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Thermal transport properties bear a pivotal role in influencing the performance of phase change memory
(PCM) devices, in which the PCM operation involves fast and reversible phase change between amorphous
and crystalline phases. In this paper, we present a systematic experimental and theoretical study on the thermal
conductivity of GeTe at high temperatures involving fast change from amorphous to crystalline phase upon
heating. Modulated photothermal radiometry (MPTR) is used to experimentally determine thermal conductivity
of GeTe at high temperatures in both amorphous and crystalline phases. Thermal boundary resistances are
accurately taken into account for experimental consideration. To develop a concrete understanding of the
underlying physical mechanism, rigorous and in-depth theoretical exercises are carried out. For this, first-
principles density functional methods and linearized Boltzmann transport equations (LBTE) are employed using
both direct and relaxation time based approach (RTA) and compared with that of the phenomenological Slack
model. The amorphous phase experimental data has been described using the minimal thermal conductivity
model with sufficient precision. The theoretical estimation involving direct solution and RTA method are found
to retrieve well the trend of the experimental thermal conductivity for crystalline GeTe at high temperatures
despite being slightly overestimated and underestimated, respectively, compared to the experimental data. A
rough estimate of vacancy contribution has been found to modify the direct solution in such a way that it agrees
excellently with the experiment. Umklapp scattering has been determined as the significant phonon-phonon
scattering process. Umklapp scattering parameter has been identified for GeTe for the whole temperature range
which can uniquely determine and compare Umklapp scattering processes for different materials.
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I. INTRODUCTION

Chalcogenide alloys have been evolved as excellent candi-
dates for the purpose of electronic nonvolatile memory stor-
age [phase change memories (PCM)] [1–7]. This application
involves a fast and reversible alteration between amorphous
and crystalline phase on heating. PCM cells consist of a
nanoscale volume of a phase change (PC) material, normally
a tellurium (Te) based alloy, which undergoes a reversible
change between amorphous and crystalline states, possessing
a contrasting electrical resistivity and thus enabling the PCMs
to be used for binary data storage [1,4]. In a PCM device,
crystallization by heating the amorphous PC alloy above
its crystallization temperature with electric current pulses is
called SET operation while amorphization of the crystalline
region by melting and quenching using higher and shorter
electric current pulses is called RESET operation [7]. Ger-
manium telluride (GeTe) is one of the promising candidates
within the phase change materials due to its notably high
contrast in electrical resistance as well as a stable amorphous
phase with a higher crystallization temperature upon doping
for the data retention process [7,8]. The crystallization tem-
perature for GeTe is ≈180◦C (453 K) [9,10]. GeTe has also
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been implemented with a superlattice configuration as GeTe-
Sb2Te3 that are extensively used for their application in optical
as well as PCM storage devices [11]. Further, the interface
between the GeTe and Sb2Te3 in the superlattice configuration
is found to control the phase transition, accompanied by a
reduced entropy loss, which helps in making fast and efficient
PCMs [12]. Doped GeTe with either N or C has been studied
as a way to postpone the phase change for high temperature
applications [7,10]. The effect of doping is also found to
reduce the thermal conductivity (κ) of GeTe significantly
[10]. Thermal conductivity (κ) serves as a crucial parameter
for PCM operations as heat dissipation, localization, and
transport can significantly affect the SET/RESET processes
and can therefore considerably influence the performance
of PCMs in terms of cyclability, switching time, and data
retention.

While a considerable amount of investigations have been
reported on the electronic transport properties of GeTe
[13,14], very few reports on the thermal conductivity of GeTe
starting from room temperature to high-temperature range are
found to exist in the literature. Nath et al. [15] characterized
the thermal properties of thick GeTe films in both crystalline
and amorphous phases. While the amorphous phase showed
negligible electronic contribution in the thermal conductivity
(κ), the contribution in crystalline phases was found to be
nearly 25% of the measured value of κ [15] at the room
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temperature. Levin et al. [14] observed high thermal conduc-
tivity of GeTe at 300 K and 720 K which they attributed
mostly to free charge carriers. Nonequilibrium molecular
dynamics simulation (NEMD) studies by Campi et al. [5]
showed that 3% of Ge vacancies effectively reduce the bulk
lattice thermal conductivity of crystalline GeTe from 3.2
Wm−1 K−1 to 1.38 Wm−1 K−1 at 300 K, justifying a large
spread of the experimentally measured thermal conductivities.
First principles calculations [6] also revealed this large vari-
ability of experimentally measured bulk thermal conductivity
due to the presence of Ge vacancies. Very recently, frequency
domain thermoreflectance study [16] was carried out for deter-
mining thermal conductivity in GeTe thin films as a function
of film thickness for both amorphous and crystalline phases.

Though the aforementioned studies dealt with the thermal
transport of GeTe in a broader sense, there are plenty of
open questions that still remain. A thorough and system-
atic understanding of the thermal conductivity of GeTe as
a function of temperatures, ranging from room temperature
to a temperature that is higher than the crystallization tem-
perature, in the context of different scattering processes in-
volved, is one amongst them. This systematic understanding
involves multiple approaches: (a) An accurate experimental
estimation of the thermal conductivity of GeTe thin films by
taking into account the significant contributions of thermal
boundary resistances at the boundaries of the GeTe layer;
(b) a consistent and thorough theoretical investigation of the
temperature variation of thermal conductivity starting from
first-principles density functional theory as well as solv-
ing the linearized Boltzmann transport equations (LBTE);
(c) using simple phenomenological models such as Slack
model, which exhibit closed-form solutions that can easily
identify the underlying physical mechanism involved in the
thermal transport. As revealed in the study by Bosoni et al.
[17], thermal conductivity (κ) calculated from the Slack
model [18] was indeed found in good agreement with the
experimentally measured value of κ at room temperature.

In this paper, we investigate the thermal conductivity of
GeTe films from room temperature up to 230 ◦C (503 K)
starting from the amorphous state. The contribution of the
film thermal conductivity from the thermal resistance at the
interfaces between the GeTe film and lower and upper layers
are clearly discriminated in the whole temperature range. The
modulated photothermal radiometry (MPTR) is employed as
the experimental technique for the study. The Levenberg-
Marquardt (LM) technique is used in order to identify the
essential parameters from phase measurements and a model
that simulates the phase within the experimental configura-
tion. In a stand-alone exercise of theoretical understanding,
thermal conductivity of GeTe is calculated starting from
first-principles density functional theory (DFT) coupled with
solving linearized Boltzmann transport equations (LBTE) by
both direct method and relaxation time approach. In order to
explain the measured change in κ (T ), distinct contributions
coming from various scattering mechanisms are understood.
Further, phenomenological models by Slack et al. [19] and
Cahill et al. [20] are also employed to elucidate the physical
mechanisms in the heat transport process. These system-
atic theoretical and experimental investigations are found to
provide significant clarity and insight in understanding the

variation of thermal conductivity of GeTe for a wide range
of temperature. This work is organized as follows: Section II
deals with experimental measurements using MPTR method.
Computational details involving first principles and thermal
conductivity calculations are described in Sec. III. Section IV
presents the theoretical results followed by summary and
conclusions in Sec. V.

