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Electron-lattice interplay in LaMnO3 from canonical Jahn-Teller distortion notations

Michael Marcus Schmitt,1,* Yajun Zhang,1,2 Alain Mercy,1 and Philippe Ghosez1

1Physique Theorique des Materiaux, Q-Mat, CESAM, Universite de Liege, Allee du 6 Aout 17 (B5), 4000 Sart Tilman, Belgium
2Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, 38 Zheda Road,

Hangzhou 310007, China

(Received 10 February 2020; accepted 7 May 2020; published 2 June 2020)

LaMnO3 is considered as a prototypical Jahn-Teller perovskite compound, exhibiting a metal-to-insulator
transition at TJT = 750 K related to the joint appearance of an electronic orbital-ordering and a large lattice
Jahn-Teller distortion. From first principles, we revisit the behavior of LaMnO3 and show that it is not only
prone to orbital ordering but also to charge ordering. Both charge and orbital orderings appear to be enabled by
rotations of the oxygen octahedra and the subtle competition between them is monitored by a large tetragonal
compressive strain, which is itself a Jahn-Teller active distortion. Equally, the competition of ferromagnetic
and antiferromagnetic orders is dependent on the same tetragonal strain. Our results further indicate that
the metal-to-insulator transition can be thought as a Peierls transition that is enabled by spin symmetry
breaking. Therefore, dynamical spin fluctuations in the paramagnetic state stabilize the insulating phase by the
instantaneous symmetry breaking they produce and which is properly captured from static density functional
theory calculations. As a basis to our discussion, we introduce canonical notations for lattice distortions in
perovskites that distort the oxygen octahedra and are connected to charge and orbital orderings.
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I. INTRODUCTION

Since the discovery of the colossal magnetoresistance ef-
fect in R3+

x A2+
1−xMnO3 manganese perovskite solid solutions

about 25 years ago [1] there has been a continuous research
effort to understand the physical behavior of the end members
as well as intermediate compounds. Nonetheless, for the rare-
earth manganite perovskite side, RMnO3, no fully consistent
picture has emerged yet that explains the interplay between
structural, magnetic, and electronic degrees of a freedom.
Hence, the prototypical member of this series, LaMnO3, still
attracts an extensive research interest.

LaMnO3 belongs to a large class of perovskite materials
with a Goldschmidt [2] tolerance factor t < 1. As such its lat-
tice structure deviates from the ideal cubic perovskite Pm3m
reference phase by the appearance of cooperative rotations of
the MnO6 oxygen octahedra. Above 1200 K, LaMnO3 shows
a rhombohedral space group R3c [3,4], with rotations of the
connected oxygen octahedra according to an a−a−a− rotation
pattern (in Glazer’s notations [5]). At 1200 K, LaMnO3 un-
dergoes a structural phase transition to a Pbnm phase with an
a−a−c+ rotation pattern, the most common one among the
perovskites [6].

In both of these phases, oxygen octahedra rotate in a nearly
rigid way. This rigid rotation preserves the cubic symmetry
(Oh in Schönflies notation) around the Mn atom if only the
octahedron is considered. In such a regular octahedron, the
fivefold-degenerate Mn-d states are split into three degenerate
lower-energy t2g and two degenerate higher-energy eg states.
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In the 3+ oxidation state of Mn, four electrons formally oc-
cupy the Mn-d states. Due to strong intrasite Hund’s coupling
in the 3d shell, Mn adopts a high-spin configuration, where
three electrons occupy the t2g and one the eg states. As the Mn-
3d states constitute the highest occupied states in LaMnO3, it
is consequently metallic in the R3c and Pbnm phases at high
temperatures.

At 750 K and ambient pressure, or lower temperatures
and higher pressure (≈32 GPa), a second structural transi-
tion occurs, accompanied by a metal-to-insulator transition
(MIT). This transition is called a Jahn-Teller (JT) or orbital-
ordering (OO) transition at the temperature TJT or TOO [7].
At this transition, a sudden increase of volume is observed.
The initially nearly cubic unit cell shows a strong tetrago-
nal compression and orthorhombic deformation [8–10]. The
oxygen octahedra experience strong cooperative deformations
lowering their symmetry from cubic to orthorhombic (Oh to
D2h). These are the so-called Jahn-Teller distortions. How-
ever, no further symmetry reduction occurs and the structure
preserves the Pbnm space group [11]. Hence, the structures
are called O′ (T < TJT ) and O (T > TJT ) [4,12]. A peculiarity
of such isosymmetrical transitions is that the structural order
parameter—the Jahn-Teller distortions—are not restricted to
zero amplitude before the transition. Consequently in the O
phase local Jahn-Teller distortions are reported and short-
range ordered clusters with the diameter of 4 MnO6 octahedra
have been found [4,12,13].

In all of the above described phases, the unpaired mag-
netic moments in the 3d shell of manganese are disordered
and LaMnO3 is paramagnetic (PM). At TN = 140 K [14],
LaMnO3 undergoes a magnetic transition without any struc-
tural changes to an antiferromagnetic phase with an A-type
pattern (AFM-A).
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There is a long-standing debate about the origin of the MIT
at TJT in LaMnO3 [7,15–19]. Broadly, this debate can be sum-
marized into two distinct views: the cooperative Jahn-Teller
effect [20–23] (C-JTE) on one hand and the spontaneous
orbital ordering proposed by the Kugel-Khomskii [24] (KK)
model on the other.

The C-JTE approach extends the Jahn-Teller effect [25]
from an isolated Jahn-Teller center to a solid of coupled
centers. In the case of LaMnO3, these are the corner-shared
oxygen octahedra. The origin of the transition is the local
degeneracy of the eg orbitals, which induces a local octahedral
distortion removing the degeneracy. The coupled octahedra
only interact harmonically through their individual deforma-
tion. The cooperative ordering of the octahedra results from
the minimization of the lattice harmonic energy and creates
an orbital ordering.

The KK approach (based on the Mott-Hubbard model [26])
emphasizes instead the roles of the intersite superexchange
electronic interactions and dynamical correlations between
eg electrons. It postulates spontaneous orbital and magnetic
orderings in the undistorted cubic perovskite phase for a
certain ratio of hopping and exchange parameters. The ap-
pearance of the cooperative deformation of the oxygen oc-
tahedra is here a secondary effect induced by the orbital
ordering. From density functional theory (DFT) + dynamical
mean-field theory (DMFT) calculations, it has been shown
that the KK mechanism alone cannot account for the orbital
ordering in LaMnO3 [27] and that electron-lattice coupling is
crucial in promoting the high orbital-ordering transition tem-
perature. Moreover a recent first-principles study [28] claims
that dynamical correlations are not necessary to account for
orbital ordering in perovskites. LaMnO3 thereby appears as
a special case, where the principal orthorhombic Jahn-Teller
distortion is only unstable in the presence of octahedral
rotations.

