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Resonant inelastic x-ray scattering (RIXS) is increasingly used to quantify vibronic interactions in materials.
In the case of periodic systems, this is most often done through fitting experimental results to a parameterized
but exact analytical solution of a simple Holstein Hamiltonian that consists of a single electronic level coupled
linearly to a single Einstein vibrational mode. Working within this standard framework, we consider the impact of
minor generalizations of this model, namely, introducing a second Einstein oscillator and allowing the curvature
of the excited-state potential energy surface to differ from that of the ground-state potential energy surface.
We find that dynamics occurring in the RIXS intermediate (electronically excited) state considerably alter the
quantitative interpretation of the phonon features observed in the RIXS final state. This complicates the use of
the single mode model when multiple phonon modes are active. Our generalized model may in principle be
substituted in this case, though we find that accurate quantitative results rely on knowledge of the excited-state
potential energy surface, which typically is not known.
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I. INTRODUCTION

Strongly correlated electron materials exhibit intricate
phase diagrams and profound responses to changes in control
parameters. This makes these materials difficult to understand
but at the same time confers upon them great technological
promise. While this behavior may be viewed as originating
from multiple competing orders, it is advantageous to instead
view these materials as having intertwined orders, stemming
as much from the cooperation as the competition between
various degrees of freedom [1]. For example, it is the coop-
eration between strong spin-orbit coupling and the otherwise
insufficient Coulomb interaction that opens a Mott gap in
several 5d oxides [2,3]. Clearly, improving our understanding
of strongly correlated materials will require a better quantifi-
cation of the interactions between the charge, spin, orbital,
and lattice subsystems. In particular, the variation of these
coupling strengths across the Brillouin zone is likely to have
considerable impact.

Taking superconductivity as an example, while the inter-
action between the charge and lattice degrees of freedom is
responsible for Cooper pairing in conventional BCS super-
conductors, it is insufficient to explain unconventional su-
perconductivity. Nevertheless, electron-phonon coupling may
still play an assisting role to a more fundamental pair-
ing mechanism in unconventional superconductors [4]. For
anisotropic unconventional superconductivity, the momentum
dependence of the electron-phonon coupling strength may be
of considerable importance [5,6] even though it does not sig-
nificantly affect Cooper pairing in isotropic conventional BCS
superconductors. For this and other reasons, it is of consider-
able interest to ascertain the variation in the electron-phonon

coupling strength throughout the Brillouin zone. However,
since for many physical phenomena the electron-phonon in-
teraction manifests itself as an average over the Brillouin
zone, experimental access to the momentum dependence of
the electron-phonon interaction strength is limited.

Lattice dynamics can be studied by several methods. In-
elastic neutron scattering has long been used to map phonon
dispersion curves [7], which can now be done with ex-
ceptional energy resolution. As demonstrated by Allen [8],
the linewidth of phonon features can be used to quantify
electron-phonon coupling. Infrared and Raman spectroscopy
are fundamental and complementary techniques for probing
vibrational modes at the zone center [9,10]. These techniques
offer an excellent energy resolution on the order of 0.1 meV
and can also be used to quantify zone-center electron-phonon
coupling [11,12], for example by using Allen’s method devel-
oped in the context of neutron spectroscopy. Angle resolved
photoemission [13] and scanning tunneling spectroscopy [14]
alternatively can probe electron-phonon coupling with control
over the electron momentum but yield values averaged over
the phonon wave vector. In recent years, several developments
have been made in the use of x rays to probe phonons.
Nonresonant inelastic x-ray scattering (IXS) can now obtain
meV energy resolution and is able to probe very small sample
volumes [15].

Against the backdrop of these well established techniques
that have considerably better energy resolution, resonant in-
elastic x-ray scattering (RIXS) may seem an unlikely choice
for studying lattice dynamics. Recent progress in instrumen-
tation has given the latest generation of RIXS spectrome-
ters a resolution of about 15 meV at soft x-ray energies
[16,17], which is sufficient to clearly resolve high energy
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optical modes [18,19]. Rather than mapping phonon disper-
sion curves, the greater interest driving the use of RIXS to
study lattice dynamics is to quantify electron-phonon cou-
pling in a momentum resolved way. In this respect, RIXS
shows considerable promise for becoming a sensitive, quan-
titatively precise, and versatile complement to the traditional
probes of phonon excitations. However, faithfully extracting
information on electron-lattice interactions from RIXS is
challenging due to the complexity of the cross section.

Detailed theoretical studies of phonon excitations during
RIXS measurements on periodic systems are limited. Work by
Lee et al. [20] and Johnston et al. [21] addressed the problem
numerically in the context of the multiband extended Hubbard
model for small one-dimensional clusters (e.g., Cu3O8 chain
representations). In each case, a single vibrational mode at
the � point was adjoined to the electronic Hamiltonian with a
Holstein-type interaction, though allowing the electrons to be
delocalized. By comparing calculated loss profiles to exper-
imental RIXS results on Ca2+5xY2−5xCu5O10, the first study
[20] found an electron-lattice coupling strength of 0.22 eV at
the copper site and 0.11 eV for the oxygen site. In the latter
work on Li2CuO2 [21], only coupling to the copper site was
included and an interaction strength of 0.2 eV was inferred
from comparison to experiment. Devereaux et al. [22] have
presented a formal treatment of the problem including a fully
momentum-dependent electron-phonon scattering interaction.
However, this work was limited to the single phonon contri-
bution. To avoid the numerical challenges associated with a
rapidly increasing Hilbert space when phonons are included,
the present authors have suggested treating the phonons im-
plicitly by evaluating the RIXS loss profile in terms of the
electronic Green’s function [23]. In this scenario, phonons
contribute to the electronic self-energy, producing sidebands
in the electron spectral function.