II. EXPERIMENTAL RESULTS

Amorphous GeTe films, with thicknesses of 200, 300, and
400 nm, are deposited by magnetron sputtering in an Ar
atmosphere on 200 mm silicon wafers covered by a 500 nm
thick SiO2 top layer. The thicknesses of the deposited films as
well as their homogeneity are controlled by x-ray reflectivity
(XRR). The detailed description of the MPTR setup had been
presented elsewhere [7]. The main principle consists of front
face periodic heating of the studied sample by a laser source.
Since the GeTe layer is not opaque at the laser wavelength
(1064 nm) and in order to prevent oxidation or evaporation
of the GeTe at high temperature, a 100 nm thick platinum
(Pt) layer is deposited by sputtering in order to act as an
optical to thermal transducer. The periodic heat flux φ(ω)
is thus absorbed by the Pt layer due to its high extinction
coefficient at the laser wavelength, and the optical source
is then transformed into heat. On the other hand, thanks to
its high thermal conductivity and low thickness, the Pt layer
is assumed to be isothermal for the frequency range swept
during the experiment. The thermal response of the sample
at the location of the heating area by the laser is measured
using an infrared detector. As the temperature change is low
at the heated area, the linearity assumption of heat trans-
fer is fulfilled and the emitted infrared radiation from the
sample surface is linearly proportional to the temperature at
the heated area. A lock-in amplifier is used to extract the
amplitude and the phase from the signal of the IR detector
as a function of the frequency. The thermal properties are
thus obtained by fitting of the experimental phase by means
of a thermal model which allows us to describe the heat
transfer within the sample. According to the film thickness
and modulation frequency, the transient behavior fulfils the
Fourier regime of heat conduction. Since the heated area is
much larger (laser spot of ∼2 mm in diameter) than the film
thickness, the one-dimensional heat transfer is considered.
The explored frequency range in our experiment is 1–5 kHz.
At angular frequency ω, the phase is defined as ψ (ω) =
arg [Z (ω)] = arctan (Im(Z(ω))/Re(Z (ω))), where the trans-
fer function Z (ω) denotes the ratio between the periodic
temperature θ (ω) at the heated area and φ(ω) as:

Z (ω) = θ (ω)

φ(ω)
= B

D
. (1)

Parameters B and D are calculated from the quadrupoles
formalism [21] as:

[
A B
C D

]
=

[
AGeTe BGeTe

CGeTe DGeTe

][
ASiO2 BSiO2

CSiO2 DSiO2

][
ASi BSi

CSi DSi

]
,

(2)
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FIG. 1. Variation of thermal resistance (R∗
GeTe) of GeTe thin film

as a function of film thickness (eGeTe) for different temperatures
ranging from amorphous to crystalline phase change.

where

Aj = 1 + exp(−2 γi ei ); Bj = (1 + exp(−2 γi ei ))

γiκ
∗
i

(3)

Cj = (1 + exp(−2 γi ei )) γi κ
∗
i ; Dj = Aj (4)

with γi = √
j ω/a∗

i , where a∗
i (=κ∗

i /Cpi ), κ∗
i , Cpi , and ei are

the effective thermal diffusivity, effective thermal conductiv-
ity, specific heat per unit volume, and thickness of layer i,
respectively. For the SiO2 and Si layers, the effective thermal
conductivity is equal to the real thermal conductivity, i.e.,
κ∗

SiO2
= κSiO2 and κ∗

Si = κSi. On the other hand, the effective
thermal resistance for GeTe (R∗

GeTe) accounts with the intrinsic
thermal conductivity κGeTe of the GeTe layer and the thermal
resistance at the two interfaces with Pt and SiO2 as:

R∗
GeTe = eGeTe

κ∗
GeTe

= eGeTe

κGeTe
+ RPt-GeTe + RGeTe-SiO2︸ ︷︷ ︸

Ri

(5)

where Ri is the total interfacial thermal resistance. It must
be precisely mentioned here that the GeTe layer cannot be
considered as thermally resistive for the highest frequency
values and especially for the high thickness of the layer.
This is the reason why we consider heat diffusion within
the quadrupole model. This can be easily demonstrated by
calculating the Fourier related quantity

√
2 aGeTe/ω, using the

known value of aGeTe at room temperature and comparing
it to the thickness eGeTe. Considering the measured value
Yφ (ωi ) of the phase at different frequencies ωi (i = 1..N ),
the value of κ∗

GeTe is estimated by minimizing the objective
function J = ‖Yφ − �‖2, where Yφ = Yφ (ωi )i=1..N and � =
ψ (ωi )i=1..N are vectors with length N , related, respectively,
to the measured and simulated phase at all the investigated
frequencies. This minimization is achieved by implementing
the Lavenberg-Marquardt (LM) algorithm [22]. Then, the
effective thermal resistance R∗

GeTe of GeTe thin film is plotted
as a function of film thicknesses (eGeTe) for different tempera-
tures as shown in Fig. 1.

A linear regression R∗
GeTe = α eGeTe + β = eGeTe/κGeTe +

Ri is found that allows us to extract κGeTe = 1/α from the
slope [shown in Fig. 2(b)] and the sum of the two interfa-
cial resistances Ri = β by extrapolation to eGeTe = 0 [shown
in Fig. 2(a)]. The standard deviation of κ∗

GeTe is calculated
from the covariance matrix at the end of the iterative mini-
mization process as: σ (κ∗

GeTe|Y )2 ∼ cov(�)E/
√

N where the

covariance matrix is: cov(�) = (ST S)−1 with vector S =
[SQ(αi)]N with SQ(αi ) = [∂ψ (ωi )i=1,N/∂κ∗

GeTe]
κ∗

GeTe=κ̂∗
GeTe

de-
noting the sensitivity function of the phase according to
κ∗

GeTe calculated for κ∗
GeTe = κ̂∗

GeTe where κ̂∗
GeTe is the op-

timal value for κ∗
GeTe. Finally the residual vector is E =

Yφ − �(κ∗
GeTe = κ̂∗

GeTe). The standard deviation on R∗
GeTe is

obtained starting from σ (κ∗
GeTe) by application of the law of

propagation of uncertainties. Finally, the standard deviations
on κGeTe and Ri are expressed according to residual variance of
linear fitting on R∗

GeTe points. We mention here that the grain
size of GeTe at the time of the crystallization is found to be

 0

 1×10−7

 2×10−7

 3×10−7

 300  350  400  450  500

phase−change

R
i (

m
2  K

 W
−

1 )

T (K)

amorphous
crystalline

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 300  350  400  450  500

phase−change

crystalline

amorphous

κ G
eT

e 
(W

/m
K

)

T (K)

)b()a(

FIG. 2. (a) Variation of total interfacial thermal resistance Ri = RPt-GeTe + RGeTe-SiO2 with temperature. Phase change occurs around
180 ◦C = 453 K, which is shown via dotted line. (b) Experimentally measured thermal conductivity κGeTe(T ) of the GeTe thin film as a
function of temperature. The rightward arrows denote the forward cycle exhibiting phase change from amorphous to crystalline phase while
the leftward arrow defines the backward cycle where GeTe exists in crystalline phase.
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40 nm as reported in our earlier work [7] and it increases while
increasing the annealed temperature (Fig. 4 in Ref. [7]). Since
the MPTR investigates a very large area, it is thus expected to
measure the average thermal conductivity that is given by κav

L+ κel, where κav
L = 2

3κx + 1
3κz, where κx and κz stand for the

lattice thermal conductivities along hexagonal a and c axes,
respectively.

The phase change occurs well within the range of the
expected temperature (∼180 ◦C = 453 K). We note that Ri

for amorphous state is difficult to estimate because of the very
low values of κGeTe. For the crystalline phase, we retrieve a
consistent behavior with the value of Ri being increased as
the temperature is lowered [Fig. 2(a)]. In the high temperature
regime, the diffuse mismatch model (DMM) has been found
to describe Ri quite satisfactorily for crystalline solids [23].
According to the DMM model, asymptotic behavior of Ri at
high temperatures depends inversely on the heat capacity as
[23]

Ri =
⎛
⎝

∑
j c−2

2, j

12
( ∑

j c−2
1, j + ∑

j c−2
2, j

) ∑
j

c1, j

⎞
⎠

−1

1

C1(T )
, (6)

where C1(T ) is the heat capacity of material 1 at T and cl, j

is the velocity of phonon mode j in material l . Here all the
parameters except C1(T ) are temperature independent. Since
C1(T ) increases with temperature, the above relation shows
that Ri decreases with increasing temperature. In Fig. 2(b),
we observe a monotonically decreasing trend of κGeTe as a
function of T . Indeed, at high temperatures (T � �D), where
�D is Debye temperature, Umklapp scattering is the dominat-
ing phonon-phonon scattering process associated with high
momentum change in phonon-phonon collisions [24]. Slack
et al. [19] approximated Umklapp relaxation time as τ−1

U =
AT ω2exp(−�D/3T ) which becomes τ−1

U = AT ω2 when T �
�D. This relaxation time estimation leads to κ ∝ 1/τ−1

U ∝
1/T .