In the present work, we reinvestigate LaMnO3 from first-
principles calculations. First, we show that our calculation
method properly reproduces a range of measured ground-
state properties of LaMnO3. Then, we sample the Born-
Oppenheimer potential energy surfaces (PESs) of the close,
competing AFM-A and ferromagnetic (FM) orders and char-
acterize the inherent electronic instabilities, couplings be-
tween phonon modes, strains, and insulating and metallic
states. By a simple Monte Carlo (MC) simulation we show
that these PESs qualitatively reproduce the orbital-ordering
transition at 750 K. Finally, we unveil that LaMnO3 shows an
inherent subtle competition between charge ordering and or-
bital ordering, which was suspected before [29]. As a support
to our analysis, we reclassify all octahedra deforming cooper-
ative distortions in perovskite systems into unified canonical
notations for those kinds of distortions taking into account
local and global aspects and show the connection to other
various notations in the present literature.

The analysis of the PESs computed from DFT shows that
the large electron-lattice coupling, necessary to explain the
transition, lies in a Peierls effect [30]. The large coupling is
only enabled once the spin symmetry between neighboring
sites is broken. At elevated temperature this symmetry break-
ing is produced by dynamical fluctuations of orbital occupa-
tions and spin orientations in the PM state, so questioning

the ability of DFT to describe such a phenomenon. From
MC simulations relying on PESs calculated with DFT and
reproducing the MIT, we show that, in line with Ref. [31], the
key ingredient of the MIT transition is more the instantaneous
symmetry breaking, which can be statically treated in DFT,
than the dynamical nature of the fluctuations. Hence, we
assign an important part of the stabilizing energy at the MIT
transition to spin symmetry breaking. This does not mean
that dynamical electron correlations do not play any role in
stabilizing the insulating phase. The use of an appropriate
U correction remains important in treating materials like
LaMnO3 from DFT. Nevertheless, together with the recent
explanation of charge ordering in e1

g alkaline earth ferrites
AFeO3 [32] and rare earth RNiO3 [33] as a Peierls transition,
it seems that the cooperative Jahn-Teller/orbital-ordering and
charge-ordering transitions are simply different coordinates
for translational symmetry breaking and therefore they might
always compete in perovskites with degenerate eg states.
Finally, we emphasize that for gaining more insights in the
dynamical properties of the MIT, new model descriptions are
needed that can treat the electrons and nuclei dynamically
coupled in large supercells.

II. METHODS

Density functional theory (DFT) calculations were per-
formed using the generalized gradient approximation (GGA)
with the revised Perdew-Burke-Ernzerhof parametrization for
solids (PBEsol) [34] as implemented in the Vienna ab ini-
tio simulation package (VASP) [35]. A Liechtenstein (U |J )
correction was applied. (U |J ) = (5|1.5) were determined by
comparing structural, electronic, and magnetic parameters to
experimental results. For comparison, we reproduced also
the results of Mellan et al. using (U |J ) = (8|2) [36]. The
projector augmented wave method [37] was used, with a high
plane-wave cutoff energy of 600 eV and a dense 14 × 14 × 14
Monkhorst-Pack k-point mesh [38] with respect to the cubic
perovskite unit cell. Supercells of up to 40 atoms were used
to treat various magnetic orderings. The density of the k-
point mesh in the supercells was reduced according to the
multiplicity of the supercell. During the structural optimiza-
tions, the lattice parameters and internal coordinates of atoms
were fully relaxed until the Hellmann-Feynman forces on
each atom were less than 10−5 eV/Å and stresses less than
4 × 10−4 eV/Å3.

We used ISODISTORT [39] to analyze symmetry-adapted
modes and symmetry-adapted strains of experimental and op-
timized structures. In all cases, we used the aristotype Pm3m
structure of LaMnO3 as reference, with a lattice constant of
a0 = 3.935 Å that preserves the same volume per formula unit
as in the experimental Pbnm phase at low temperatures. Then,
we used the software INVARIANTS [40] to create invariant cou-
pling terms including symmetry-adapted modes and strains.
We use the BANDUP utility [41,42] to unfold electronic band
structures of magnetically or structurally distorted structures
back to the Brillouin zone of the cubic 5-atom perovskite unit
cell. Finally we used an in-house tool to approximate PESs
from DFT data with a polynomial expansion and to run Monte
Carlo simulations on the determined polynomial.
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III. CANONICAL NOTATIONS FOR COOPERATIVE
JAHN-TELLER DISTORTIONS IN PEROVSKITES

The Jahn-Teller effect in the ideal perovskite Pm3m space
group has been intensively studied over decades. Surprisingly,
no unified notation of cooperative Jahn-Teller distortions has
been adopted yet. The reason for that seems to be the focus
of many works on limited subsets of distortions, for which
labels are defined in the scope of the work. Here, we introduce
canonical notations defining a unique label for all possible
distortions. These are beyond the scope of the investigated
problems in LaMnO3, but will serve to simplify future dis-
cussions and comparisons between different perovskites. The
new labels combine local and cooperative aspects, while being
based on existing notations. As a starting point we give a brief
summary on the history of the study of the Jahn-Teller effect
in octahedral transition-metal complexes.

In 1937 Jahn and Teller published a pioneering work
stating that in a molecule “stability and (orbital) degeneracy
are not possible simultaneously unless the molecule is a linear
one ...” [25]. The geometric instability of a molecule contain-
ing an orbital degenerate state is introduced by the so-called
vibronic-coupling terms. These terms couple the degenerate
electronic state linearly to a vibrational mode coordinate Qk .
The strength of the coupling is expressed as

αJT = 〈
�0

i

∣∣∂H0

∂Qk

∣∣�0
j

〉
, (1)

where �0
i , �0

j are degenerate electronic states in a high-
symmetry structure of the molecular system and H0 is the
Hamiltonian of the unperturbed system.

Shortly after, the combinations of orbitals and modes that
fulfill the symmetric conditions for such an effect in spe-
cific point groups were determined. Van Vleck [43] studied
the isolated octahedral transition-metal complex MX6 (point
group Oh) within an external crystal field. From the 21 normal
modes (3 times 6 atomic displacements plus 3 rigid rotations
of the oxygen octahedron with respect to the external field),
he identified six that are prone to a Jahn-Teller instability in
conjunction with degenerate t2g and/or eg orbitals and labeled
them from Q1 to Q6: Q1, the volume expansion/contraction;
Q2, a planar rhombic distortion; Q3, the tetragonal distortion,
where Q2 and Q3 keep the octahedral volume constant at
linear order; and Q4 to Q6, the three possible shears of the
octahedron (see Table I).

At the molecular level, Q1 does not play any role if the
reference volume of the Oh point group represents a stationary
point with respect to volume expansion/contraction. More-
over, it does not lift the electronic degeneracy as it keeps the
symmetry of the Oh group.

The modes Q2 and Q3 are degenerate and possess the
Eg symmetry with respect to Oh. In conjunction with the
eg orbitals (dz2 − r2, dx2 − y2), they form the extensively
studied Eg ⊗ eg Jahn-Teller system. Large static Q2/Q3 distor-
tions appear for oddly occupied eg orbitals as, e.g., Mn3+(e1

g)
or Cu2+(e3

g). At the harmonic level, the systems forms the
so-called Mexican hat potential energy surface. This surface
possesses a degenerate minimum described by a circle in the
Q2-Q3 plane. Which point on the circle is stabilized depends

then on the strength and sign of higher-order anharmonicities
[44–46]. The amplitudes of the distortion are quantified by

Q2 = 2(l − s)√
2

, (2)

Q3 = 2(2m − l − s)√
6

, (3)

where l , m, and s refer to long, middle, and short MX bond
lengths. The angle in the Q2/Q3 plane is

φ = arctan

(
Q2

Q3

)
(4)

and is a direct measure for the (dz2 − r2)/(dx2 − y2) ratio in
the stabilized state.