Given the challenges associated with calculating the
phonon contribution to RIXS, most analyses of experimental
data from periodic systems employ a fitting procedure pred-
icated on a Holstein model with a single localized electronic
level coupled to a single Einstein vibration [24]. Such a model
has historically been used to describe vibronic interactions
in molecules measured by optical Raman spectroscopy [25].
In the canonical case, one observes a series of loss features
appearing at integer multiples of the phonon energy with
decreasing peak height. Within this model, the RIXS intensity
of the nth phonon harmonic in the loss spectrum is given by
the square of

An =
∑

m

Bn,m(g)Bm,0(g)

z − ω0(m − g)
, (1)

where the summation runs over all intermediate state phonon
occupancies m, ω0 is the vibrational energy, g is the di-
mensionless electron-phonon coupling strength, and z = � +
iγ /2 with � being the detuning between the energy of the
electronic excitation and the incident photon energy, and γ the
inverse lifetime of the core hole. The standard Franck-Condon
factors are

Bn,m(g) = (−1)n
√

e−gn!m!
m∑

l=0

(−g)l√gn−m

(m − l )!l!(n − m + l )!
, (2)

and Bn,m(g) is shorthand for Bmax(n,m),min(n,m)(g).
Equation (1) has been used to quantify the vibronic cou-

pling strength in several materials. Probing the Ti L3 edge,
Fatale et al. found that the 65 meV TO mode of BaTiO3

had a coupling parameter of g ≈ 19 [26] while Moser et al.
inferred g = 1.9 for the 95 meV LO mode of anatase TiO2

[27]. At the O-K edge, Meyers et al. extracted a coupling of
g = 14 for the 105 meV O-Ti LO4 mode in multilayers of
SrIrO3/SrTiO3 [28] and Vale et al. found a similar value in
the 5d system α-Li2IrO3 for the oxygen Au mode at 70 meV
[18]. For NdBa2Cu3O6, Rossi et al. obtained a value of g ≈ 2
at low momenta transfer for the 70 meV Cu-O bond stretching
mode [29].

Given the wide application of Eq. (1) for the analysis
of RIXS data, it is worthwhile to probe the behavior of
this model in more detail. Braicovich et al. have recently
presented an in depth discussion on the nature of Eq. (1) for
the conceptually ideal model of a single local electronic level
coupled linearly to a single local Einstein mode [30]. Here, we
offer a complementary perspective by considering the effect of
making two simple generalizations to the basic model that are
both routinely encountered and have significant impact on the
interpretation of the data.

First, in Sec. II, we consider the situation of a single elec-
tronic level coupled to two vibrational modes. The temptation
is to sum the two contributions independently according to
Eq. (1). We find this to be a poor approximation for many
scenarios. This is due to the fact that the modes may mix via
the electronic excitation, shifting spectral weight to regions of
higher energy loss. Also, even when the final state consists
of only a single quantum in a single mode, intermediate
states with high occupancy of both modes can contribute
significantly to this final state. This further reveals that the
intensity of each feature will depend on the coupling strengths
of both modes. We apply the two mode model to α-Li2IrO3 in
Sec. III.

Second, a basic assumption of Eq. (1) is that the vibrational
frequency is the same in the ground state and the excited
state. In Sec. IV, we investigate the consequences of relaxing
this assumption. We find that changes in the potential energy
surface between the ground and excited state lead to clear
variations in the phonon peak intensities observed in the final
spectrum. This effect becomes important when the RIXS
intermediate state excites localized vibrations and either the
symmetry or spatial variation of the excited-state charge den-
sity differs appreciably from the ground-state charge density.
For example, this could be due to an excited-state Jahn-Teller
distortion and be viewed as a transient, excited-state polaron
with a local potential that differs from that of the correspond-
ing ground-state polaron. This implies that to properly extract
a coupling constant from the final RIXS spectrum one must
know the intermediate state potential energy surface.

There is a fundamental question as to the relation between
the coupling value inferred from a RIXS measurement and the
transport electron-phonon coupling parameter. Phonons are
excited by the altered potential of the RIXS intermediate state,
which contains both an excited electron and a core hole—an
excitonic configuration [23]. While the potential of an added
electron and an exciton may be approximately equivalent in
a certain limit, they will generally differ. It remains an open
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question to quantitatively determine the relation between the
effective coupling constant measured by RIXS and the near-
equilibrium transport electron-phonon coupling parameter.
We do not address this point in the present work but instead
consider and refer to a generic vibronic coupling between the
electronic and lattice systems without specifying any relation
to the transport electron-phonon parameter.

II. RIXS SIGNAL WITH TWO VIBRATIONAL MODES

The amplitude for the phonon contribution to the RIXS
signal expressed in Eq. (1) originates from considering the ba-
sic Holstein Hamiltonian for a single electronic level coupled
linearly to a single Einstein mode

H = ε0d+d + ω0b+b + Md+d (b + b+), (3)

where the dimensionful coupling constant M relates to the di-
mensionless coupling parameter g of Eq. (1) by g = (M/ω0)2.
Due to the localized nature of the electronic level and sim-
ple linear coupling, it is possible to re-express Eq. (3) in
diagonal form as a displaced harmonic oscillator and obtain
an exact solution by applying a Lang-Firsov canonical trans-
formation (H̄ = eSHe−S) with the generating function S =√

gd+d (b+ − b) [31]. Overlap of the resulting excited-state
vibrational wave functions with the ground-state vibrational
wave functions gives the Franck-Condon factors in Eq. (1).