III. COMPUTATIONAL DETAILS

Phonon density of states (PDOS) of crystalline GeTe
(space group R3m) has been calculated employing the den-
sity functional perturbation theory (DFPT) [25] using the
QUANTUM-ESPRESSO [26] suite of programs. As the first step,
self-consistent calculations, within the framework of density
functional theory (DFT), are carried out to compute the total
ground state energy of the crystalline R3m-GeTe. For this pur-
pose, Perdew-Burke-Ernzerhof (PBE) [27] generalized gradi-
ent approximation (GGA) is used as the exchange-correlation
functional. The spin-orbit interaction has been ignored due
to its negligible effects on the vibrational features of GeTe
as mentioned in literature [6,28]. Electron-ion interactions
are represented by pseudopotentials using the framework of
projector-augmented-wave (PAW) method [29]. The Kohn-
Sham (KS) orbitals are expanded in a plane-wave (PW) basis
with a kinetic cutoff of 60 Ry and a charge density cutoff
of 240 Ry as prescribed by the pseudopotentials of Ge and
Te. The Brillouin zone integration for self consistent elec-
tron density calculations are performed using a 12 × 12 × 12
Monkhorst-Pack (MP) [30] k-point grid.

a

c

b

a
b

c

FIG. 3. 2 × 2 × 1 supercell of GeTe crystal (R3m) and its trigo-
nal primitive cell. The structure of GeTe can be seen as a stacking
of bilayers along the c axis of hexagonal unit cell as mentioned
in Refs. [5,6]. Here red spheres denote Ge atoms and blue spheres
denote Te atoms. This representation is realized through VESTA
[31]. Here, Ge atoms at the boundary take into account the additional
Te atoms outside the cell.

For phonon calculations, a hexagonal 2 × 2 × 1 supercell,
consisting of 24 atoms, is used. A representative structure
of crystalline GeTe as stacking bilayers is shown in Fig. 3.
To study the phonon density of states, linear response theory
is applied via DFPT to the Kohn-Sham equations to solve
the electronic charge density (ρn) under small perturbations.
As the force constants are connected to the derivatives of ρn

with respect to atomic displacements, harmonic force con-
stants are calculated by diagonalizing the dynamical matrix
in reciprocal space. Phonon density of states (PDOS) are then
evaluated by the inverse Fourier transform of the interatomic
force constants (IFC) to real space from that of the dynamical
matrices, using a uniform 5 × 5 × 5 grid of q vectors.

The thermal conductivity of GeTe can be separated into
two distinct contributions, one from electronic transport and
the other from the phonon transport or the lattice contribu-
tion, such that κ = κel + κL, where κL is the lattice thermal
conductivity and κel is the electronic thermal conductivity.
κel has been obtained from first-principles calculations by
solving semiclassical Boltzmann transport equation (BTE) for
electrons. Constant relaxation time approximation (CRTA)
and rigid band approximation (RBA) are employed as im-
plemented in BOLTZTRAP code [32]. The energy projected
conductivity tensor is calculated using:

σαβ (ε) = 1

N

∑
i,k

σαβ (i, k)
δ(ε − εi,k )

dε
. (7)

Therefore, the transport tensors, or more specifically the elec-
trical conductivity tensor in this study, can be obtained from

σαβ (T ; μ) = 1

�

∫
σαβ (ε)

[
−∂ fμ(T ; ε)

∂ε

]
dε, (8)

where N is the number of k points sampled, i is the band
index, εi,k are band energies, � is the volume of the unit cell,
fμ is the Fermi distribution function, and μ is the chemical
potential. The code computes the Fermi integrals and returns
the transport coefficients for different temperature and Fermi
levels.

For getting lattice thermal conductivity κL, the linearized
phonon Boltzmann transport equation (LBTE) is solved using
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FIG. 4. (a) Calculated phonon density of states (PDOS) for GeTe crystal (R3m). The dotted line denotes the separation frequency between
acoustic and optical modes (∼96 cm−1 = 2.88 THz) which is consistent with previous studies (see text). (b) Phonon dispersion relation of the
rhombohedral (R3m) GeTe. Transverse and longitudinal phonon modes are denoted via solid and dashed lines, respectively. The approximate
separation frequency between acoustic and optical modes (∼96 cm−1) is shown via green dashed line.

both direct method introduced by Chaput et al. [33] as well
as the single mode relaxation time approximation or relax-
ation time approximation (RTA) employing PHONO3PY [34]
software package. Initially, the supercell approach with finite
displacement of 0.03 Å is applied to calculate the harmonic
(second order) and the anharmonic (third order) force con-
stants, given by

�αβ (lκ, l ′κ ′) = ∂2�

∂uα (lκ )∂uβ (l ′κ ′)
(9)

and

�αβγ (lκ, l ′κ ′, l ′′κ ′′) = ∂3�

∂uα (lκ )∂uβ (l ′κ ′)∂uγ (l ′′κ ′′)
, (10)

respectively. First principles calculations using QUANTUM-
ESPRESSO [26] are implemented to calculate the forces acting
on atoms in supercells. Using finite difference method, har-
monic force constants are approximated as [34]

�αβ (lκ, l ′κ ′) � −Fβ[l ′κ ′; u(lκ )]

uα (lκ )
, (11)

where F[l ′κ ′; u(lκ)] is atomic force computed at r(l ′ κ ′)
with an atomic displacement u(lκ) in a supercell. Similarly,
anharmonic force constants are obtained using [34]

�αβγ (lκ, l ′κ ′, l ′′κ ′′) � −Fγ [l ′′κ ′′; u(lκ ), u(l ′κ ′)]
uα (lκ )uβ (l ′κ ′)

, (12)

where F[l ′′κ ′′; u(lκ), u(l ′ κ ′)] is atomic force computed at
r(l ′′ κ ′′) with a pair of atomic displacements u(lκ) and u(l ′κ ′)
in a supercell. These two sets of linear equations are solved
using Moore-Penrose pseudoinverse as is implemented in
PHONO3PY [34].

We use a 2 × 2 × 2 supercell of GeTe for our first-
principles calculations of anharmonic force constants. Using
the supercell and finite displacement approach, 228 supercells
are obtained, having different pairs of displaced atoms, for

the calculations for the anharmonic force constants. A larger
3 × 3 × 3 supercell is employed for calculating the harmonic
force constants. For all the supercell force calculations, the
reciprocal space is sampled using a 3 × 3 × 3 k-sampling MP
mesh shifted by a half grid distances along all three directions
from the � point. The total energy convergence threshold
has been kept at 10−10 a.u. for supercell calculations. For
lattice thermal conductivity calculations employing both the
direct solution of LBTE and that of the RTA, q mesh of
24 × 24 × 24 are used. The imaginary part of self-energy has
been calculated using tetrahedron method from which phonon
lifetimes are obtained.

IV. THEORETICAL RESULTS AND DISCUSSIONS

A. Phonon density of states

The structural parameters are optimized via DFT calcula-
tions and the optimized lattice parameter (a = 4.23 Å) and
unit cell volume (56.26 Å3) of GeTe are found to be quite con-
sistent with the values presented in literature [6,35]. It is quite
well established that at normal conditions GeTe crystallizes
in the trigonal phase (space group R3m) with two atoms per
unit cell. This structure gives rise to a 3 + 3 coordination of
Ge with three short stronger intrabilayer bonds and three long
weaker interbilayer bonds [5,6]. The bond lengths (shorter
bonds = 2.85 Å, longer bonds = 3.25 Å) are also found to
be consistent with the studies done by Campi et al. [6].

