2500 K) and the low pressure
of saturated vapors at T < 1400 K makes gallium a promising
coolant with outstanding thermohydraulic properties. These
properties, together with low melting point, make Ga an inter-
esting and convenient system to study experimentally. Ga has
received substantial experimental and computational interest
in the past. The question of whether gallium can sport acoustic
collective modes [16,17] has been answered, with longitudinal
excitations having been seen in inelastic neutron and x-ray
scattering experiments at a wide range of wave vectors and
temperatures [17–19]. High frequency excitations resembling
solidlike optical modes have also been detected [20], setting
Ga apart from “simple” molten metals like Na or Rb. The
possibility that these excitations were diffusive/incoherent
contributions has been ruled out [21]. However, no explana-
tions in terms of coherent excitations can account for the large
observed intensity, leaving the phenomenon an open question.
Ga is therefore a remarkable and interesting substance for its
thermodynamic, structural, and dynamical properties.

In this paper, we combine inelastic neutron scattering
experiments, modeling, and theory to study phonons in liq-
uid Ga in a wide range of temperatures, frequencies, and
wave numbers. We find that all three methods agree for the
longitudinal phonons. For transverse phonon branch, we find
agreement between (a) our modeling and theoretical results
with inelastic neutron and x-ray scattering at higher k and
(b) theory and modeling data in the entire range of k points
showing the k gap. We observe the increase of the k gap with
temperature and inverse of relaxation time, in agreement with
Maxwell-Frenkel theory. This agreement, together with the
agreement of all three lines of enquiry for the longitudinal
mode, builds up the body of evidence for GMS. Our results
serve as a stimulus for future inelastic neutron scattering
experiments investigating transverse modes in liquids and its
evolution in terms of gapped momentum states.

II. INELASTIC NEUTRON SCATTERING EXPERIMENT

Seven molten gallium samples were prepared in vacuum-
sealed quartz glass cylinders with 2.5 mm radius. The neutron
scattering experiment (INS) was performed at the MARI
chopper spectrometer at ISIS with incident neutron energies
of 7 meV and 40 meV [22]. The energy resolution was

E = 0.3 to 2 meV, for incident energies 7 to 40 meV at
wave numbers 0.4 to 1.5 Å−1. We collected our data at six
temperature points in a wide temperature range: 313, 400,
500, 600, 700, and 794 K. The INS spectra of liquid gallium
I (k, ω) at the temperature 794 K as a function of energy
transfer for several constant k values is shown in Fig. 1. Here,
dotted line represents the spectrometer resolution function.
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FIG. 1. Intensity neutron scattering I (k, ω) in molten gallium
at T = 794 K at the fixed wave numbers. The experiment was
performed on an instrument (MARI at ISIS) where the minimum
scattering angle is 3◦ and the monochromatic (pulsed) beam had an
energy 40 meV. Dotted line represents the spectrometer resolution
function.

Initially, raw experimental data were processed as follows.
All data on the intensity neutron scattering in liquid gallium
were centered at zero frequency. To improve the quality of the
INS spectra at fixed wave numbers k, we averaged the spectra
over the wave number range k ∈ [k − 
k, k + 
k], where 
k
was about 10% of k.

The experimental spectra were analyzed in terms of a
model that accounts for coherent and incoherent contributions
to the intensity neutron scattering given by [23]:

I (k, ω) = E (k)
∫

R(k, ω − ω′)Sq(k, ω′)dω′ + B(k, ω), (3)

Sq(k, ω) = h̄βω

1 − e−h̄βω

[
σcoh

σcoh + σincoh
S(k, ω)

+ σincoh

σcoh + σincoh
Ss(k, ω)

]
. (4)

Here, E (k) represents a scaling parameter; Sq(k, ω) and
Ss(k, ω) are the quantum dynamic and self-dynamic struc-
ture factors, respectively; the term B(k, ω) corresponds to

the background; R(k, ω) is the spectrometer resolution; β =
1/(kBT ) is the reciprocal temperature; σcoh and σincoh are the
cross sections of coherent and incoherent scattering, respec-
tively [for Ga σincoh/(σincoh + σcoh ) = 0.0658] [24].

The measured signal from a vanadium standard sample
at different scattering angles was used as an experimental
estimate the spectrometer resolution R(k, ω), which we then
fitted to the function

R(k, ω) = 1√
2πω0(k)2

exp

(
− ω2

2ω2
0(k)

)
, (5)

satisfying the normalization condition∫ ∞

−∞
R(k, ω)dω = 1.