The corresponding Holstein Hamiltonian with a single
electronic level coupled to two Einstein modes that are oth-
erwise independent is

H = ε0d+d +
∑
λ=1,2

ωλb+
λ bλ +

∑
λ=1,2

Mλd+d (bλ + b+
λ ) . (4)

By analogy to the single oscillator, we can cast this Hamilto-
nian into the form of a two-dimensional displaced harmonic
oscillator and again obtain an exact solution. In this case, the
Lang-Firsov generating function for the canonical transfor-
mation is S = ∑

λ

√
gλd+d (b+

λ − bλ). The generalization of
Eq. (1) for the RIXS phonon intensity is

An1n2 =
∑

m1,m2

Dn2m2
n1m1

(g1, g2)Dm20
m10(g1, g2)

z − ∑
λ=1,2 ωλ(mλ − gλ)

, (5)

where

Dn2m2
n1m1

(g1, g2) = Bmax(n1,m1 ),min(n1,m1 )(g1)

× Bmax(n2,m2 ),min(n2,m2 )(g2)

is a product of Franck-Condon factors. This expression may
be further generalized to higher dimensions. Although this
result is obtained in close analogy to the one-dimensional
case there are important impacts on the behavior of the RIXS
intensities that we now consider.

To illustrate the differences between the usual single mode
model of Eq. (1) and the two mode model in Eq. (5) we
consider a low energy mode with energy ω1 = 30 meV and
a high energy mode of ω2 = 75 meV. The two modes have
coupling parameters M1 (g1) and M2 (g2), respectively. Rather
than classifying the coupling strength with g = (M/ω)2 we in-
stead use 2M/γ as the dimensionless measure of the coupling
strength. It is important to note that while γ gives the full
width at half maximum of the Lorentzian contribution to the

  

20

40

60

80

100
(a)

2M/γ  = 0.25

  

20

40

60

80

100

R
IX

S
 In

te
ns

ity
 (

ar
b.

 u
ni

ts
)

(b)

2M/γ  = 0.5

 0

20

40

60

80

100

-0.05 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Energy loss (eV)

(c)

2M/γ  = 1.0

I1
I2

I1+I2
I1+2

FIG. 1. RIXS loss profile for two equally coupled modes. The
contribution from the two mode model that includes mixing of the
modes (black curve and gray shading) is compared to the inde-
pendent mode approximation (red curve). In the latter case, the
individual contributions from the two modes are given by the dashed
blue and dotted green curves. In each panel, the energies of the two
modes are ω1 = 30 meV and ω2 = 75 meV, the core-hole lifetime is
γ /2 = 200 meV, and the excitation was tuned to the resonance. The
dimensionful coupling strength of the two modes are set equal in
each panel and are 50 meV (2M/γ = 0.25) (a), 100 meV (2M/γ =
0.5) (b), and 200 meV (2M/γ = 1) (c). The elastic lines are not
shown.

absorption or photoemission lineshape, the denominators of
Eqs. (1) and (5) contain z = � + iγ /2, that is, the half width
at half maximum. This point has caused some confusion in
the quantitative application of Eq. (1) to experimental data.
We take the core-hole lifetime broadening to be γ = 400 meV
throughout (γ /2 = 200 meV), which is intermediate between
typical values for the oxygen 1s level and the copper 2p level.
In Figs. 1–3 we compare the RIXS profile from Eq. (5), which
we refer to as the two mode model, to that from Eq. (1), which
we call the independent mode approximation. Specifically,
the independent mode approximation consists of the signal
constructed by assuming that the two phonon modes con-
tribute independently to the RIXS profile and summing their
intensities using the single mode model in Eq. (1) separately
for each mode.
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FIG. 2. RIXS loss profile for two unequally coupled modes. The
color scheme and parameters are the same as in Fig. 1 except that M1

is fixed at 50 meV and M2 is either 100 meV (a) or 200 meV (b). The
intensity difference between the independent mode approximation
and the two mode model is given below each RIXS profile.

Figure 1 considers the special case that M1 = M2 = M
varying M from weak (2M/γ = 0.25) to moderate (2M/γ =
1). For each value of 2M/γ we compare the RIXS signal
obtained from the two mode model to the independent mode
approximation. Within each panel, the independent mode
contributions are given by the dashed blue (30 meV mode)
and dotted green (75 meV mode) lines, their summed contri-
butions are indicated by the red curve, and the result of the two
mode model is given by the black curve with gray shading.
The elastic line has been removed for clarity.

A few points warrant mention. The two mode model con-
verges to the independent mode approximation in the weak
coupling limit, as expected [Fig. 1(a)], although a small dif-
ference between the two results is still evident in the vicinity
of ω1 + ω2 = 105 meV. This occurs because the two mode
model allows final states with both oscillators simultaneously
occupied, e.g., |n1, n2〉 = |1, 1〉, whereas such a final state is
not accessible within the independent mode approximation.
The importance of these mixed final states within the two
mode model, containing excitations of both oscillators, be-
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FIG. 3. RIXS loss profile for two unequally coupled modes. The
color scheme and parameters are the same as in Fig. 1 except that
M1 is either 100 meV (a) or 200 meV (b) while M2 is fixed at
50 meV. The intensity difference between the independent mode
approximation and the two mode model is given below each RIXS
profile.

comes more pronounced as the coupling strength increases
[Figs. 1(b) and 1(c)]. While the intensities around the first
harmonic of each mode remain essentially unchanged, the two
mode model develops a significant high energy tail that is
attenuated in the independent mode approximation. To match
the result from the two mode model by independently sum-
ming the single modes it would be necessary to erroneously
increase the value of the coupling strengths in order to account
for the greater intensity in the high energy loss region.

The agreement in intensities at the first harmonics oc-
curs only because we have scaled the overall spectra in this
way. The insets of Figs. 1(a) and 1(b) present the properly
normalized spectra. In all cases, the two mode model has
a greater total intensity summed over the phonon contribu-
tion. Consequently, the elastic line (not shown) is reduced in
the two mode model with respect to the independent mode
approximation. This indicates that the two mode model has
a larger effective coupling strength. Since the elastic line is
not generally used as an intensity reference the scaling of
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the spectra may not seem important. However, proper scaling
must be enforced when analyzing phonon satellites to other
features, such as d-d excitations [21,32,33].