The modes Q4 to Q6 are relevant for degenerate t2g states,
since they possess the same symmetry and form a T2g ⊗ t2g

system. However, the t2g orbitals can also interact with Eg

modes (Q2 and Q3), which results in many possibilities for
energy-lowering distortions to a degenerate t2g system. Spin-
orbit coupling further complicates the situation for heavier
transition-metal ions as it introduces a splitting opposed to
the distortion [47,48]. The vibronic couplings are typically
small since the π bonds formed between the M-t2g orbitals
and neighboring X -p orbitals are weak. Consequently, smaller
static distortions typically appear in systems with degenerate
t2g states than in those with degenerate eg states.

The problem of the Jahn-Teller instability in isolated MX6

octahedra was soon transferred to periodic solids, in which
each unit cell contains a Jahn-Teller ion. Among them are
the ABX3 perovskites with their corner-shared BX 6 octahedral
network. Jahn-Teller instabilities occur in ABX3 perovskites
with an odd occupation of the B cation’s eg orbitals, such
as rare-earth manganites RMnO3 (d4 = e1

g), KCrF3 (d4 = e1
g)

[49], KCuF3 (d9 = e3
g) [50], or with an incomplete occupation

of the t2g orbitals such as rare-earth titanates RTiO3 (d1 = t1
2g)

[51,52] and rare-earth vanadates RVO3 (d2 = t2
2g) [53]. The

key difference between the isolated problem studied by Van
Vleck and the perovskites with connected Jahn-Teller centers
lies in the direct neighboring of the Jahn-Teller ions. As a first
consequence, the lattice of sites implies that the degenerate
electronic states form continuous electronic bands instead
of well-defined orbital states. The electronic band character
of the degenerate states has been largely ignored by the C-
JTE and KK theories. The C-JTE approach directly transfers
the Jahn-Teller Hamiltonian of the isolated problem to the
periodic solid by simply exchanging the normal modes with
phonon-type modes and lattice strains [21–23,54]. In the KK
view the band character is quasi-ignored by an assumption
of very small bandwidths [24]. As a second consequence,
individual distortions are transferred between octahedral sites.
The network allows nonetheless for some phase freedom in
the cooperative arrangement of the distorted octahedra. This
additional freedom enables the system to achieve the same
individual octahedral distortion from different cooperative
orderings.

Regardless, in perovskites with interconnected Jahn-Teller
centers, it is usual to quantify the amplitude of Q2 and
Q3 distortions based on B-O distances in absolute coordi-
nates. This notation quantifies the distortion of one individual
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TABLE I. Canonical labels Q�q
iα for cooperative Jahn-Teller distortions in solids with octahedral corner-shared networks. The first subscript

i refers to the Van Vleck numbering of normal modes in the isolated octahedron. The second subscript α defines the unique axis of the local
distortion pattern. α is not necessary for the isotropic deformations Q�

1 and QR
1 . The superscript �q refers to the reciprocal space vector with

which the mode is translating. Shown are � = (0, 0, 0), X = ( 1
2 , 0, 0), M = ( 1

2 , 1
2 , 0), and R = ( 1

2 , 1
2 , 1

2 ). � is associated with lattice strains.
Octahedra drawn in red and blue experience opposite distortions.

Q1 QΓ
1 QR

1 QX
1α QM

1α

Origin in   A

Ref. Pm3m B

Γ+
1 (a) R−

2 (a) X−
3 (a, 0, 0) M+

4 (a, 0, 0)

Γ+
1 (a) R+

1 (a) X+
1 (a, 0, 0) M+

1 (a, 0, 0)

Displacement
Pattern

(VectorStrain a, a, a, 0, 0, ---)0

Crystal Space Group
)seiflnöhcS(

Pm3m
(O1

h)
Fm3m
(O5

h)
P4/mmm

(D1
4h)

P4/mmm
(D1

4h)

Local Octahedral
Symmetry

Oh Oh D4h D4h

Q2 QΓ
2α QM

2α QR
2α Q3 QΓ

3α QR
3α

Origin in   A

Ref. Pm3m B

Γ+
3 (0, a) M+

3 (a, 0, 0) R−
3 (0, a Γ) +

3 (a, 0) R−
3 (a, 0)

Γ+
3 (0, a) M+

2 (a, 0, 0) R+
3 (0, a Γ) +

3 (a, 0) R+
3 (a, 0)

Displacement
Pattern

(0VectorStrain ,−a, a, 0, 0, (--)0 −2a, a, a, 0, 0, 0) -

Crystal Space Group
)seiflnöhcS(

Pmmm
(D1

2h)
P4/mbm

(D5
4h)

I4/mcm
(D18

4h)
P4/mmm

(D1
4h)

I4/mmm
(D17

4h)

Local Octahedral
Symmetry

D2h D2h D2h D4h D4h

Q4,5,6 QΓ
4α QM

4α QR
4α

Origin in   A

Ref. Pm3m B

Γ+
5 (a, 0, 0) M+

1 (a, 0, 0) R−
4 (a, 0, 0)

Γ+
5 (a, 0, 0) M+

4 (a, 0, 0) R+
5 (a, 0, 0)

Displacement
Pattern

0(rotceVniartS , 0, 0, a, 0, --)0

Crystal Space Group
)seiflnöhcS(

Cmmm
(D19

2h)
P4/mmm

(D1
4h)

I4/mmm
(D17

4h)

Local Octahedral
Symmetry

D2h D2h D2h
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octahedron. It does not indicate the cooperative arrangement
of the distorted octahedra nor distinguish condensed phonon-
type distortions from homogeneous lattice strain. At the same
time, the quantification and notation of Q4–Q6 distortions
seems to have been dropped in latter years (the last occurrence
we found dates back to 1997 [55]).

Carpenter and Howard gave a different notation based
on the ISOTROPY software suite and associating Jahn-Teller
ordering schemes with labels of irreducible representations
(irrep) and ordering parameters [56]. These symmetry la-
bels are unique and distinguish between strain and phonon
modes. Moreover, the symmetry-adapted analysis allows us
to quantify the amplitudes of Jahn-Teller distortions in their
own subspace, such that they can be separated from other
distortions in the crystal lattice as octahedral rotations or
antipolar motions. Finally, by creating invariant polynomial
terms between the subspace of the Jahn-Teller distortions
and other lattice distortions, the order, sign, and strength of
couplings between those different distortions can be stud-
ied. This makes the decomposition of lattice distortions into
orthogonal irreducible subspaces a very powerful approach.
However, the application of the symmetry analysis has not
found widespread application. A reason might be that the
connection between the Van Vleck numbering and the irrep
labels is not obvious.

In the context of a first-principles study of RNiO3 rare-
earth nickelates, He and Millis [57] defined labels Qk

x (which
could be said to be inspired by Kanamori [54]) with x a
number indicating a local pattern (different from Van Vleck’s)
and k the label associated with high-symmetry k points in the
cubic Brillouin zone. Through the phase factor ei�k�x, the k label
emphasizes the cooperative arrangement. However, they only
labeled the modes of interest in their study, without labeling
all possibilities.