Here, ω0(k) corresponds to the standard Gaussian deviation.
The contribution of gallium’s moderate neutron absorption

cross section was calculated and compensated for by compar-
ison with the background high-k peaks from the niobium fur-
nace. The self-dynamic structure factor (incoherent scattering)
was modeled using the simple hydrodynamic formula [25]:

Ss(k, ω) = 1

π
exp

(
Dk2

ω(k)2 + (Dk2)2

)
, (6)

where D is the self-diffusion coefficient obtained from the
molecular dynamics simulations. As we have shown in
Ref. [13], the results of MD simulations correctly predict the
temperature dependence of the self-diffusion coefficient in
liquid gallium. Then, we have attempted to reproduce neutron
scattering intensity spectra with a dynamic structure factor
(coherent scattering) obtained from molecular dynamics sim-
ulations. Despite the fact that the calculated dynamic structure
factor correctly reproduces the collective dynamics of liquid
gallium and gives the correct values of the static structure
factor

S(k) =
∫ ∞

−∞
S(k, ω)dω,

we were unable to correctly reproduce all the features of the
I (k, ω) spectra. As can be seen from Fig. 1, the collective
acoustic branches are strongly suppressed by the huge cen-
tral contribution. In order to correctly reproduce all features
of the INS spectra, the central elastic line was fitted with
an additional Lorentzian function. This contribution, as was
noted in Ref. [26] can be responsible for multiple, quasielastic
coherent, and quasielastic incoherent scattering. The intensity
neutron scattering I (k, ω) in molten gallium at the tempera-
ture T = 794 K and its partial components are presented in
Fig. 2.

When calculating current autocorrelation spectra, we used
the experimental scattering intensely directly. In order to
extract the transverse dispersion curves from the current INS
data we used fitting procedure with the two-oscillator model
[27] and the damped harmonic oscillator model [28] (Fig. 3).

III. MOLECULAR DYNAMICS SIMULATIONS

Molecular dynamics (MD) simulations have been per-
formed in the NPT ensemble for the system consisting
of 32 000 particles interacting via the EAM potential [29]
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FIG. 2. Intensity neutron scattering I (k, ω) in molten gallium.
Dashed magenta line—the dynamic structure factor calculated from
molecular dynamics simulation data; green line—the resulting func-
tion containing partial components associated with various types of
neutron scattering on matter: multiple, quasielastic coherent, and
quasielastic incoherent scattering; dotted black line—the spectrom-
eter resolution function; solid red line—“theoretical” intensity of
neutron scattering in liquid gallium, obtained taking into account the
experimental resolution function.

at the temperatures T = [313, 400, 500, 600, 700, 794] K
and pressure of about 1.0 bar. The dynamic structure factor
can be computed on the basis of MD results as

S(k, ω) = S(k)

2π
Re

∫ ∞

−∞

〈δρ∗(k, 0)δρ(k, t )〉
〈|δρ(k, 0)|2〉 eiωt dt, (7)

and is plotted in Fig. 3. We also calculate the spectral densities

C̃α (k, ω) = 1

2π

∫ ∞

−∞
Cα (k, t )eiωt dt, α ∈ {L, T } (8)

of the time correlation functions (TCF) of the longitudinal
current CL(k, t ) and the transverse current CT (k, t ),

CL(k, t ) = 1

N
〈 jz(k, t ) jz(−k, 0)〉, (9)

CT (k, t ) = 1

2N
〈 jx(k, t ) jx(−k, 0) + jy(k, t ) jy(−k, 0)〉.

(10)

0

0.5

1.5

1

1.5

S
(k

,
) 

(f
s)

2

1

 (ps-1)

0.5 -60-40-2020 04060

FIG. 3. Dynamic structure factor of liquid gallium calculated
from molecular dynamics simulations.

Here, δρ(k, t ) is the density fluctuations, j(k, t ) =∑N
l vl (t )e−ik·rl (t ) is the velocity current, and the wave-vector

k is directed along the z axis. Dispersion curves of longitudi-
nal and transverse excitations are obtained from the location
of maxima of the spectral densities C̃L(k, ω) and C̃T (k, ω)
at various values of k. The longitudinal current spectra are
related to the dynamic structure factor by the equation

C̃L(k, ω) = ω2

k2
S(k, ω). (11)

IV. COLLECTIVE EXCITATIONS
AND DISPERSION RELATION

According to the formalism of the time correlation func-
tions [30], the spectral density of TCF of the longitudinal
current spectra C̃L(k, ω) can be represented in the form of
continuous fraction:

C̃L(k, ω) = kBT

πm
Re

⎧⎨⎩ 1

iω + 
1(k)

iω+ 
2 (k)
iω+...