To investigate the effect of phonons in the heat transfer
processes, we study the phonon density of states and the
dispersion relation of crystalline rhombohedral (R3m) GeTe.
Figures 4(a) and 4(b) show the phonon density of states
and the phonon dispersion relation of undoped crystalline
(R3m) GeTe, calculated at ground state. The dashed line
in Fig. 4(a) serves as a separator between the acoustic and
optical contribution of phonons. The acoustic phonons extend
from 0 to 96 cm−1 (= 2.88 THz) in the frequency domain
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which is consistent with the observations of Wdowik et al.
[8]. The frequencies of the two most prominent peaks in
PDOS corresponding to acoustic (∼80 cm−1 = 2.40 THz)
and optical phonons (∼140 cm−1 = 4.20 THz), respectively,
are also found to be close to the values observed by Jeong
et al. [36]. Phonon dispersion relation [Fig. 4(b)] along the
high symmetry direction in the Brillouin zone (BZ) also
shows similar trends to that of the earlier works [8,17].
We observe the signature of LO-TO splitting as the dis-
continuities of the phonon dispersion at the � point arising
from the long range Coulomb interactions [8,17]. The ap-
proximate separator between acoustic and optical modes at
96 cm−1 is also shown by a horizontal dashed line in the
phonon dispersion relation [Fig. 4(b)]. Except a small and
negligible contribution of transverse optical modes at the �

point, all frequencies <96 cm−1 contribute to the acoustic
modes.

B. Electronic thermal conductivity

The calculation of the electronic thermal conductivity κel

rests generally on the use of the Wiedemann-Franz law κel =
LσeT where L is the Lorenz number, T is the temperature, and
σe is the electrical conductivity. Crystalline GeTe is a p-type
degenerate semiconductor [15,37] with a high hole concen-
tration and the Fermi level lying well inside the valence band
that holds the charge carriers. Therefore it behaves similar
to a metal. In that case, the value for L = π2(kB/e)2/3 =
2.44 × 10−8 V2 K−2 (kB is the Boltzmann constant and e is
the electron charge) had generally been employed in most of
the research works [15]. However, for highly doped materials
at temperature higher than the Debye temperature �D, the
Hall mobility depends on the temperature as μH ∝ T −(3/2)+r ,
where r is the scattering mechanism parameter and decreases
as η decreases with increasing temperature. Therefore, it is
shown that the Lorenz number is given by [38,39]:

L =
(

kB

e

)2
⎡
⎣
(
r + 7

2

)(
r + 3

2

)
Fr+5/2(η) Fr+1/2(η) − (

r + 5
2

)2
F 2

r+3/2(η)(
r + 3

2

)2
F 2

r+1/2(η)

⎤
⎦, (13)

where η = (EF − EV )/kBT is the reduced Fermi energy for
p-type semiconductors and r = −1/2 when scattering by
acoustic phonons is dominant [39]. The Fermi integral is
defined as: Fn(η) = ∫ ∞

0 (xn/(1 + ex−η ))dx.
Following the method adopted by Gelbstein et al. [39],

Levin and co-authors [14] obtained that L for crystalline
GeTe varies between 2.4 × 10−8 V2 K−2 at 320 K and 1.8 ×
10−8 V2 K−2 at 720 K. Using this method, we calculate the
variation of L for GeTe as a function of temperature within
the investigated range in the present study and we report the
results in Table I.

The electrical resistivity of GeTe films has been measured
experimentally using the Van der Pauw technique and is found
to be ρe = 1/σe = [8.5 ± 2] × 10−6 � m at the room temper-
ature (300 K), which corresponds for the hole concentration to
be 6.24 × 1019 cm−3. The constant relaxation time approxi-
mation (CRTA) with a constant electronic relaxation time of
10−14 s is used following the work of Bahl et al. [37]. After
identifying the hole concentration, we compute the electrical
conductivity (σe) by using DFT and solving the Boltzmann

TABLE I. Electronic thermal conductivity (κel) of the crystalline
R3m-GeTe is presented (column 4) as a function of temperature (T )
using Wiedemann-Franz law. The variation of electrical conductivity
(σe) and the Lorenz number (L) with temperature are also shown in
column 2 and column 3, respectively.

T (K) σe (�−1m−1) L (W� K−2) κel = LσeT (W/mK)

322 9.78 × 104 2.40 × 10−8 0.76
372 9.35 × 104 2.33 × 10−8 0.81
412 9.14 × 104 2.27 × 10−8 0.85
452 8.84 × 104 2.20 × 10−8 0.88
503 8.45 × 104 2.13 × 10−8 0.91

transport equation (BTE) for electrons, as implemented in
the BOLTZTRAP code [32] for the given hole concentration at
different temperatures. Considering the values for L(T ), the
calculated electronic thermal conductivity varies linearly from
0.76 W/mK at 322 K (L = 2.40 × 10−8 V2 K−2 at 322 K) to
0.91 W/mK at 503 K (L = 2.13 × 10−8 V2 K−2 at 503 K)
(Table I). These results are consistent with the experimental
ones by Fallica et al. [10].

C. Lattice thermal conductivity

In Fig. 2(b), total thermal conductivity of GeTe is seen
to manifest a fast change process with gradually increasing
temperature, where a phase change from amorphous to crys-
talline phase is found to occur ∼180 ◦C or 453 K. We first
focus on the thermal conductivity of the amorphous phase of
GeTe. Figure 5 shows lower values of κ for the amorphous
phase compared to that of the crystalline phase. The values
of κ in the amorphous phase are also observed to be almost
constant throughout the temperature range studied in this
work. Theoretically, the minimal thermal conductivity model
derived by Cahill et al. [20] allows one to calculate κ for the
amorphous materials as:

κmin(T ) =
(

π

6

)1/3

kB n2/3
3∑

i=1

vi

(
T

�i

)2 ∫ �i/T

0

x3 ex

(ex − 1)2 dx,

(14)
where n = (kB �D/h̄)−1/3/(6 π2 c3

s ) is the number of phonons
per unit volume (which can also be calculated more rigor-
ously from the phonon DOS apart from using the values
of Table II), cs is the speed of sound calculated as c−3

s =
(v−3

L + 2 v−3
T )/3 = 1900 m s−1 [40], and �i is the Debye
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FIG. 5. Experimental and theoretical thermal conductivity (κ) of
GeTe as a function of temperature are presented in a fast change
process. Phase change behavior is realized in the studied temperature
range: 322 K � T � 503 K. Electronic (κel) and phonon contributions
(κL) to the total thermal conductivity (κtot) are shown. κL is evaluated
using RTA, direct solution of LBTE, and Slack model. N , U , I , and V
define normal, Umklapp, isotope, and vacancy scattering processes,
respectively.

temperature per branch. When T � �D, this relation simpli-
fies as

κmin = 1
2 (π n2/6)1/3 kB (vL + 2 vT ). (15)

Using the required parameter values from Table II, the mini-
mal thermal conductivity (κmin) is found to be consistent with
the experimental data in the amorphous phase considering the
error bars involved in the experimental measurements (Fig. 5).
The reasonable agreement between the experimental data and
κmin based on Cahill model indicates that the dominant ther-
mal transport in the amorphous GeTe occurs in short length
scales [41] between neighboring vibrating entities owing to
the disorder present in it.

We then investigate the phonon contributions to the total
thermal conductivity of crystalline GeTe. In order to eval-
uate the lattice thermal conductivity (κL) through the direct
solution of LBTE, the method developed by Chaput [33] is
adopted. According to this method, lattice thermal conductiv-
ity is given as [33]

καβ = h̄2

4kBT 2NV0

∑
λλ′

ωλυα (λ)

sinh
( h̄ωλ

2kBT

) ωλ′υβ (λ′)

sinh
( h̄ωλ′

2kBT

) (�∼1)λλ′ , (16)

where �∼1 is the Moore-Penrose inverse of the collision
matrix �, given by [33,34]

�λλ′ = δλλ′/τλ + π/h̄2
∑
λ′′

|�λλ′λ′′ |2 [δ(ωλ − ωλ′ − ωλ′′ ) + δ(ωλ + ωλ′ − ωλ′′ ) + δ(ωλ − ωλ′ + ωλ′′ )]

sinh
( h̄ωλ′′

2kBT

) . (17)

Here, �λλ′λ′′ denotes the interaction strength between three
phonon λ, λ′, and λ′′ scattering [34]. However, adopting the
relaxation time approximation (RTA) in solving LBTE, lattice
thermal conductivity tensor κL can be written in a convenient
and closed form as [34,42]

κL = 1

NV0

∑
λ

Cλvλ ⊗ vλτλ, (18)

where N is the number of unit cells and V0 is the volume of
unit cell. The phonon modes (q, j) comprising wave vector q
and branch j are denoted with λ. The modal heat capacity is

given by

Cλ = kB

(
h̄ωλ

kBT

)2 exp(h̄ωλ/kBT )

[exp(h̄ωλ/kBT ) − 1]2
. (19)

Here, T denotes temperature, h̄ is reduced Planck constant,
and kB is the Boltzmann constant. vλ and τλ represent phonon
group velocity and phonon lifetime, respectively. We consider
three scattering processes, namely normal, Umklapp, and
isotope, denoted by N , U , and I respectively, in the theoretical
study. For each of these processes, the phonon lifetime has

TABLE II. Theoretical and experimental values of different parameters used for thermal conductivity calculation using Slack [18] and
Cahill [20] model.