Here, we introduce canonical notations defining a unique
symbol for all possible cooperative Jahn-Teller distortions
in the perovskite structure. Our canonical symbols have the
form Q�q

iα . The subscript i indicates the local distortion pattern
and takes the enumeration of the octahedral normal modes
from Van Vleck. The second subscript α is necessary for
nonisotropic local patterns that break the cubic symmetry of
the octahedra (all besides Q1): it identifies the alignment of
the unique feature of the local distortion pattern with respect
to the perovskite lattice. It takes the values x, y, z, which are
defined to lie along the cubic perovskite lattice axes. For a
two-dimensional local distortion pattern, the unique feature is
the axis orthogonal to the two-dimensional distortion plane
(applies to Q2 and Q4). For a one- or three-dimensional local
distortion pattern it shows the Cartesian axis along the unique
feature. Finally, the superscript �q is the label of the reciprocal
space vector according to which the local mode is translating
in the crystal. Within this work, we limit �q to zone-center
[� = (0, 0, 0)] and zone-boundary modes at high-symmetry
�q points. The zone center � is thereby associated with lat-
tice strains. However, there is no inherent limitation of the
notation to the high-symmetry �q points. In the cubic Brillouin
zone, the high-symmetry �q points at the zone boundary are
X = ( 1

2 , 0, 0), M = ( 1
2 , 1

2 , 0), and R = ( 1
2 , 1

2 , 1
2 ). The power

of using such high-symmetry �q points lies in their unique

definition of the cooperative arrangement of the local dis-
tortion pattern and thereby also the related orbital ordering.
In analogy to magnetic orderings, � leads to ferro, X to a
planar or A-type, M to a columnar or C-type, and R to a
checkerboard or G-type arrangement. The freedom of the
phase factor depends on the local distortion pattern, since
the corner-shared atoms imply the opposite displacement of
neighboring octahedra. The resulting notations for all local
patterns at the high-symmetry points are shown in Table I.
Additionally, Table I shows the crystal symmetry achieved
by condensing the individual cooperative modes in the Pm3m
space group, the local octahedral symmetry only taking into
account the MX6 complex, and the label of the irreducible
subspace with the origin of the cubic perovskite unit cell set
on either the A or B cation.

The Q1 mode is related to a homogeneous
expansion/contraction of the volume of individual octahedra.
It appears as a lattice strain at �. As in the molecular case, it
can be omitted by choosing a reference stationary with respect
to Q�

1 . Since the local distortion pattern is three-dimensional,
Q1 is limited to �q between � and R. QR

1 is often called the
breathing-type distortion and associated with charge ordering
[33,58]. Two additional modes changing the volume of
local octahedra can be thought of. First, a mode that alters
one bond axis (uniaxial volume change), and second, two
octahedral axes (planar volume change). In the molecular
case, these distortions do not appear as normal modes as they
are not orthogonal to Q1 and Q3. Since in solids these modes
have been shown to be connected to charge ordering [59],
we associate equally a Q1 label with them. In the periodic
perovskite crystal, the uniaxial volume change appears as an
irreducible mode at X (QX

1α) and the planar volume change at
M (QM

1α in Table I). At the other high-symmetry q points of the
cubic Brillouin zone, the uniaxial and planar volume changes
are (equivalently to the case of an isolated octahedron) not
orthogonal to the other modes presented in Table I. Indeed, at
the M point, the uniaxial volume change is represented by a
sum of QM

1α and QM
2α , while at the R and � points, the volume

changes are represented by sums of QR/�
1 , QR/�

2α , and QR/�
3α

(respectively the subspaces R−
2 /R−

3 and �+
1 /�+

3 ).
The Q2 modes are two-dimensional and can hence translate

with �, M, and R. They reduce the local symmetry to D2h

stabilizing a mixed dz2−r2/dx2−y2 state.
The Q3 modes are three-dimensional and hence appear at

� and R. They reduce the local symmetry to D4h stabilizing
either a dx2−y2 or a dz2−r2 state for tetragonal compression or
extension, respectively.

At � and R, Q2 and Q3 form a two-dimensional subspace
equivalent to the Q2/Q3 space of the isolated Jahn-Teller
center. However, an intriguing difference to the isolated center
is the appearance of QM

2α in its own subspace. This gives
an additional degree of freedom for cooperative Jahn-Teller
distortions of connected Jahn-Teller centers.

Finally, the Q4 modes label the shear distortions. As they
are two-dimensional, they appear at �, M, and R, being at
each point threefold degenerated. This threefold degeneracy
reflects the modes Q5 and Q6 in Van Vleck’s numbering. The
necessity of Q5 and Q6 falls away using the second subscript
α in our notations. Q4 modes reduce the local symmetry to
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FIG. 1. Displacement patterns of condensed symmetry-adapted
modes in the LaMnO3 Pbnm phase (excluding Jahn-Teller distor-
tions). Cubic xyz and orthorhombic abc coordinate systems used
throughout the paper are indicated. The Pbnm unit cell is shown by
the black continuous line. (a) Reference cubic positions, (b) in-phase
rotation φ+

z (irrep: M+
3 ), (c) antipolar motion AR at the R point of the

cubic Brillouin zone (irrep: R−
4 ), (d) out-of-phase rotations φ−

xy (irrep:
R−

5 ), and (e) antipolar motion AX at the X point of the cubic Brillouin
zone (irrep: X −

5 ).

D2h albeit in a different way than Q2 since the B-O distances
in the sheared plane stay degenerate.

All irreducible subspaces besides X −
3 /X +

1 and R−
4 /R+

5
given in Table I are formed exclusively by the corresponding
Jahn-Teller displacements of the ions at the octahedral cor-
ners. In the subspaces X −

3 /X +
1 and R−

4 /R+
5 additional antipolar

motions of A cations are found. In X −
3 /X +

1 the A cations of
[100] planes move along the corresponding cubic axes. In the
R−

4 /R+
5 subspace, it is the case for A cations of the [111] planes

(see also Fig. 1). Hence, it is expected that the condensation of
a QX

1 or QR
4 distortion will induce the corresponding antipolar

motion and vice versa.
Finally we notice that the strains Q�

1 , Q�
2α , Q�

3α , and Q�
4α

represent a complete strain basis for the cubic perovskite
system.

These canonical notations, defining a unique symbol for
each cooperative Jahn-Teller distortion while distinguishing
phonon modes and lattice strains, will facilitate the discussion
of perovskite systems experiencing static Jahn-Teller distor-
tions. As will be shown in the forthcoming of this work, the
orthogonality of the decomposition is most powerful in the
study of the interplay of Jahn-Teller distortions with other
lattice distortions and strains.

IV. GROUND-STATE PROPERTIES

In this section we review the structural, magnetic, and
dielectric properties of the LaMnO3 bulk ground-state phase.
We compare the results of our DFT+(U |J ) calculations to
experimental values in order to assess the validity of our
calculation method (see Table II).