Figure 2 demonstrates the effect of adding a weakly cou-
pled low energy mode (M1 = 50 meV, 2M1/γ = 0.25) to a
more strongly coupled high energy mode. We consider overall
weak coupling (2M2/γ = 0.5, M2/M1 = 2) in Fig. 2(a) and
a more strongly coupled high energy mode (2M2/γ = 1,
M2/M1 = 4) in Fig. 2(b). The largest difference between the
two mode model and the independent mode approximation
occurs below the energy of the first harmonic of the high
energy mode; the high energy mode progression is barely
affected. Such a scenario has been observed recently in
α-Li2IrO3 [18] and we examine this specific case in the
following section. Below each set of spectra we plot the
difference between the independent mode approximation and
the two mode model. The difference plot clarifies that the
significant loss of spectral weight at the first harmonic of the
lower energy mode is redistributed as a satellite feature to
each harmonic of the higher energy mode. In particular, the
positive regions of the difference plot are spaced in energy
by ω2 = 75 meV and are shifted by ω1 = 30 meV from
the harmonics of the second mode. This may essentially be
viewed as a convolution of the single mode spectrum for the
low energy mode with the harmonics of the high energy mode
and a concomitant reduction of the low energy mode satellites
associated with the elastic line. However, the actual effect is
more subtle when the spectra are properly normalized.

The degree of attenuation of the first harmonic of the
low energy mode increases with M2/M1. Fitting experimental
data that resemble the two mode result (black curve) with
the independent mode approximation would yield a coupling
constant for the low energy mode much smaller than its actual
value. On the other hand, a reasonable result for the high
energy mode could be obtained with the independent mode
summation in this case. In general, it appears that if a high en-
ergy mode has a much larger dimensionful coupling parameter
than all other modes the contributions of the weakly coupled
modes to the RIXS loss profile are effectively attenuated,
leaving the contribution of the strongly coupled high energy
mode largely isolated. More precisely, the spectral weight
of the weakly coupled low energy modes gets redistributed
throughout the full energy loss range, appearing as weak
satellites to each harmonic of the strongly coupled high energy
mode. In such cases, the independent mode approximation
would yield reasonable results for the strongly coupled high
energy mode but should not be used to quantify any weakly
coupled low energy modes. We demonstrate these points in
the next section by performing fits to experimental data for
α-Li2IrO3.

The inverse case of a more strongly coupled low energy
mode with a weakly coupled high energy mode is presented
in Fig. 3. In each panel, the high energy mode has a coupling
strength of M2 = 50 meV (2M2/γ = 0.25) while the low
energy mode is either weakly [2M1/γ = 0.5, M1/M2 = 2;
Fig. 3(a)] or moderately [2M1/γ = 1, M1/M2 = 4; Fig. 3(b)]
coupled. Similarly to the previous situation, the intensity at
the first harmonic of the weakly coupled high energy mode
is reduced in the two mode model with respect to the inde-
pendent mode approximation. In the more extreme case of

M1/M2 = 4 [Fig. 3(b)], the contribution of the high energy
mode is nearly lost and the two mode model is very close
to the single mode model for only the low energy mode
(dashed blue curve), though it deviates strongly from the
summation of the two independent modes (red curve). This
is highlighted by the corresponding difference plot beneath.
When the mode couplings are more similar [Fig. 3(a)] the
overall spectral shape is rather different between the two mode
model and the independent summation. The two model again
shows significantly reduced intensity at the first harmonic
of the high energy mode, but this intensity is now clearly
redistributed in the tail region. Consequently, the two mode
model deviates significantly both from the sum of the single
modes (red curve) and from only the contribution of the low
energy mode (dashed blue curve).

While the effect is similar to that observed in Fig. 2—
namely, the spectral weight of the weakly coupled mode gets
redistributed throughout the spectrum as satellites to each
harmonic of the strongly coupled mode—the impact on the
spectra is less obvious to observe in this case. The difficulty
occurs because the first satellite associated with the high
energy mode will occur at ω1 + ω2, which in this example
is a higher energy than the third harmonic of ω1. This is
demonstrated in the difference plots, which do not show a
positive contribution until ω1 + ω2 = 105 meV. Since the
presence of the high energy phonon is no longer obvious in
the two mode model (black curve), given experimental data
of this form, one might attempt a single mode fit. Such a fit
could yield a greatly exaggerated coupling constant for the
low energy mode.

The spectra in Figs. 1–3 are scaled so that the two mode
model and single mode summation give equal intensity for
the highest peak in each loss profile. In general, the intensities
of the first harmonic contribution of each mode, i.e., for
the final states |n1, n2〉 = |1, 0〉 or |0, 1〉, are affected by the
occupancies of the other mode in the intermediate states.
This is not necessarily obvious since the model Hamiltonian
we consider contains only harmonic oscillators and does not
explicitly contain a term for scattering between the phonon
modes. Nevertheless, the two harmonic vibrational modes
interact with each other indirectly through the electronic level.
These interactions are significant in the RIXS intermediate
state for which it is necessary to include states with high
phonon occupancies. Interference effects of mode mixing
in the intermediate state can both increase or decrease the
intensity of peaks relative to the independent oscillator case.
Mathematically, this is because the functions B and D are not
necessarily positive. Thus, the intensity of the first harmonic
(and all higher harmonics) of each oscillator encodes infor-
mation about the coupling strength of both modes and one
cannot simply assign a single coupling constant to a given
peak or series of harmonics. This presents challenges for using
detuning to extract the coupling strength. We discuss this point
further in Sec. V.