GeTe (R3m) Parameter description(s) Value(s)

V0 (Å3) Volume of the elementary cell 56.26 [35] (calculated from DFT)
ρ (kg m−3) Density 5910 [35] (calculated from DFT)
MGe (g mol−1) Molar mass of Ge 72.63
MTe (g mol−1) Molar mass of Te 127.6
�D (K) Debye temperature 180 [6]
υL (m s−1) Phonon group velocity (longitudinal) 2500 [40]
υT (m s−1) Phonon group velocity (Transverse) 1750 [40]
G Gruneisen parameter 1.7 [17]
EF (eV) Fermi energy 7.2552 (calculated from DFT)
N (kg−1) number of phonon per unit mass 5.6723 × 1024 (calculated from PDOS)
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TABLE III. Experimental and theoretical total thermal conductivity (κ) of the crystalline R3m-GeTe is presented as a function of
temperature (T ). The lattice contribution of thermal conductivity (κL) is taken as an average of κx and κz as κav = (2κx + κz )/3 (see text).
The unit of κ is Wm−1K−1. N , U , I , and V represent normal, Umklapp, isotope, and vacancy scattering processes, respectively.

T (K) Expt. Direct (N,U ) Direct (N,U, I) Slack RTA(N,U ) RTA(N,U, I) Direct (N,U, I,V )

322 3.59 3.90 3.84 2.88 2.90 2.87 3.36
372 3.09 3.53 3.48 2.69 2.66 2.64 3.06
412 2.70 3.31 3.27 2.53 2.53 2.51 2.89
452 2.62 3.12 3.09 2.40 2.41 2.39 2.75
503 2.43 2.92 2.90 2.30 2.28 2.27 2.59

been realized using Matthiessen rule as [41]

1

τλ

= 1

τN
λ

+ 1

τU
λ

+ 1

τ I
λ

, (20)

where τN
λ , τU

λ , and τ I
λ are phonon lifetimes corresponding to

the normal, Umklapp, and isotope scattering, respectively.
Generally, in harmonic approximation, phonon lifetimes

are infinite whereas, anharmonicity in a crystal gives rise to a
phonon self energy �ωλ + i�λ. The phonon lifetime has been
computed from the imaginary part of the phonon self energy
as τλ = 1

2�λ(ωλ ) from [34]

�λ(ωλ) = 18π

h̄2

∑
λ′λ′′

�(q + q′ + q′′)|�−λλ′λ′′ |2

×{(nλ′ + nλ′′ + 1)δ(ω − ωλ′ − ωλ′′ )

+ (nλ′ − nλ′′ )[δ(ω + ωλ′ − ωλ′′ )

− δ(ω − ωλ′ + ωλ′′ )]} (21)

where nλ = 1
exp(h̄ωλ/kBT )−1 is the phonon occupation number

at the equilibrium. �(q + q′ + q′′) = 1 if q + q′ + q′′ = G,
or 0 otherwise. Here G represents reciprocal lattice vector.
Integration over q-point triplets for the calculation is made
separately for normal (G = 0) and Umklapp processes (G �=
0). For both direct method and RTA, scattering of phonon
modes by randomly distributed isotopes [34] is also incor-
porated for comparison. The isotope scattering rate, using
second-order perturbation theory, is given by Tamura [43] as

1

τ I
λ (ω)

= πω2
λ

2N

∑
λ′

δ(ω − ω′
λ)

∑
k

gk

∣∣∣∣∣
∑

α

Wα

× (k, λ)W∗
α (k, λ)

∣∣∣∣∣
2

, (22)

where gk is mass variance parameter, defined as

gk =
∑

i

fi

(
1 − mik

mk

)2

, (23)

fi is the mole fraction, mik is relative atomic mass of ith
isotope, mk is the average mass = ∑

i fimik , and W is polar-
ization vector. The database of the natural abundance data for
elements [44] is used for the mass variance parameters.

For consistency check, we first simulate the lattice thermal
conductivity (κL) of crystalline rhombohedral GeTe at 300 K
using RTA method and compare the value of κL with the
results of the work done by Campi et al. [6]. κL, obtained from

our study using RTA, is 2.29 W/mK using the PBE functional
in the DFT framework, which is in good agreement with the
results of Campi et al. [6] with κL = 2.34 W/mK. After this
consistency check, we use the DFT and Boltzmann transport
equation (BTE) to get the lattice thermal conductivity of GeTe
at the temperature regime studied in this work (322 K � T �
503 K).

Figure 5 and Table III present the various contributions
of thermal conductivity, obtained theoretically, superimposed
with the experimental data. Starting from first principles
calculations, both direct solution and RTA method are used
to solve the LBTE to get the lattice thermal conductivity.
Since κL is anisotropic along the hexagonal c axis and a-b
axes, the average lattice thermal conductivity is calculated as
κav = 2

3κx + 1
3κz [6,45]. Figure 5 and Table III show that the

resulting theoretical κtot for the direct solution of LBTE is
slightly overestimated compared to the experimental results,
specifically at the higher temperatures (T > 322 K). However,
the direct method is found to capture the trend of κ (T ) quite
well. Consistently, slightly lower values of κ are found due
to the incorporation of the effect of phonon mode scattering
due to isotopes. On the other hand, the results of thermal con-
ductivity, obtained by solving Boltzmann transport equation
under the relaxation time approximation (RTA), are found to
be slightly underestimated as compared to the experimental
results. However, as T > 372 K, RTA results seem to be in
better agreement with the experimental data and the difference
between experimental and RTA goes down from ≈19% at
322 K to ≈6% at 503 K. The trend of κ (T ) obtained through
RTA, like the direct solution, is found to be in good agreement
with the experimental trend. This trend of κ (T ) implies that
Umklapp scattering seems to dominate the phonon-phonon
scattering at higher temperatures, as predicted by experiments.

Previously, the hole concentration of GeTe is found to be
6.24 × 1019 cm−3, indicating a significant role of vacancies
for the reported overestimation of the κ (T ), obtained via
direct solution of LBTE. Indeed, Campi et al. [6] found a
considerable amount of lowering of κL of crystalline GeTe at
300 K due to the vacancy present in the sample.

The phonon scattering rate by vacancy defects are pre-
scribed by Ratsifaritana et al. [46] as

1

τV
= x

(
�M

M

)2
π

2

ω2g(ω)

G′ , (24)

where x is the density of vacancies, G′ denotes the number of
atoms in the crystal, and g(ω) is the phonon density of states
(PDOS). Using vacancies as isotope impurity, Ratsifaritana
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et al. [46] denoted mass change �M = 3M, where M is
the mass of the removed atom. Equation (24) states that
the phonon-vacancy relaxation time is temperature indepen-
dent. Campi et al. [6] used this phonon-vacancy scattering
contribution for a GeTe sample with hole concentration of
8 × 1019 cm−3 and found an almost ≈15.6% reduction of
κL at 300 K. As the hole concentration is almost similar to
that of our work (6.24 × 1019 cm−3), in conjunction with the
fact that τ−1

V is temperature independent, we estimate an over-
all ≈15.6% decrement of κL(T ) throughout the temperature
range studied as an effect of phonon-vacancy scattering. We
find that the estimated κ , incorporating the vacancy contribu-
tion, in addition to the normal, Umklapp, and isotope scat-
tering, agrees excellently with the experimental data for the
whole temperature range in our study. This exercise strongly
depicts the significant participation of the scattering between
phonons and vacancy defects at high temperatures.