The ground-state Pbnm phase can be described in terms
of its atomic distortion with respect to the aristotype cubic
perovskite structure, taken as reference. This distortion can be
decomposed according to the orthogonal symmetry-adapted
phonon modes and lattice strains defined by the irreducible
representations of the cubic reference structure. The modes
with the largest amplitudes are (i) one in-phase rotation of the
oxygen octahedra (φ+

z irrep: M+
2 ) and (ii) two out-of-phase

rotations (φ−
x + φ−

y = φ−
xy irrep: R−

5 ), leading together to the
a−a−c+ rotation pattern [5] and reducing the symmetry to the
Pbnm space group. This rotation pattern further induces two
antipolar motions of the La cations [60–62]: first, an antipolar
motion of the La atoms (and also oxygens) of consecutive
(001) planes along the pseudocubic xy direction (AX irrep:
X −

5 ); second, an antipolar motion of La atoms of consecutive
(111) planes equally along the pseudocubic xy direction (AR

irrep: R−
4 ). This latter antipolar motion possesses the same

irrep as the Jahn-Teller modes QR
4α defined in Table I. The

respective oxygen motions QR
4x and QR

4y do appear also but
with an amplitude one order of magnitude smaller than the
already small amplitude of the AR cation motions so that they
are not reported in Table II. Finally, the ground-state structure
also shows a significant Jahn-Teller distortion QM

2z , and sizable
tetragonal (compressive along the z axis) and shear strains Q�

3z

and Q�
4z, all compatible with the Pbnm symmetry. The atomic

displacement patterns associated with these modes (excluding
the strains and Jahn-Teller modes, already sketched in Table I)
are shown in Fig. 1.

In the following we refer to calculated physical quantities
using the (U |J ) parameters of Mellan et al. [36] as (8 eV|2 eV)
and our new optimized values as (5 eV|1.5 eV) and compare
them to experimental values. In the top part of Table II, we
report the relaxed amplitudes of all the modes and strains
with imposed AFM-A order. Both tested (U |J ) combina-
tions deliver similar strain and mode amplitudes in good
agreement with the measured values [maximum deviation for
φ−

xy(R−
5 ) ≈ 5%].

In the center part of Table II, we compare the Kohn-Sham
band gap and the optical dielectric constant ε∞ obtained with
the two GGA+U functionals to experimental data. Both cal-
culated band gaps lie well within the range of experimentally
measured values [14,64–69].

The optical dielectric tensor gives a second good measure
besides the band gap to test the calculated electronic density.
References [15,17] provide directionally resolved measure-
ments of the optical dielectric tensor at low temperature along
the Pbnm c axis and the pseudocubic x direction to compare
with our calculations (≈45◦ to the orthorhombic a and b
directions). In Table II we report the dielectric tensor in the
orthorhombic axis as well as rotated to the same crystallo-
graphic orientation as in [15,17], where ε∞

xx = ε∞
yy , while in

the orthorhombic coordinate systems it holds ε∞
aa 	= ε∞

bb . In
the pseudocubic x, y, z system x and y are not orthogonal,
for which reason the off-diagonal element ε∞

xy 	= 0. However,
since ε∞

xy is one magnitude smaller (<0.5) than the diagonal
terms and as it has not been reported in experiments, we did
not note it in Table II.

PBEsol+(8 eV|2 eV) and PBEsol+(5 eV|1.5 eV) yield
electronic band gaps, which lie well in the range of the
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TABLE II. Comparison of quantities calculated from DFT with PBEsol+(5|1.5) and PBEsol+(8|2) with experimental values. Top:
Amplitudes of the symmetry-adapted modes (Å) extracted with ISODISTORTa of relaxed LaMnO3 with imposed AFM-A magnetic order. Center:
Optical dielectric permittivity tensor ε∞ and electronic band gap EGap (eV). Bottom: Magnetic moment μ (μB), magnetic exchange constants
J (meV), and Néel temperature TN (K).

(5|1.5) (8|2) Exp.

Structure
Q�

4z −0.036 −0.039 −0.027b/−0.027c

�+
5 (a, 0, 0)

Q�
3z −0.040 −0.040 −0.032b/−0.032c

�+
3 (a, 0)

AX 0.33 0.34 0.30b/0.29c

X −
5 (0, 0, 0, 0, a, −a)

φ+
z 0.49 0.51 0.48b/0.48c

M+
2 (a, 0, 0)

QM
2z 0.19 0.19 0.18b/0.19c

M+
3 (a, 0, 0)

φ−
xy 0.65 0.67 0.63b/0.59c

R−
5 (0, a, −a)

AR 0.06 0.06 0.06b/0.06c

R−
4 (0, a, a)

Optical Properties
ε∞

aa 7.03 6.02
ε∞

bb 6.52 5.5
ε∞

xx 6.77 5.75 ≈7.3d,e

ε∞
cc 6.15 5.76 ≈6d,e

EGap 1.15 1.77 1.1–1.9f

Magnetic Properties
μ 3.68 3.75 3.8
Jxx = Jyy −0.59 −0.25 −0.83b

Jz 0.34 0.18 0.58b

TN 142 64 ∼140
(Calc: 207b,g)

aNormalized with respect to the reference phase (cubic Pm3m).
bReference [14].
cReference [63].
dReference [17].
eε∞

xx and ε∞
bb correspond to ε1b and ε1c in the lower frequency range below the first optical transition in [17].

fReferences [14,64–69].
gCalculated in Ref. [14] with a two-J mean-field approach using the measured exchange constants.

experimentally measured ones, although increasing with
U. Regarding the optic dielectric constant, PBEsol+(5
eV|1.5 eV) yields values in better agreement with experi-
ment, which also reproduce the optical anisotropy absent with
PBEsol+(8 eV|2 eV).

In the bottom part of Table II we compare the calculated
magnetic properties with experimental values. We made a
two-J exchange constant mean-field model, which is sufficient
to justify the AFM-A order and can be found in several
publications in recent literature [14,36,70]. In our definition,
a negative value of J indicates ferromagnetic exchange. To
calculate the exchange constants, we used the energy differ-
ences of the relaxed AFM-A, AFM-G, and FM phases and
assumed a total spin of 4μB per Mn site. In this way the
calculated exchange constants contain implicitly spin-phonon
coupling, which is however small as the relaxed phases for

the different magnetic order are structurally close. Our ex-
perimental reference is [14], where the magnetic exchange
constants were derived from magnon dispersion measure-
ments. It is noteworthy that TN calculated in the mean-field
model with the measured exchange constants lies 67 K above
the measured TN because of the neglect of spin fluctuations.
PBEsol+(8 eV|2 eV) underestimates both exchange constants
by an approximate factor of three. In contrast PBEsol+(5
eV|1.5 eV) underestimates less the exchange constants with
respect to the experiment and finds a Néel temperature from
mean-field theory comparable to the experimental one.

In conclusion, both (5 eV|1.5 eV) and (8 eV|2 eV) produce
a good description of the structural ground state of LaMnO3.
Considering additionally electronic, optical, and magnetic
properties, (5 eV|1.5 eV) provides the better global estimate
and will be further used in this work.
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TABLE III. Energy comparison per formula unit of different
magnetic orderings in the cubic phase of LaMnO3.