III. EXAMPLE APPLICATION TO Li2IrO3

In this section we apply the two mode mixing model to
previously published RIXS data collected at the O K-edge of
α-Li2IrO3 [18]. α-Li2IrO3 has a crystal structure comprised
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FIG. 4. RIXS loss profile of α-Li2IrO3. The color scheme is the
same as in Fig. 1 with the addition of gold symbols for experimental
data. (a) Fit of the mixed two mode model (I1+2, black curve) to
the experimental data using M1 = 140 meV and M2 = 170 meV.
(b) Fit of the independent mode approximation (I1 + I2, red curve)
to the experimental data using M1 = 35 meV and M2 = 200 meV. In
both cases the mode energies are ω1 = 20 meV and ω2 = 70 meV
and the core-hole lifetime is γ /2 = 120 meV. Experimental data is
reproduced from Ref. [18] with the elastic line subtracted.

of a 2D honeycomb grid of edge-sharing IrO6 octahedra
separated by a layer of Li atoms. The dominant phonon
features observed in the RIXS loss profiles were attributed
to an oxygen-derived Au mode with an energy of 72 meV.
However, the enhanced energy resolution of the experiment
allowed the detection of a much weaker phonon feature with
an energy around 20 meV, which was postulated to relate to an
Ir-O bond stretching mode. Therefore, we attempt fits to the
experimental data assuming one weakly coupled low energy
mode at ω1 = 20 meV and one strongly coupled high energy
mode at ω2 = 70 meV.

Results of the two mode model applied to the α-Li2IrO3

data are presented in Fig. 4. In Fig. 4(a), we tune the cou-
pling strengths to achieve a best fit for the two mode model
with phonon mixing while in Fig. 4(b) we choose coupling
strengths that give best agreement for the independent mode
approximation. For the dominant high energy mode (ω2 =
70 meV), there is a modest difference in the inferred coupling
constant between the two mode model (M2 = 170 meV) and

the independent mode approximation (M2 = 200 meV). How-
ever, mode mixing causes a substantial change to the coupling
constant for the weaker low energy mode (ω1 = 20 meV).
The two mode model finds M1 = 140 meV while the coupling
constant determined by the independent mode approximation
is only one quarter of that value, M1 = 35 meV. This signif-
icant, factor of four difference between the two models for
the coupling strength of the weakly coupled low energy mode
is particularly noteworthy since, according to the two mode
model, the coupling of the low energy mode is not particularly
weak (M1/M2 ≈ 0.82). These observations are consistent with
the discussion of the previous section.

The two mode model fit [black curve in Fig. 4(a)] appears
in better agreement with the experimental data than the in-
dependent mode approximation [red curve in Fig. 4(b)]. In
Ref. [18], the authors achieve a very good fit to their data
with the independent mode approximation by increasing the
broadening of higher phonon harmonics and adding a linear
background to the fit, as done in other works. The need
to increase the broadening for higher harmonics is typically
attributed to the dispersion of the phonon bands. The fits in
Fig. 4 do not include any linear background, nor do they
incorporate an increase of the peak broadening within the
harmonic series. Nevertheless, the two mode model fit in
Fig. 4(a) is quite good. This highlights a further strength of the
two mode model: A very satisfactory fit can be achieved with
fewer parameters. The two mode model obviates the need for
an excessive increase in broadening of higher harmonics and
the inclusion of an arbitrary linear background. Both largely
fictitious effects are intrinsically reproduced by the two mode
model without explicitly adding additional parameters or
terms to the fit. These features are implicitly generated when
the more weakly coupled low energy mode gets redistributed
as satellite shoulders off each harmonic of the higher energy
mode. These satellites to the harmonics of the high energy
mode add in such a way as to cause an apparent linear
background and broadening of the higher harmonics.

IV. DISTORTED HARMONIC OSCILLATOR

The canonical transformation and related analysis that led
to Eq. (1) for the intensity amplitudes of the RIXS phonon
features assumed that the vibrational potential energy surface
undergoes only a shift of equilibrium position between the
ground and electronic excited states. That is, the curvature of
the potential energy surface, and consequently the vibrational
frequency, remains unchanged. This is equivalent to the dis-
placed harmonic oscillator model. In this section, we consider
the impact of allowing the curvature of the potential energy
surface to change between the ground and excited states—the
displaced and distorted harmonic oscillator. The displaced
and distorted oscillator model was previously studied in the
context of resonance Raman scattering [34].

It is clear that the ground- and excited-state vibrational
frequencies can differ for molecules or other nonperiodic
systems. The same effect may also occur in periodic systems
when the RIXS intermediate state induces local vibrational
modes. These excited-state local modes, which may arise due
to a change in local symmetry or the perturbation caused
by the core-hole potential, can have frequencies appreciably
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different from the ground state phonon frequencies. The RIXS
intermediate state at the Ti L edge of SrTiO3 consists of a
d1 configuration. This induces a local E -e Jahn-Teller dis-
tortion of the potential energy surface with respect to the d0

ground-state configuration. The frequency of the excited-state
Jahn-Teller modes, 33.5 meV, differs significantly from the
corresponding LO2 mode around 55 meV [35]. These consid-
erations, coupled with first-principles calculations, have suc-
cessfully explained the x-ray absorption vibrational linewidths
in SrTiO3 [36]. In the more extreme case of diamond, the
σ ∗ excited state actually hops between two excited-state po-
tential energy surfaces as the local bond length undergoes a
change of 15% [37]. Given that the use of RIXS to quantify
vibronic coupling strengths is typically applied to strongly
correlated materials with localized electrons we expect that it
is not uncommon for the RIXS intermediate-state vibrational
frequency to differ from the ground-state frequency. In this
section, we investigate the implications of this scenario for
the standard single mode Franck-Condon model.