It is well known that the RTA, although it describes the
depopulation of phonon states well, fails to rigorously account
for the repopulation of phonon states [42]. While at low
temperatures, the applicability of RTA can be questioned due
to the dominance of momentum conserving normal scattering
and almost absence of Umklapp scattering of phonons, in
the high temperature regime of our study, RTA is found to
be a good trade off between accuracy and the computational
cost to describe the experimental results. This is primarily
because of the higher number of scattering events at higher
temperature which ensures an isothermal repopulation of the
phonon modes [47]. However, the difference from the total
solution of LBTE exists due to the over resistive nature of
the scattering rates that effectively lowers the value compared
to the direct solution. This feature has been discussed in
literature [17,47]. The reason for this underestimation is that
the RTA treats both Umklapp and normal scattering processes
as resistive while the momentum conserving normal scattering
processes do not equally contribute to the thermal resistance
as that of the Umklapp scattering [17].

Simple phenomenological models can also serve as a fast
and efficient way to decipher the underlying physical mech-
anism. The Slack model [18] expresses the lattice thermal
conductivity, when T > �D and the heat conduction happens
mostly by acoustic phonons, starting from the analytical ex-
pression of the relaxation time related to Umklapp processes
as

κL = C
M �3

D δ

G2 n2/3
c T

(25)

with

C = 2.43 × 10−6

1 − 0.514/G + 0.228/G2
, (26)

where nc is the number of atoms per unit cell, δ3 is volume per
atom (δ is in angstrom in the relation), M is average atomic
mass of the alloy, and G is the Gruneisen parameter (see
Table II). This relation between lattice thermal conductivity
and Gruneisen parameter in a solid is valid within a tem-
perature range where only interactions among the phonons,
particularly anharmonic Umklapp processes, are dominant
[18]. Bosoni et al. [17] found a good agreement between the
lattice thermal conductivity of crystalline GeTe coming from

the full solution of BTE and that of the Slack model at room
temperature. Lattice thermal conductivity due to Slack model
[κL(Slack)] is presented in Fig. 5. Total thermal conductivity
is then realized by adding κL(Slack) with κel. We retrieve an
almost identical trend of both lattice (κL) and total thermal
conductivity (κtot) in Slack model as that of the RTA based
solutions. These almost identical values of κL(Slack) and
κL(RTA) depict that the optical phonons contribute very little
to κL(RTA) as κL(Slack) takes into account only acoustic
phonon contributions. The values obtained for κtot(Slack) are
found to be lower than the experimental data for T < 412 K
and gradually seem to agree well for T � 412 K (Fig. 5 and
Table III).

Though RTA based solutions underestimate the experi-
mental data, the trend of κ (T ), which is almost identical to
phenomenological Slack model, is what needs attention to
elucidate the underlying heat transport mechanism at high
temperatures. Further, RTA based solutions are straightfor-
ward and can reveal the distinct role of each contributing
parameter appearing in Eq. (18). Consequently, in the follow-
ing sections, we systematically study the thermal transport
properties of GeTe using both frequency and temperature
variations using the results obtained from RTA solutions.

D. Variation of lattice thermal conductivity (κL) with phonon
frequency: Contribution of acoustic and optical modes

To investigate lattice thermal conductivity (κL) in a more
comprehensive manner, we calculate the cumulative lattice
thermal conductivity as a function of phonon frequency for
the high temperature regime defined as [34,45]

κc
L =

∫ ω

0
κL(ω′)dω′, (27)

where κL (ω′) is defined as [34,45]

κL(ω′) ≡ 1

NV0

∑
λ

Cλvλ ⊗ vλτλδ(ω′ − ωλ) (28)

with 1
N

∑
λ δ(ω′ − ωλ) the weighted density of states (DOS).

Figure 6 shows the cumulative κL of crystalline rhom-
bohedral GeTe, along the hexagonal c axis (κz), along its
perpendicular direction (κx), and their average κav = (2κx +
κz )/3, as a function of phonon frequencies for four different
temperatures using RTA framework. The derivatives of the
cumulative values of κz and κx with respect to frequencies
are also shown for each temperature. It is found that the
lattice thermal conductivity (κL) of GeTe is anisotropic with
the value along z, parallel to the c axis in the hexagonal
notation, is found to be smaller with respect to that of the
xy plane for the whole range of temperature studied. This
picture is consistent with the recent theoretical findings [6].
More details to the anisotropic aspect of κL will be discussed
in the next subsection.

Figure 6 shows some distinct features in the cumulative
lattice thermal conductivity (κc

L) of GeTe as a function of
both phonon frequency and temperature. As the temperature is
increased, κc

L is found to saturate at gradually lower values, in-
dicating gradual decrement of the lattice thermal conductivity
with temperature. Further, the derivatives of κc

L with respect
to phonon frequencies indicate the density of heat carrying
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FIG. 6. Cumulative lattice thermal conductivities (κL) of crystalline GeTe are presented as a function of frequencies at four different
temperatures: (a) T = 322 K, (b) T = 372 K, (c) T = 452 K, and (d) T = 503 K. Cumulative κL , computed within the RTA framework, along
the hexagonal c axis (κz), along its perpendicular direction (κx), and their average κav = (2κx + κz )/3 are shown. The derivatives of κz and κx

with respect to frequencies are also shown for each temperature.

phonons with respect to the phonon frequencies [48] and their
contribution to the κc

L. We note that this density of modes go to
zero at a frequency where κc

L reaches a plateau. This frequency
(∼2.87 THz) has been found to be identical to the frequency
where phonon DOS marks the separation between acoustic
and optical modes (∼96 cm−1 = 2.88 THz in Fig. 4). This
correspondence implies that the phonon density of states play
a crucial role as a deciding factor to the κL. While in Fig. 6,
a significantly higher contribution of these modes correspond
to κx is observed compared to that of the κz in the acoustic
frequency regime (frequency < 2.87 THz), an almost equal
contribution of dκx/dω and dκz/dω are found in the optical
frequency regime (frequency > 2.87 THz).

To get a clear quantitative picture, we evaluate the sepa-
rate contributions of acoustic and optical modes to the κL.
The values of κc

L for phonon frequencies < 2.87 THz have
unambiguously been considered to be the contribution from
acoustic modes while the same for frequencies > 2.87 THz
have been taken as optical modes contribution. Table IV
shows the percentage contributions of both acoustic and
optical modes to the lattice thermal conductivity (κL) as a
function of temperature. We observe that a dominant 77% of

the contribution comes from acoustic modes compared to only
around 23% from the optical modes for the whole temperature
range studied.

E. Anisotropy of lattice thermal conductivity (κL)
of crystalline GeTe

As mentioned in the previous subsection, the lattice ther-
mal conductivity (κL) of crystalline GeTe shows anisotropic
behavior. The resulting κL along the z direction [κL(z)],

TABLE IV. Relative contributions of acoustic and optical modes
to the total lattice thermal conductivity (κL) for different tempera-
tures. The unit of κL is W/mK.

Contribution of Contribution of
T (K) κL (RTA) acoustic modes (%) optical modes (%)

322 2.14 77.1 22.9
372 1.85 77.3 22.7
452 1.53 77.1 22.9
503 1.37 77.4 22.6
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parallel to the c axis in the hexagonal notation (along axis c
in Fig. 3), is found to be smaller than that of the xy plane (a-b
plane in Fig. 3), [κL(x)], as shown in Fig. 7.

To investigate the anisotropy, we study the ratio
κc

L(x)(ω)/κc
L(z)(ω), where κc

L(x)(ω) and κc
L(z)(ω) represent the

cumulative lattice thermal conductivities along the xy plane
(a-b plane in Fig. 3) and z direction (along the c axis in
Fig. 3) respectively. Figure 8(a) shows this ratio as a function
of phonon frequencies for the four different temperatures. We
observe that despite the wide temperature range studied, the
shape of the curves remain independent of the temperature.
The ratio κc

L(x)(ω)/κc
L(z)(ω) initially starts with a low value,

becomes maximum to 1.5 at around 1.4 THz. With further
increase of frequencies, the ratio decreases and settles at a
value of 1.37.