Magnetic Ordering 	E/f.u. (meV)

FM −126.5
AFM-A 0.00
AFM-C +175.5
AFM-G +367.9

V. POTENTIAL ENERGY SURFACES

In this section we discuss the shape of the Born-
Oppenheimer potential energy surface (PES) around the cu-
bic phase with respect to the key Jahn-Teller distortion in
LaMnO3, QM

2z (see Tables I and II). We quantify mode-mode,
mode-strain couplings, and vibronic Jahn-Teller couplings by
successively adding one by one the main lattice distortions
found in the Pbnm ground state. To do so, we fit the free
energy surface by potentials of the type

F = E0 + αJT

∣∣QM
2z

∣∣ + αQM
2z + β

(
QM

2z

)2 + γ
(
QM

2z

)4
, (5)

where E0 is the energy at QM
2z = 0, αJT describes the vibronic-

coupling terms, α quantifies other linear lattice terms, β

quadratic lattice terms, and γ fourth-order terms. In the fit,
all modes have been normalized such that 1 corresponds to
their ground-state amplitude, which can be found in Table II.
This approach allows us to deduce how the magnetic and
structural ground state is reached. The introduction of the
absolute function in (5) allows us to distinguish the vibronic-
coupling term and linear lattice couplings in the QM

2z coordi-
nate. The cubic reference lattice parameter is a0 ≈ 3.935 Å,
which preserves the same volume per formula unit as the bulk
ground-state phase. The sign and strength of the parameters
are discussed in the following sections. A description of the
fitting procedure including the whole free-energy expansion
is given in Appendix A.

A. QM
2α PES in the cubic phase

In this section we analyze the relative stability of different
magnetic orderings and the stability of QM

2z distortion in the
cubic phase. Inspecting the QM

2z coordinate is a random choice
at this point. Due to the cubic symmetry, the following results
would be exactly the same for QM

2x and QM
2y. Following the

KK approach [24], we expect an AFM-A magnetically and
orbitally ordered insulating ground state with an instability of
QM

2z . Following the C-JTE approach we expect an instability
of QM

2z independent of the magnetic order.
Table III shows the energy differences per formula unit

for different simple magnetic orderings in the cubic phase of
LaMnO3. Here our calculations show that the FM ordering
is by far the ground state and that large energy differences
exist between the different magnetic orders. Figure 2(a) shows
the PES of the QM

2z mode around the cubic Pm3m phase
and its dependence in terms of the (U |J ) parameters. The
energy of the cubic AFM-A structure has been set to zero.
The amplitude of the QM

2z distortion has been normalized
to the bulk ground-state value. While the differences of the
relaxed bulk ground state with respect to the (U |J ) parameters

(a)

(b)

FIG. 2. (a) Comparison of the PES of the QM
2z Jahn-Teller dis-

tortion for different DFT calculation methods used throughout this
publication. (b) Schematic illustration of orbital orderings, which are
degenerate in the cubic structure with AFM-A ordering leading to a
metallic phase. A condensation of a QM

2z distortion with positive or
negative amplitude will stabilize one or the other state. Green and
blue colors refer to the dashed lines in panel (a).

are subtle (shown in Sec. IV), the differences in Fig. 2(a)
are rather significant. On the FM surface the QM

2z distortion
changes its character from dynamically stable to unstable for
higher U and J values. Similarly, on the AFM-A surface the
energy gain of the QM

2z distortion with respect to the cubic
structure is more than twice larger for the larger U and J
values. At the opposite, the ferromagnetic ground state and
the finite value of αJT on the AFM-A surface are independent
of (U |J ). Figure 2(a) shows that the extraction of quantita-
tive parameters from DFT calculations is a difficult task as
the numerical value can significantly change with the DFT
approach, while the relaxed ground-state structure might be
very similar. However, our results are qualitatively the same
as the ones of a recent study using a U value of 3.5 eV [28]. In
Appendix B we show furthermore that the qualitative features
shown here with (U |J ) = (5 eV|1.5 eV) do not change when
applying (U |J ) = (8 eV|2 eV).

The AFM-C and AFM-G surfaces are significantly higher
in energy and not shown here, but they also exhibit a vibronic
coupling, which is even stronger than in AFM-A.
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FIG. 3. Electronic band structures of LaMnO3 in the range of ±3 eV. (a) Projection of electronic bands onto Mn-eg, Mn-t2g, and O-p
orbitals in FM cubic phase. The size of the dots indicates the character of the bands. (b)–(d) Unfolded band structure to cubic Brillouin zone.
The color of the lines indicates the overlap between the supercell and primitive cell k point. (b) AFM-A ordering with cubic atomic positions.
(c) FM ordering with 10% QM

2α distortion. (d) AFM-A ordering with 10% QM
2α distortion, where α is one the cubic lattice directions. In the FM

cases the majority spin is shown. In the AFM-A cases one of the two equivalent spin channels is shown.

To rationalize the shape of the PES, we can inspect the
electronic band structure (Fig. 3) in the reference cubic and
a distorted structure including 10% QM

2z (with respect to the
ground-state amplitude) distortion in both the FM and AFM-A
magnetic orderings. The band structures are unfolded to the
cubic Brillouin zone for easy comparison. Figure 3(a) shows
the projection of the band structures in the cubic phase with
FM ordering onto Mn-eg, Mn-t2g, and O-p states. In line with
other works [71–75], the band structure shows that the eg

states are dispersed symmetrically around the Fermi level, EF ,
in a range of about ±2 eV. EF is crossed at the points X and
halfway along M-R, �-R, �-M, and X -R.

If the AFM-A magnetic ordering is imposed [see Fig. 3(b)],
the local degeneracy at � of the eg bands is lifted, showing
the symmetry breaking produced by the magnetic order. EF

crosses the eg bands at M and halfway along �-X , �-M,
�-R, X -M, and X -R. The increase of many of the occupied
valence states in the AFM-A cubic case with respect to the
FM ordering [e.g., compare the section from � over M to
X of Figs. 3(a) and 3(b)] leads to the large increase of the
total energy from FM to AFM-A in the cubic phase (see
Table III and Fig. 2). The metallicity of the AFM-A cubic
phase, despite the local nondegeneracy of the eg states, can be
explained by the degeneracy of two types of orbital orderings
within this phase, as schematically drawn in Fig. 2(b).

If the QM
2z distortion is added, the electronic bands are

split halfway along all the high-symmetry points [compare
Figs. 3(c) and 3(d)]. The system will gain electronic energy
if the eg bands are crossing the Fermi level at these points
as virtual states are shifted to higher energies and occupied
ones to lower energies. Moreover, an insulating state can
only be created by the application of the QM

2z distortion

if the eg bands cross the Fermi level at all the splitting
points.