We describe a single Einstein mode coupled to a single
electronic excitation with the following Hamiltonian

H = (1 − d+d )[ω0 b+b]

+(d+d )[ε0 + ω̃0 b̃+b̃ + √
g ω̃0 (b̃ + b̃+)] . (6)

The first term on the right hand side describes the electronic
ground state (d+d = 0) for which we consider only the
ground-state vibrational energy ω0. The second term is for
the electronic excited state (d+d = 1) and contains the energy
of the excited electronic level ε0 referenced with respect to
the electronic ground state, the vibrational energy ω̃0 in the
excited state, and a coupling term between the electronic
level and the vibrational mode. Tildes indicate excited-state
quantities so that b̃+ (b̃) creates (destroys) a quantum of
oscillation of energy ω̃0 on the excited-state potential energy
surface.

This problem is equivalent to the displaced and distorted
harmonic oscillator. To derive the RIXS amplitudes for this
model we first address the displaced aspect of the oscillator
in a similar way to how it was treated for the undistorted
case. That is, by applying the canonical transformation with
a generating function S̃ = √

gω̃0d+d (b̃+ − b̃) that depends on
the excited-state quantities. With this, the vibrational part of
the RIXS amplitudes become

An =
∑

m̃

〈n| e−S̃ |m̃〉 〈m̃| eS̃ |0〉
z − ω̃0(m̃ − g)

. (7)

However, this expression differs from Eq. (1) because the
intermediate-state vibrational wave functions |m̃〉 still corre-
spond to the relatively distorted excited-state potential energy
surface. To account for the distorted aspect of the oscillator,
we now define a second transformation between the ground-
and excited-state vibrational bases

|n〉 =
∑

ñ

|ñ〉 〈ñ|n〉 =
∑

ñ

Xñ,n(β ) |ñ〉 . (8)

The analytical expression for the transformation matrix
Xñ,n(β ) can be found using second quantization approaches
[38–40] or by exactly evaluating overlap integrals for two
distorted harmonic potentials [41,42] in terms of Hermite

polynomials Hj . This gives

Xñ,n(β ) =
√

1

2n+ñn!ñ!

√
2β

1 + β2

n∑
k=0

ñ∑
k̃=0

(
n

k

)(
ñ

k̃

)

× 2k+k̃β k̃Hn−k (0)Hñ−k̃ (0)J (k + k̃), (9)

where the dimensionless parameter β = √
ω̃0/ω0 reflects the

change in the phonon energy and the function J (K ) is

J (K ) =
{

0 if K is odd
(K−1)!!√

1+β2
K if K is even . (10)

The final RIXS amplitudes corresponding to the basic Hol-
stein Hamiltonian generalized to the case of a change in the
curvature of the potential energy surface between the ground
and excited electronic states are

An(z) =
∑
m,l,k

Xn,l (β )Xk,0(β )
Bl,m(g) Bm,k (g)

z − ω̃0(m − g)
. (11)

It is worth noting that for the distorted oscillator case, the
RIXS intensities

In(z, ωloss) = |An(z)|2δ(ωloss − nω0) (12)

have peak positions in energy loss that are given by the
ground-state frequency ω0, while the resonances of the ampli-
tudes [Eq. (11)] are determined by the excited-state frequency
ω̃0.

In Fig. 5 we consider three scenarios: ω̃0 < ω0 (β < 1),
ω̃0 = ω0 (β = 1), and ω̃0 > ω0 (β > 1). The change in cur-
vature of the excited-state potential energy surface makes
a significant impact on the relative intensities of the RIXS
phonon features. The relative intensities of higher order har-
monics decrease for β > 1 and increase for β < 1. The effect
is significant for a 10% deviation of β (∼20% change the
oscillator energy). This can cause a misquantification of the
coupling strength if the change of the potential energy surface
is not accounted for. Unfortunately, to accurately extract quan-
titative information from the phonon features one must know
the curvature of the excited-state potential energy surface with
respect to its ground-state counterpart. It is possible that this
could be estimated experimentally by analyzing the linewidths
of x-ray absorption spectra or the vibrational spectra asso-
ciated with local modes around dopants, but this would be
challenging in general.

V. IMPACT ON DETUNING

The single mode Franck-Condon model, Eq. (1), is most
often used to quantify the vibronic coupling strength by fitting
the relative intensities of a harmonic series in the RIXS loss
profile. However, an alternative approach has recently been
suggested in which only the intensity of the first harmonic is
required [29]. In this case, Eq. (1) is used to fit the reduction
in intensity of the first harmonic with respect to the detuning
of the incident photon energy from the resonance energy.
The authors applied this to the Cu-O bond stretching mode
of NdBa2Cu3O6 and later simultaneously to both the bond
stretching and buckling modes of the same material [30].
Separately, this scheme was recently used to distinguish the
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FIG. 5. Influence of distortion of the curvature of the excited-
state potential energy surface (PES) on RIXS vibrational intensities.
Insets show schematics of the relative curvatures of the ground-state
and excited-state PES. The actual excited-state PES is indicated
in yellow and compared to the ground-state surface in gray. Col-
ored curves in the main figures indicate the corresponding RIXS
vibrational intensities according to Eqs. (11) and (12) compared to
the undistorted oscillator result in gray. All calculations were done
for a coupling constant M = 150 meV, inverse core-hole lifetime
γ /2 = 200 meV, and ground state phonon energy ω0 = 100 meV.

contributions from the zone center and zone boundary modes
in graphite [19]. However, the impact of a second mode on
the detuning behavior is unknown. We begin this section
by investigating that question. We subsequently probe the
detuning behavior of the single-mode displaced and distorted
oscillator introduced in the previous section.