The temperature independence of the anisotropy ratio
κc

L(x)(ω)/κc
L(z)(ω) can be further understood by studying the

cumulative outer product of the phonon group velocities vλ ⊗
vλ, defined as

W c(ω) ≡ 1

NV0

∑
λ

vλ ⊗ vλδ(ω − ωλ) (29)

and W c
x (ω)/W c

z (ω), which is the ratio between the cumulative
outer product of the phonon group velocities along x and z
direction.

Since phonon group velocities are almost temperature in-
dependent, following that feature, we find that the ratio of
W c

x (ω)/W c
z (ω) is strongly correlated with κc

L(x)(ω)/κc
L(z)(ω).

From zero frequency, W c
x (ω)/W c

z (ω) starts increasing and
reaches the ratio 1 around 0.7 THz, close to that of the
κc

L(x)(ω)/κc
L(z)(ω) (0.4 THz). Further increasing frequency in-

creases the anisotropy between the in-plane (xy) and out-of
the plane (z) components of the cumulative outer product
of phonon group velocities and finally saturates to a value
of 1.23 at higher frequencies which is also comparable to
the saturation value of κc

L(x)(ω)/κc
L(z)(ω), that is 1.37. Thus,
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FIG. 8. (a) Ratios of x and z components of cumulative lattice
thermal conductivities, κc

L(x)(ω)/κc
L(z)(ω) of crystalline GeTe as a

function of phonon frequencies are presented for four different tem-
peratures. (b) Ratios of x and z components of cumulative direct vec-
tor products of group velocities, W c

x (ω)/W c
z (ω) of crystalline GeTe

as a function of phonon frequencies for four different temperatures.

the anisotropy associated with the phonon group velocities,
or more specifically, the cumulative outer product of phonon
group velocities, determines the anisotropy in the cumulative
lattice thermal conductivity.

F. Variation of lattice thermal conductivity (κL) with
temperature: Phonon lifetime and phonon mean free path

Recalling Eq. (18), in an alternate way to understand
the frequency dependence of the different parameters that
contribute to the lattice thermal conductivity (κL), we study
the variation of modal heat capacity (Cλ), phonon group
velocity (vλ), and the phonon lifetime (τ ) as a function of
phonon frequency for the high temperature regime studied
in this work. The dominant contribution of phonon group
velocities (vλ) are found to arise from the acoustic phonons
and the optical modes are found to exhibit substantially lower
group velocities than the former. Furthermore, as expected,
increasing temperatures does not change the dependence of
group velocities on phonon frequencies. Similar behavior is
expected from the modal heat capacity (Cλ) as a function
of phonon frequencies for different temperatures. Indeed, Cλ

stays nearly constant with a small ∼2–5% deviation (2% for
503 K and 5% for 322 K) from kB which is consistent with the
classical limit of Cλ at high temperatures.

This almost nonvarying pattern of phonon group velocities
and mode heat capacity with temperature prompts us to look
closely on the frequency variation of phonon lifetimes (τλ)
at these temperatures. We note here that τλ defines modal
phonon relaxation time or phonon lifetime with λ denotes
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FIG. 9. Phonon lifetimes of crystalline GeTe are shown as a function of phonon frequencies for four different temperatures: (a) T = 322 K,
(b) T = 372 K, (c) T = 452 K, and (d) T = 503 K. Phonon lifetimes due to transverse acoustic (TA), longitudinal acoustic (LA), and optical
modes are presented in blue, red, and green points, respectively.

each mode. Figure 9 depicts the phonon lifetimes, coming
from TA, LA, and optical modes as a function of phonon
frequency. We observe that increasing phonon frequency from
0 THz gives an initial rise and then a quick decay of life-
times within ∼3 THz and with relatively smaller values after-
wards. This clearly indicates that the dominant contribution of
phonon lifetime and in turn, the lattice thermal conductivity
is coming from the acoustic modes, which operate in the
frequencies <2.87 THz.

Considering the temperature variation, we find that acous-
tic modes induce smaller values of phonon lifetimes with
increasing temperature (Fig. 9). Two prominent observations
evolve through this: (a) The trends in phonon lifetimes (τλ)
as a function of frequency reassure the fact that acoustic
phonons are the dominant carriers of heat which contributes
to κL; (b) as the phonon lifetime is directly proportional to
κL, the reduced contribution of phonon lifetime with increas-
ing temperature directs towards a gradual decrement of κL

with temperature. The gradually reducing values of phonon
lifetime with increasing temperature can be understood more

prominently considering the mean free path picture. The
modal mean free path of phonons (�λ) can be written as

�λ = vλτλ. (30)

The transport of heat through phonons in the diffusive regime
(� � L, L = linear dimension of the medium of traveling
phonons) undergoes several scattering processes namely scat-
tering by electrons, other phonons, impurities, or grain bound-
aries [41]. At high temperatures, phonon-phonon scattering
dominates along with impurity scattering to some extent. It is
well understood that anharmonic coupling on thermal resistiv-
ity leads to � ∝ 1/T at high temperatures [24]. To elaborate
it further, we study the mean free paths of phonons (�λ) as a
function of phonon frequencies for different temperatures. As
can be seen from Fig. 10, the mean free paths decay quickly
within ∼3 THz with gradually increasing phonon frequency
starting from 0 THz and saturate at lower values afterwards.
This is precisely due to the dominance of the acoustic modes
in thermal transport of GeTe. With increasing temperature,
the mean free paths are observed to exhibit lower values

214305-12



THERMAL CONDUCTIVITY OF AMORPHOUS … PHYSICAL REVIEW B 101, 214305 (2020)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  1  2  3  4  5

P
ho

no
n 

m
ea

n 
fr

ee
 p

at
h 

(Å
)

Phonon frequency (THz)

a−axis
c−axis

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  1  2  3  4  5

P
ho

no
n 

m
ea

n 
fr

ee
 p

at
h 

(Å
)

Phonon frequency (THz)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  1  2  3  4  5

P
ho

no
n 

m
ea

n 
fr

ee
 p

at
h 

(Å
)

Phonon frequency (THz)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  1  2  3  4  5

P
ho

no
n 

m
ea

n 
fr

ee
 p

at
h 

(Å
)

Phonon frequency (THz)

(a)

T = 322 K

(b)

T = 372 K

(c)

T = 452 K

(d)

T = 503 K

a−axis
c−axis

a−axis
c−axis

a−axis
c−axis

FIG. 10. Phonon mean free paths of crystalline GeTe are shown as a function of phonon frequencies for four different temperatures:
(a) T = 322 K, (b) T = 372 K, (c) T = 452 K, and (d) T = 503 K. Phonon mean free paths along the a axis and c axis are represented in red
and gray dots, respectively.

validating � ∝ 1/T . The anisotropic nature of κL has also
been understood by means of the mean free paths along the a
and c axes of R3m-GeTe. Separate contributions of the mean
free paths along the a axis and c axis are shown in Fig. 10.
Throughout the temperature range studied, phonon mean free
paths corresponding to the a axis show higher values com-
pared to that of the c axis, giving rise to an enhanced heat
transfer along the a axis with higher values of κL(x) compared
to the c axis with lower values of κL(z). Thus, the anisotropic
mean free path distribution of phonons is found to be the key
reason for exhibiting an anisotropic heat transfer in crystalline
R3m-GeTe.

To investigate the contribution of mean free paths of differ-
ent length scales to κL, cumulative lattice thermal conductivity
[considering the κave = (2κx + κz )/3] is studied as a function
of phonon mean free paths for the four different temperatures
(Fig. 11). We observe from Fig. 11 that the maximum values
of the phonon mean free paths (�max) gradually decrease with
temperature (T = 322 K, �max ∼ 152 Å; T = 372 K, �max ∼
131 Å; T = 452 K, �max ∼ 108 Å; T = 503 K, �max ∼
97 Å), consistently with � ∝ 1/T . Moreover, a dominant
contribution (≈67%) to the lattice thermal conductivity is

found to be coming from the phonon mean free paths �60 Å.
As temperature increases, the contributions from the phonon
mean free paths �60 Å are increased to almost 93% (Fig. 11).