In the FM case only four splitting points and crossings with
the Fermi level coincide: At X and halfway between �-M,
�-R, X -R, and M-R. At the other splitting points halfway
between �-X and X -M, the eg bands are deep in the valence
states at about −1.5 eV (or one-quarter of the eg bandwidth).
The absence of the vibronic coupling can then be explained by

αJT =
∫

BZ

ne−∑
n=1

∂En(�k)

∂QM
2z

∣∣∣∣∣
QM

2z=0

= 0, (6)

where En(�k) is the energy of band n at �k and its derivatives
with respect to QM

2z are summed over all occupied states,
which are the number of electrons contained in the calculation
ne− . Equation (6) means that, overall, for each k point at which
the total electronic energy is decreased by a variation of QM

2z
there is another one at which it is increased by the same
amount. Finally, in the FM case there is one direction that is
unaffected by the QM

2z distortion, which can be identified by
one band that follows the original eg paths, most clearly to
be seen at the start of the path from � over X to M [compare
Figs. 3(a) and 3(c)]. This band accounts for the z direction in
real space that is not affected by the QM

2z distortion.
In the AFM-A case the points at which the condensation

of the QM
2z distortion splits the eg bands and their crossing

with EF in the cubic Brillouin zone coincide, such that the
QM

2z distortion leads to a lowering of the electronic energy
and Eq. (6) becomes nonzero. Hence the origin of the finite
vibronic coupling is a Peierls-like effect where the destruction
of the translational symmetry leads to an energy gain. The
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FIG. 4. Comparison of the PESs of the QM
2z mode within different distorted structures. The three main panels refer to distinct unit cells:

(a) Cubic lattice constants a = b = c = 3.935 Å. (b) Cubic lattice constant and added tetragonal strain Q�
3z (as in the ground state). (c) Cubic

lattice constant and added tetragonal Q�
3z and shear Q�

4z strains, leading to the ground-state orthorhombic lattice constants. Within (a), (b),
and (c), the three subpanels refer from left to right to the condensation of QM

2z mode (i) alone (0), (ii) in the presence of octahedral rotations
condensed with their ground-state amplitudes (a−a−c+), and (iii) in the presence of octahedral rotations and antipolar motion AX condensed
with their ground-state amplitudes (a−a−c+ + AX ). All energies refer to the cubic Pm3m structure with AFM-A magnetic ordering, which is
set to zero. Open (resp. filled) symbols denote metallic (resp. insulating) states.

doubling of the periodicity can be seen most clearly in the
oscillations from � to X and M to R. Here magnetic order
and QM

2z distortion work together in an intriguing way to
result in a finite vibronic coupling. Our result shows that
future works should focus on the generalization of the spin-
structural Peierls effect in corner-shared octahedra networks.
In real space, the condensation of QM

2z with positive or negative
amplitude corresponds to the stabilization of one orbital order,
which will represent a nondegenerate electronic ground state
in the distorted phase [see Fig. 3(d) and Fig. 2(b)]. The
combination of spin and QM

2z distortion corresponds to the
doubling of the periodicity in the three space directions, which
stabilizes one distinct orbital order. In the cubic phase both
orbital orders are degenerate and explain the metallicity.

Finally, we want to summarize the major results of this
section: (i) The origin of the vibronic coupling on the AFM-A
surface appears to be a Peierls-like effect, where AFM-A
order and QM

2z distortion combine to break the translational
symmetry. The conceptual similarity of Peierls effect, C-JTE,
and also KK induced orbital order has already been noted by
Polinger [76], Bersuker and Polinger [77], and recently by
Streltsov and Khomskii [78]. (ii) The absence of spontaneous
orbital order and the FM ground state in the cubic phase hint
that the KK mechanism might not apply to the cubic phase of
LaMnO3 and that a renormalization of the intersite electronic
parameters might be key to activate it.

B. QM
2z PES in the presence of other lattice distortions

In order to investigate under which structural conditions
the AFM-A magnetic order is stabilized, we condensed the
principal lattice distortions and strains, and sampled the PES
in terms of QM

2z on top of these already distorted structures.
The results are shown in Fig. 4.

In Fig. 4(a) we used the cubic lattice constant a0 =
3.935 Å and sampled the PES surface along the QM

2z line

successively when appearing (i) alone, (ii) on top of the
octahedral rotations φ+

z and φ−
xy with the bulk ground-state

amplitude, and finally (iii) on top of the rotations plus the AX

motion with their corresponding ground-state amplitudes. In
Fig. 4(b) we followed the same procedure for φ+

z and φ−
xy ro-

tations and AX distortion in the three subpanels, but condensed
on top the tetragonal strain Q�

3z which leads to lattice constants
of a = b = 5.66 Å and c = 7.61 Å. Finally in Fig. 4(c) we
additionally condensed the shear strain Q�

4z. It leads together
with Q�

3z to the ground-state orthorhombic lattice constants.
Energies in all graphs are expressed with respect to the same
energy reference (cubic AFM-A), allowing the reader to easily
find the global ground state under certain conditions.

Calculations are reported for FM and AFM-A orders.
Additionally, we note in Fig. 4 whether the relaxed electronic
wave function represents a metallic (open symbols) or insu-
lating state (filled symbols). In this section we limit ourselves
to a qualitative discussion of the interplay of lattice and
electronic band structure, without an explicit demonstration
of unfolded band structures.

1. Cubic unit cell

Let us first focus on Fig. 4(a). The left panel corresponds to
the pure cubic lattice and hence to the left panel in Fig. 2(a).
Going from no rotations (left panel) to the structure with
rotations (middle panel) in the cubic lattice, the global en-
ergy is lowered since the rotations are unstable (Eφ

0 < 0 in
Table IV). Moreover, QM

2z changes from dynamically stable to
unstable on the FM surface. Also, the shifted single wells of
the AFM-A surface become deeper.

For the FM surface this behavior can be attributed to bi-
quadratic coupling terms in the free energy expansion between
the rotations and the QM

2z mode,

F ∝ β2(φ)2
(
QM

2z

)2
, (7)
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TABLE IV. Table of fitted parameters to reproduce the PES in Fig. 4. MO = magnetic ordering. Top: Zero-point energies E0, gathering
energy gains or losses of condensing individual modes and strains excluding QM

2z distortion. Middle: First- and second-order parameters α and
β gathering linear and quadratic lattice couplings in QM

2z . Bottom: Electronic parameter αJT gathering the variation of the electronic instability,
depending of the condensed lattice modes.

MO EFM
0 E

Q�
3z

0 E
Q�

3zQ�
4z

0 Eφ

0 E
φ,Q�

3z
0 E

φ,Q�
3z,Q

�
4z

0 Eφ,AX
0 E

φ,AX ,Q�
3z

0 E
φ,AX ,Q�

3z ,Q
�
4z

0

Zero-Point Energies E0

FM (eV) −0.51 0.21 0.16 −0.56 0 0.16 −0.40 −0.15 −0.27
AFM-A (eV) 0.05 0.15 −0.63 0.05 0.18 −0.39 −0.12 −0.29

First- and Second-Order Parameters α and β

MO α1 α2 α3 α4 α5 β1 β2 β3 β4 β5 β6

FM (eV) −0.02 −0.09 −0.03 −0.11 −0.01 0.26 −0.53 0.04 −0.22 −0.01 0.003
AFM-A (eV) −0.01 −0.10 −0.02 −0.11 −0.02 0.29 −0.04 0.02 0.08 −0.01 −0.20

Electronic Parameter αJT

λ-Cubic λQ�
3z

λQ�
3z+Q�

4z

α0
JT +φ +φ + AX 0 +φ +φ + AX 0 +φ +φ + AX

AFM-A (eV) −0.74 −0.20 0.01 −0.09 0.15 −0.03 0.10 −0.18 0.04

where the coupling constant β2 is largely negative and φ

represents a global rotation amplitude that implies that φ+
z

and φ−
xy keep the same ratio as in the ground state (see

Appendix A).
For the AFM-A surface, β2 is close to zero. The shift of

the single wells has to be attributed to a strong enhancement
of the vibronic coupling αJT expressed by the parameter
λφ < 0 in Table IV. Nonetheless, the ground state is FM
and metallic until the largest amplitudes. On the AFM-A
surface a band gap opens instantaneously by applying QM

2z .
Both effects (λφ < 0 and β2 < 0) should be attributed to the
strong reduction of the eg bandwidth (from about 4 eV to
3 eV; not shown here).