⎫⎬⎭. (12)

Here, 
n(k), n = 1, 2, 3, ... are the relaxation parameters,
which are related with the normalized frequency moments
ω

(2m)
L (k) of C̃L(k, ω):

ω
(2 j)
L (k) =

∫
ω2 jC̃L(k, ω)dω∫

C̃L(k, ω)dω

, j = 1, 2, . . . (13)

using the following expressions:


1(k) = ω
(2)
L (k),


2(k) = ω
(4)
L (k)

ω
(2)
L (k)

− ω
(2)
L (k),


3(k) = ω
(6)
L (k)ω(2)

L (k) − [
ω

(4)
L (k)

]2

ω
(4)
L (k)ω(2)

L (k) − [
ω

(2)
L (k)

]3 .

. . . . (14)

In the classical case, only the even frequency moments take
nonzero values. The second moment of the spectral density
C̃L(k, ω) in the case of a spherical pair potential of interatomic
interaction U (r) can be written as [31]

ω
(2)
L (k) = 3

kBT

m
k2 + ρ

m

∫ ∞

0
g(r)[1 − cos(kz)]

∂2U (r)

∂z2
d3r.

(15)

Here, g(r) is the radial distribution function of two particles.
The expressions for the moments of higher orders will contain
integrals of many-particle distribution functions and higher
order derivatives of the potential. The relaxation parameters
can be determined numerically from molecular dynamics
simulation data in accordance with the basic definitions [32]:


n(k) = 〈|An(k, 0)|2〉
〈|An−1(k, 0)|2〉 , n = 1, 2 . . ., (16)
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FIG. 4. Longitudinal current spectra C̃L (k, ω) calculated by equation (11) for liquid gallium at the temperature T = 794 K: Circles—
experimental results from inelastic neutron scattering; squares—the molecular dynamics simulation results; solid lines—theoretical results
[Eq. (18)].

where

A0(k, t ) = jL(k, t ),

A1(k, t ) = ∂A0(k, t )

∂t
,

A2(k, t ) = ∂A1(k, t )

∂t
+ 
1A0(k, t ),

. . . ,

An(k, t ) = ∂An−1(k, t )

∂t
+ 
n−1An−2(k, t ). (17)

The values of the relaxation parameters 
1(k), 
2(k), 
3(k)
and 
2(k) were numerically computed from MD simulation
data by means of relations (16) and (17).

According to self-consistent relaxation theory, the spectral
density C̃L(k, ω) of longitudinal current is defined as [33–36]

C̃L(k, ω) = kBT

2πm


1(k)
2(k)
3(k)
√

4
3(k) − ω2

B0(k) + B2(k)ω2 + B4(k)ω4
(18)

with

B0(k) = 
2
1(k)
2

3(k),

B2(k) = 
3(k)[
2(k){
1(k) + 
2(k)}
− 2
1(k)
3(k)],

B4(k) = 
3(k)[
3(k) − 
2(k)].

The maxima of longitudinal current spectra C̃L(k, ω) at differ-
ent k give the dispersion law ω(L)

c (k). Solution of the following

simple equation

∂

∂ω
[B0(k) + B2(k)ω2 + B4(k)ω4]|ω=ωr = 0 (19)

gives the longitudinal dispersion relation as:

ω1,2(k) = ±i

√

2(k)[
1(k) + 
2(k)] − 2
1(k)
3(k)

2[
3(k) − 
2(k)]

= ±iω(L)
c (k). (20)

Comparison of the theoretical results of the longitudinal cur-
rent spectra C̃L(k, ω) of liquid gallium at T = 794 K accord-
ing to equation (18) with INS and MD results is presented
in Fig. 4, demonstrating good qualitative and quantitative
agreement between all three methods.

The dispersion law ω(L)
c (k) for the liquid gallium at the

temperature T = 794 K is given in Fig. 5. Here, results of
molecular dynamics simulations, INS experiments, and in-
elastic x-ray scattering (IXS) experiments (reproduced from
Ref. [13]) are compared to theoretical results (20). As seen,
the calculated theoretical and MD dispersion curves are in a
good agreement with the INS and IXS data.

V. TRANSVERSE DISPERSION LAW AND GAPPED
MOMENTUM STATES

The transverse current TCFs [Eq. (10)] were calculated
from the MD simulations data at different temperatures. The
dispersion law of the transverse collective mode calculated
from the spectral densities of these TCFs at different tempera-
tures is presented in Fig. 7 alongside experimental dispersion
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FIG. 5. Dispersion of the high-frequency peak ωc(k) of the longitudinal current spectra C̃L (k, ω) for liquid gallium at the temperatures
LEFT: T = 313 K: in part reproduced from [13], here circles—our experimental INS results; RIGHT: T = 794 K: circles—the experimental
INS results; triangles—the molecular dynamics simulation results; squares—theoretical results (20); stars—AIMD data at the T = 702 K [37].
Dashed lines represent the extrapolated hydrodynamic result ωc(k) = csk, where cs is the sound velocity.

curves from IXS reported previously [38] as well as earlier ab
initio modeling results [13].