We again consider a low energy mode with ω1 = 30 meV
and a high energy mode with ω2 = 75 meV while keeping the
core-hole lifetime fixed at γ /2 = 200 meV. We treat first the
case that the two modes have equal coupling strength of M1 =
M2 = 125 meV (2M/γ = 0.625); the results are presented in
Fig. 6. The top panel contains the total RIXS loss profile at
zero detuning while the middle panel gives the variation of
the peak intensity with the detuning at 30 meV (ω1) and the
bottom panel shows the same for the 75 meV peak (ω2).

The detuning curves obtained from the two mode model
deviate significantly from those given by the independent
mode approximation (dashed curves within each panel). Fur-
thermore, the curves produced by the two mode model cannot
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FIG. 6. (a) RIXS loss profile for two phonon modes at zero de-
tuning with ω1 = 30 meV, ω2 = 75 meV, and M1 = M2 = 125 meV.
The color scheme is the same as used in Fig. 1. (b) The relative
intensity of the first harmonic of the low energy mode as a function of
detuning. The detuning curve from the two mode model (black line
with blue symbols) deviates strongly from that for the independent
mode approximation (dashed blue curve). Red background curves
are generated from the single mode model for coupling strengths
between 160–200 meV in steps of 10 meV, increasing in the direction
of the arrow. (c) Same as the middle panel but for the high energy
mode. Red background curves are generated from the single mode
model for coupling strengths between 140–180 meV in steps of
10 meV.

be reproduced by any value of the coupling strength without
changing the core-hole lifetime. In particular, for small detun-
ing the low (high) energy mode initially follows a single mode
detuning curve for a coupling strength of 220 meV (150 meV),
but for larger detuning the low (high) energy curve tracks the
detuning curve for 180 meV (180 meV). The actual coupling
strength for both modes is 125 meV, revealing an error of
approximately 50% that depends on the detuning value and
mode.

It is interesting to note the opposite behavior of the low and
high energy modes. The effective coupling strength of the low
energy mode deviates most strongly from the true coupling
strength at small detuning and slowly approaches the correct
coupling strength for large detuning. The opposite trend is
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FIG. 7. (a) RIXS loss profile for two phonon modes at zero
detuning with ω1 = 30 meV, ω2 = 75 meV, M1 = 100 meV, and
M2 = 70 meV. Detuning curves for the low energy mode (b) and the
high energy mode (c). Presentation style of all panels is the same as in
Fig. 6. Background single mode detuning curves represent coupling
strengths between 110–150 meV (b) and 100–140 meV (c) in steps
of 10 meV.

observed for the higher energy mode. This is exactly what
was observed (though not discussed) during the simultaneous
study of the breathing (70 meV) and buckling (30 meV)
modes of NdBa2Cu3O6 [30]. In that work, the intensity of
the first harmonic of the higher energy breathing mode versus
detuning traverses several calculated single-mode detuning
curves starting from around g = 2 (M = 100 meV) at low
detuning and surpassing g = 8 (M = 200 meV) at higher
detuning. The results in Fig. 6(c) suggest that the actual
coupling strength is likely less than 100 meV.

When one mode is coupled more strongly than the other
we find that the error in the inferred coupling strength of the
more strongly coupled mode is reduced while that for the
more weakly coupled mode increases. This case is considered
in Fig. 7 for which the actual coupling strengths are M1 =
100 meV for the low energy mode and M2 = 70 meV for
the high energy mode. The detuning curve of the low energy
peak follows the M = 140 meV curve at low detuning and
approaches the M = 120 meV curve by a detuning of 0.5 eV.
This represents a 20−40% error for the more strongly coupled
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FIG. 8. Intensity of the first phonon harmonic versus detuning
for the displaced-distorted oscillator using ω0 = 100 meV, γ /2 =
200 meV, and M = 125 meV. The detuning curves for β = 0.7
(yellow), β = 0.9 (green), β = 1.1 (red), and β = 1.3 (orange) are
compared to undistorted single oscillator detuning curves for cou-
pling strengths between 95–155 meV in steps of 10 meV, increasing
with the arrow.

mode, though this error continually decreases with increased
detuning. On the other hand, the high energy mode initially
follows the M = 100 meV detuning curve but shifts to the
M = 130 meV curve by 0.5 eV detuning. This gives an error
spanning the range of 40−85% that gets worse with increased
detuning. For the opposite case of a more strongly coupled
high energy mode (not shown), the results follow similar
trends. That is, the error in inferred detuning of the more
strongly coupled mode is approximately 30% while that for
the more weakly coupled mode exceeds 100% at low detuning
and approaches a 70% error by a detuning of 0.5 eV.

Many systems of interest will exhibit at least two RIXS-
active modes. When these have similar coupling strengths, the
use of detuning will yield a value for the coupling strength that
is exaggerated, easily on the order of 50%. If one mode clearly
dominates the others in terms of coupling strength, the use
of detuning to quantify the coupling strength becomes more
reliable for the strongly coupled mode, particularly at large
detuning values, but is very unreliable for the more weakly
coupled modes with errors exceeding even 100%. It appears
that in all cases, the coupling strength inferred from detuning
will overestimate the true value to some degree when more
than one mode is active.

The detuning curves for the displaced-distorted oscilla-
tor model are presented in Fig. 8 for the parameter set
ω0 = 100 meV, M = 125 meV, γ /2 = 200 meV with β ∈
{0.7, 0.9, 1.1, 1.3}. For β < 1, the detuned value follows an
inflated value of the coupling constant for small detunings
while for β > 1 the intensity of the first harmonic suggests
a weaker effective coupling strength at small detuning. The
detuning trends for both β < 1 and β > 1 gradually converge
to the correct detuning curve for large detuning.