Increasing temperature, thus, manifests in a way of in-
creasing phonon-phonon scattering processes which acts on
the lowering of mean free path of phonons. With almost
similar vλ, the lowering of mean free path of phonons can be
associated with the decrements of τλ.

G. Contribution of transverse and longitudinal
acoustic phonons

Up until now we understood the dominant contributions
of the acoustic modes to the thermal transport mechanisms
of crystalline rhombohedral GeTe. In this section, we further
systematically discriminate the relative contributions of trans-
verse and longitudinal acoustic phonons to the lattice thermal
conductivity of crystalline GeTe for the temperature range
investigated in this study. It is observed that the transverse
modes (TA) contribute to almost 75% while the longitudinal
counterpart (LA) adds up the rest of 25% to the lattice thermal
conductivity for the whole temperature range.
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Figure 12 presents the lattice thermal conductivities, ob-
tained via ab initio DFT calculations coupled with RTA, due to
both transverse (TA) and longitudinal (LA) acoustic phonons
as a function of temperature. For consistency, we also plot
the κL values for acoustic modes from the experimentally
measured values of κ . This has been evaluated by subtracting
the electronic thermal conductivity (κel), measured from the
simulation, as well as the κL due to optical phonons, com-
puted from ab initio DFT and RTA, from the experimentally
measured values of κ . Indicating a consistent picture from
both experiment and theoretical calculations, as discussed

 0
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 2.5

 300  350  400  450  500  550

κ L
 (

W
/m

K
)

T (K)

calculated from expt.
TA
LA
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FIG. 12. Lattice thermal conductivities, contributed solely from
acoustic modes are shown as a function of temperature. ‘Experi-
mental’ values of acoustic κL are obtained by subtracting κel and
optical mode contributed κL , from the experimental values of κ .
RTA calculated κL for transverse acoustic branch (TA), longitudinal
acoustic branch (LA), and the total acoustic contribution (LA+TA)
are also shown.

earlier, an identical trend is found (Fig. 12) between the data
calculated from experiment and the simulated values of κL due
to acoustic phonons (TA+LA) despite the differences between
the values, mostly for T < 412 K.

Throughout this work, the trend of simulated κ (T ) using
RTA has been found to be a straightforward and convenient
framework to describe the temperature dependence of the
experimental results of κ for crystalline GeTe. Further, the ex-
act similarity between RTA and the phenomenological Slack
model indicates that Umklapp scattering plays an important
and significant phonon-phonon scattering mechanism in the
high temperature range (T � �D), �D being the Debye
temperature. To identify the Umklapp scattering parameter
involved in the process, we fit the phonon relaxation time
corresponding to the Umklapp scattering, obtained from RTA,
with the analytical expression given by Slack et al. [19]

τ−1
U = AT ω2exp

(
−B

�D

T

)
(31)

with A ∝ h̄G2

Mc2�D
and B ∼ 1/3, where M is average atomic

mass of the alloy and G is the Gruneisen parameter. Being
an empirical equation, it is necessary to find the parameter
A from the fitting procedure. Figure 13 shows the phonon
relaxation times as a function of phonon frequency along with
the fitted curve for all four temperatures. We observe that at
higher frequencies the trend of phonon relaxation time indeed
shows ω−2 dependence for all temperatures. The values of A,
thus retrieved from the fitting, are found to be independent of
temperature with an average value of 1.1 × 10−4 ps K−1.

This quantification, via the parameter A, serves as an im-
portant generic identification as this parameter can uniquely
distinguish and compare the Umklapp scattering processes for
different crystalline materials ranging from �D to an arbitrary
high temperatures, within the operational regime of Umklapp
scattering process.

V. SUMMARY AND CONCLUSIONS

We have carried out a systematic experimental and theo-
retical study on the thermal conductivity variation of GeTe
at high temperatures. The study involves fast and reversible
phase change between amorphous and crystalline phases of
GeTe. Modulated photothermal radiometry (MPTR) as well
as the Lavenberg-Marquardt (LM) technique are employed to
determine thermal conductivities of GeTe in both amorphous
and crystalline phases as a function of temperature. Thermal
boundary resistances, coming from both Pt-GeTe and GeTe-
SiO2 interfaces, have been accurately taken into account for
measuring κ experimentally. Van der Pauw technique as well
as Boltzmann transport equations are solved for electrons to
estimate electronic thermal conductivity within the constant
relaxation time approximation (CRTA) framework.

To compute lattice thermal conductivity (κL), first-
principles density functional theory (DFT) is used and the so-
lution to the linearized Boltzmann transport equation (LBTE)
has been realized via both direct method and relaxation time
approach (RTA). Normal, Umklapp, and isotope effects are
included in computing the phonon relaxation time in these
approaches. While the direct method is found to capture the
trend of κ (T ) quite well, the values are a bit overestimated
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FIG. 13. Phonon lifetimes of GeTe corresponding to Umklapp scattering, along with the Umklapp fitted parameter A are shown as a
function of phonon frequencies for four different temperatures: (a) T = 322 K, (b) T = 372 K, (c) T = 452 K, and (d) T = 503 K.

compared to the experimental data. The hole concentration
of 6.24 × 1019 cm−3, obtained using first principles calcula-
tions and BTE for electrons, necessitates the incorporation
of phonon-vacancy scattering to estimate κL. Following a
recent work [6] on crystalline GeTe with almost the same
hole concentration, vacancy contribution is incorporated to
estimate more realistic values of κ . Indeed, the estimate of
κ using the direct method and adding the temperature inde-
pendent phonon-vacancy scattering contribution, an excellent
agreement is obtained between experimental and theoretical
values of κ .

κ computed from RTA is also found to retrieve the trend
of experimental κ (T ) quite well, especially at higher tem-
peratures. However, the over-resistive nature of RTA due to
the treatment of Umklapp and normal scattering in equal
footing causes an underestimation of κ compared to the ex-
perimental values. Nevertheless, the trend κ (T ) agrees well at
higher temperatures. Cumulative lattice thermal conductivity
is presented as a function of phonon frequencies for different
temperatures. The density of heat carrying phonons or rather
the phonon density of states plays a crucial role in determin-
ing κL. Acoustic phonons emerge as the dominant (∼77%)
contributor to the lattice thermal conductivity while transverse
acoustic modes contribute almost 75% to the acoustic phonon

transport. The anisotropy of lattice thermal conductivities of
crystalline GeTe between in-plane and out-of-plane compo-
nents are understood using the variation of cumulative outer
product of phonon group velocities. Further, the anisotropy
present in phonon mean free path along the a axis and c
axis are found to control the anisotropy in the heat transfer
along these two axes. Phonon group velocities and mode
heat capacities are observed to remain almost independent
of temperature. Therefore, the temperature variation of κ is
attributed to the variation of phonon mean free path and con-
sequently the variation of phonon lifetime with temperature.

Phenomenological models are also found to be quite ef-
fective in describing and identifying the underlying physical
mechanism of thermal transport. The experimental values
of κ in the amorphous phase of GeTe are described using
the minimal thermal conductivity model, proposed by Cahill
et al. [20]. For crystalline phase data, the Slack model [18]
is also employed and it has been found to be strikingly
similar with RTA based solutions. Both RTA based solutions
as well as expression from phenomenological Slack model for
GeTe indicate that the Umklapp phonon-phonon scattering is
significant for the temperature regime studied in this work.
Umklapp phonon relaxation time is found to obey ω−2 depen-
dence at higher frequencies and therefore Umklapp scattering
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parameter has been obtained, which remains almost constant
for the whole temperature range studied. This complete ex-
perimental and theoretical exercise to elucidate the thermal
conductivity of GeTe at high temperatures can further assist
in improving the thermal management for other Te based
phase change materials by understanding heat dissipation,
localization, and transport with more clarity.
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