At lowest temperature, we observe an agreement between
the calculated dispersion curves and previous experimental
results at large k. We note that INS and IXS experiments probe
density fluctuations and therefore can only detect the presence

of transverse modes if those modes are not purely transverse.
A liquid’s lack of translational invariance precludes purely
transverse modes at lower values of k than would be possible
for solids [39]. It is by this mechanism that previous INS
and IXS experiments have detected transverse modes in Ga,
other molten metals, and liquid water at larger k [13,28,38,40–
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42], usually detectable by a shoulder on or broadening of
the elastic peak in the dynamic structure factor. We have
attempted to extract the transverse dispersion curves from the
current INS data by fitting to a two-oscillator model [27]
and damped harmonic oscillator model [28], however the
resolution and signal strength of the experimental data were
lacking and the additional degrees of freedom available in the
two-oscillator model resulted in overfitting .

We now focus on modeling and theoretical results for the
transverse dispersion curve. First, we calculate the parameters
in the predicted transverse dispersion curve (1). We calculate
τ as ηs/G∞, and ηs as

ηs = V

kBT

∫ ∞

0
〈σαβ (t )σαβ (0)〉dt, (21)

where angle brackets mean averaging over time and ensemble
of particles, kB is the Boltzmann constant, V is the volume,
σαβ are the nondiagonal components of the stress tensor.

We subsequently calculate c as
√

G∞
ρ

, where the infinite-

frequency shear modulus is evaluated as

G∞ = V

kBT
〈|σαβ (0)|2〉. (22)

Figure 6 shows the calculated values of density, viscosity,
G, speed of sound, and relaxation time as a function of
temperature. As seen from the figure, the simulation results

for the density and viscosity of liquid gallium are in qualitative
agreement with the experimental data, correctly predicting the
general trend with increasing temperature.

We now address the central point of this paper of how well
the dispersion relation for GMS describes liquid dynamics.
Our results enable us to study this point quantitatively and in
detail.

We use three ways to study this. First, we plot Eq. (1)
in Fig. 7 using the calculated τ and c. We observe a good
agreement with (a) dispersion relation obtained from mod-
eling in the wide rage of k points including the k gap at all
temperatures and (b) experimental transverse points at the
lowest temperature and higher k.

Second, we plot the k gap as a function of tempera-
ture in Fig. 8 and observe its increase. This is consistent
with the prediction of Eq. (2) because τ decreases with
temperature.

Third and finally, Eq. (2) predicts the increase of kg as
1/cτ . In Fig. 8, we plot kg as a function of 1/cτ and
observe a linear dependence, consistent with the theoretical
prediction.

VI. DISCUSSION AND SUMMARY

This joint experimental, computational, and theoretical
study represents further progress towards an understanding of
collective modes in liquids and GMS in particular. With new
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FIG. 8. (a): Temperature dependence of the width of “gap” in the transverse dispersion law. The dashed line represents the linear fit kgap =
α · T + k0 with the coefficients α = 9.12 × 10−4 K−1 Å−1, k0 = −0.12 Å−1. (b): Relationship between the gap width and the characteristic
quantity 1/cτ . The dashed line represents the linear fit kgap = 0.5/cτ .

INS data, the longitudinal and transverse collective modes
predicted by the EAM potential for gallium enjoys agreement
with both IXS and INS experiments. The longitudinal modes
additionally sport very solid agreement from low k up to and
beyond the first BZ boundary. This increases our confidence
that experiments, theory, and modeling have now developed
to the extent where they reliably describe the same physical
mechanism. In the area of liquids, achieving this has remained
a long-standing challenge form the point of view of experi-
ment, theory, and modeling [6].

Our current evidence for GMS comes from theory and
modeling which agree well, as follows from our Figs. 7 and 8.
Moreover, theory and modeling also agree with INS and IXS
experiments at larger k. Although we do not directly observe
GMS in the current INS experiment (due persisting challenges
of detecting a weaker transverse mode in liquids at low k [6]),
this agreement, together with the agreement of all three lines
of enquiry for the longitudinal mode, builds up the body of ev-
idence for GMS. Our results serve as a stimulus for future INS
experiments investigating transverse modes in liquids at low k
and their evolution in terms of gapped momentum states.

We find that the theoretical prediction of GMS following
from Maxwell-Frenkel theory describes liquid dynamics with
a fairly high degree of accuracy. This is important for under-
standing most basic dynamical and thermodynamic properties
of liquids as discussed in the Introduction. The overarching
goal of this research programme is to reach the stage where,
despite the complexity of their theoretical description [1], liq-
uids emerge as systems amenable to theoretical understanding
at the level comparable to gases and solids.
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