At the smallest value of β we observe that the detuning
curve is slightly nonmonotonic; the intensity for small de-
tuning is actually higher than the zero detuning value. While
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FIG. 9. Intensity of the x-ray absorption spectrum (blue) and first
phonon harmonic (red) versus detuning for the single mode displaced
oscillator using ω0 = 200 meV, γ /2 = 200 meV, and M = 230 meV.
The gray profile reveals the vibronic features in the x-ray absorption
for an artificially long core-hole lifetime (γ /2 = 50 meV). The zero
of detuning is set to the maximum of XAS, E∗, which differs by δ

from the energy of noninteracting quasiparticle E0.

this behavior may seem nonphysical, it has been observed
experimentally in the detuning curve for the σ ∗ excitation
in graphite [19,43]. A difference in curvature between the
ground- and excited-state potential energy surfaces offers a
possible explanation of this observation.

An alternative explanation for this unusual detuning be-
havior in graphite is that the standard Franck-Condon model
can produce this type of nonmonotonic detuning curve in
the case of simultaneous strong coupling and long core-hole
lifetime. This introduces a delicate issue about the application
of detuning studies. Experimentally, zero detuning is defined
with respect to the maximum of the given feature in the
x-ray absorption spectrum (XAS). However, in the case of
strong coupling and large phonon energies the peak of the
XAS can be offset from the actual electronic resonance.
We illustrate this in Fig. 9. A finely-resolved model x-ray
absorption spectrum, including vibrational excitations, is ex-
hibited by the gray shaded region. The true energy position
of the electronic level is E0, however, due to the vibronic
coupling, the first eigenvalue of the spectrum is downshifted
in energy by gω0 where ω0 is the phonon energy. Broadening
the spectrum to account for the core-hole lifetime gives the
blue curve for the XAS. The peak of the XAS is shifted
slightly, by δ, from the energy of the electronic level E0.
The shift δ depends on the coupling strength, phonon energy,
and core-hole lifetime. An experimental detuning curve as-
sumes that zero detuning coincides with ωi = E0 − δ while
the calculated detuning curve sets the zero of detuning as
ωi = E0. This offset could lead to a minor increase in the
intensity of the first phonon harmonic of the RIXS loss
profile for small detunings. In such cases, measuring the
detuning curve both above and below resonance may offer
some clarity.

VI. CONCLUSION

We have considered two generalizations of the standard
Franck-Condon description of the phonon contribution to
resonant inelastic x-ray scattering. In the case that a second
Einstein oscillator is added to the Holstein Hamiltonian the
correct RIXS signal, obtained through an exact analytical
solution of the two mode model, differs significantly from the
signal obtained by independently summing the contributions
of two single oscillator models. Not only do new phonon
peaks appear at energies corresponding to combinations of
the two oscillator frequencies, but the relative intensities of
all peaks differ with respect to the intensities obtained from
the independent mode approximation. This occurs because,
while the oscillators do not couple directly, they are indirectly
coupled through the electronic level. Even when the final state
contains only a single quantum of a single mode, the inter-
mediate states contributing to its peak intensity can include
highly occupied levels of both oscillators. The consequence is
that peak intensities reflect a complicated combination of the
coupling strengths of all active modes. The overall result may
be viewed approximately as a convolution of the amplitudes
of two independent mode signals with the caveat that the total
spectral weight of the phonon loss features is generally greater
in the two mode model compared to the independent mode
approximation. Since for most crystalline materials multiple
phonon modes couple to the electronically excited state, the
mode mixing effect should not be ignored.

We applied our two mode model to recent experimental
results for α-Li2IrO3 and found that it gave a much more
satisfactory fit than the independent mode approximation.
Further, there were large quantitative differences in the vi-
bronic coupling values inferred from the two fits indicating
that significant errors are possible when applying the inde-
pendent mode approximation to spectra with more than one
active vibrational mode. We have also applied a three-mode
generalization of our mode mixing model to experimental data
for SrTiO3 [44]. The software used to produce the present
results is available at Ref. [45].

Even when only a single mode is active, this mode still
has an associated wave vector and one expects to observe a
dispersion not only of the mode energy but also of the vibronic
coupling strength. Thus far, studies of the q dependence of the
coupling strength as quantified by RIXS assume that each q
point may be analyzed independently. Our two mode model
demonstrates that the RIXS intensities at each q point are not
independent, even at the first harmonic. For example, when
the momentum transfer is near the � point, the first phonon
harmonic, normally thought to be purely associated with the
q = 0 phonon, will be impacted through the intermediate state
by the coupling strength of ±q pairs throughout the Brillouin
zone (in fact, higher-order combinations may also contribute).
This effect is non-negligible since phonon occupancies can
reach significant oscillator levels in the intermediate state.

We also investigated the impact on phonon peak intensities
in RIXS spectra when the oscillator frequency differs between
the ground and excited states. The effect of a change in the
vibrational frequency is similar to that obtained by changing
the coupling strength and/or core-hole lifetime while holding
the vibrational frequency constant. It is therefore difficult to
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distinguish the difference of the two effects experimentally.
Without knowledge of the excited-state vibrational frequency,
use of the relative intensities of a harmonic series to quantify
the vibronic coupling strength can become ambiguous.

Throughout this work we have assumed harmonic oscil-
lators linearly coupled to an electronic state. While this is
typically a good approximation for the RIXS initial and final
states of periodic systems, the RIXS intermediate state can
reach high oscillator levels. This suggests that the impact of
anharmonic effects on the evolution of the intermediate state
should be probed in future work.

We find that phonon generation during a RIXS measure-
ment is a complex process that cannot be adequately described
quantitatively by simple models in general. This highlights the
need for the comparison of experimental results to unbiased,

first-principles calculations of the phonon contribution to
RIXS in order to further advance our understanding of this
new measurement technique. It will be advantageous in future
work to further develop models of the phonon contribution
to RIXS based on a fully momentum-dependent Hamiltonian
beyond what has already been presented [22].
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