On both magnetic surfaces, the rotations alone induce a
QM

2z amplitude close to the experimental one. We emphasize
that this strong coupling is related to the specific electronic
structure of LaMnO3, as other Pbnm perovskites with signifi-
cant octahedral rotations show only negligible QM

2z amplitudes
(e.g., CaMnO3 [79]). Additionally to Eq. (7), there is a fourth-
order term coupling linearly the QM

2z mode with the rotations:

F ∝ α1[(φ−
xy)2φ+

z ]QM
2z . (8)

The effect of this term appears however negligible since
the symmetry of the potential well is (almost completely)
maintained when the rotations are condensed.

Although AX is intrinsically stable in the cubic phase, its
presence is naturally driven in the presence of φ−

xy and φ+
z due

to a trilinear coupling term,

F ∝ α(φ−
xyφ

+
z )AX , (9)

which, in another context, is known to be related to the
appearance of hybrid improper ferroelectricity [80] in some
cation ordered perovskite superlattices. Consequently, as in
other Pnma perovskites [62], the condensation of Ax globally
decreases the energy through this term [part of Eφ,AX

0 in
Eq. (A4)], producing a rigid downshift of the energy wells
in Fig. 4.

In a similar way there is a trilinear term:

F ∝ α2(AX φ−
xy)QM

2z . (10)

This term does significantly break the symmetry of the QM
2z

surface in contrast to the term in Eq. (8). The asymmetry
created by the crystal field, induced by the combination of φ−

xy
and AX , is independent of the magnetic order since the fitted
coefficient α2 takes close values for AFM-A and FM ordering
(see Table IV). That being said, the ground-state surface is
FM for all structures with cubic lattice constants. Only the
AFM-A surface shows insulating behavior around its minima.
The coupling terms above are obviously equally valid in the
strain-distorted unit cells and similar trends can be seen in the
energy surfaces of all three examined cases.

To summarize, we have found here (i) that octahedral
rotations trigger QM

2z by eg bandwidth reduction and (ii) that
octahedral rotations combined with the antipolar motion AX

induce a significant crystal field that breaks the symmetry of
the QM

2z PES.

2. Tetragonally compressed unit cell

Let us now focus on Fig. 4(b) in which the compressive
tetragonal strain Q�

3z has been added to the cubic lattice.
Again, the PES in terms of QM

2z is shown when condensing
or not the other lattice distortions. Adding Q�

3z increases
energy independently of the magnetic order, but decreases
their distance at QM

2z = 0 as

E
Q�

3
0 (AFM-A) < E

Q�
3

0 (FM). (11)

On the FM surface, the QM
2z mode gets significantly softer,

compared to panel (a). The softening can be associated
with linear-quadratic and biquadratic strain-phonon coupling
terms,

F ∝ β4Q�
3z

(
QM

2z

)2 + β5
(
Q�

3z

)2(
QM

2z

)2
. (12)

Here the linear-quadratic term is dominating since β4 > β5

(see Table IV). This implies directly that the appearance of
QM2

2z favors a compressive over a elongating tetragonal strain
Q�

3z and vice versa.
On the AFM-A surface it is mainly the electronic insta-

bility αJT that is affected by Q�
3z (λQ�

3z
< 0; see Table IV)
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and shifts the amplitude of QM
2z close to the experimental

bulk value. Most interestingly, the ground-state surface is no
longer the FM one: if the Q�

3z strain and QM
2z distortion are

condensed together, the AFM-A energy becomes lower than
the FM energy at about 100% Q�

3z + 50% QM
2z . The linear-

quadratic and biquadratic strain-phonon coupling terms do
exist between the tetragonal strain and all symmetry-adapted
modes condensed in the Pbnm phase.

Octahedral rotations (φ) and Q�
3z shift the energy minima

on both magnetic surfaces to values well above 1, which can
be explained by the phonon-phonon couplings highlighted in
Eqs. (7)–(10). Nonetheless, the “cubic plus rotations” surfaces
stay lower in energy than tetragonal strained ones. Interest-
ingly, at this point, the minima on the FM surface become
insulating states. We can attribute this to the combined trans-
lational symmetry breaking of the antiphase rotation φ−

xy and
the tetragonal compression of Q�

3z, which together break the
translational symmetry just like the AFM-A order.

Adding AX breaks the symmetry of the energy surface. The
difference of energy between the minima along the positive
and negative paths of QM

2z is increased, due to a quadrilinear
strain-phonon term,

F ∝ α3
(
Q�

3zφ
−
xyAX

)
QM

2z . (13)

We note that the same term exists replacing QM
2z with the in-

phase octahedral rotation φ+
z . It is because of those two terms

that eventually the tetragonal phase gets slightly stabilized
over the cubic one.

To summarize, we have additionally found here (i) that
the tetragonal compressive strain Q�

3z combined with QM
2z

stabilizes the AFM-A against the FM ordering, and (ii) that
Q�

3z combined with the antiphase rotation φ−
xy induces the

opening of a band gap on the FM surface around the QM
2z

minima.

3. Orthorhombic ground-state unit cell

Let us finally focus on Fig. 4(c), adding together the
compressive tetragonal strain Q�

3z and the orthorhombic shear
strain Q�

4z with their ground-state values in the cubic lattice.
The strained unit cell has then the lattice parameter of the
relaxed ground-state cell. Adding the shear strain Q�

4z on
top of Q�

3z further increases the global energy, if no other
modes are condensed. The distance between the magnetic
surfaces is approximately unaltered. In contrast to the cubic
and tetragonal cases, the symmetry of the QM

2z PES is broken
when octahedral rotations are condensed. This is due to a
trilinear term:

F ∝ α4
(
Q�

4zφ
+
z

)
QM

2z . (14)

Figure 5 provides a sketch highlighting the physical meaning
of Eq. (14). Neither an octahedral rotation nor a shear strain
alone can lift the degeneracy of the octahedral bond lengths.
However, when the rotation axis and the axis normal to
the shear plane coincide, they act together as an effective
Q2 motion and split the bond lengths. If the rotation is
antiphase (φ−) the effective motion is QR

2 ; if it is in-phase
(φ+) it becomes QM

2 . Hence, in LaMnO3, φ+
z and Q�

4z build
an effective QM

2z motion. This effective QM
2z motion explains

FIG. 5. Schematic illustration of octahedral rotation φ+
z and

shear strain Q�
4z acting together as a QM

2z Jahn-Teller distortion of the
oxygen octahedra. (a) Cubic phase, (b) phase with shear strain Q�

4z,
(c) phase with rotation of the octahedra φ+

z , and (d) phase combining
shear strain Q�

4z and rotation φ+
z . The combination of Q�

4z and φ+
z acts

as an effective QM
2z distortion: while all octahedral axis are equivalent

(black lines) in (a), (b), and (c), the combination of Q�
4z and φ+

z in
(d) gives rise to shortened (purple) and elongated (red) octahedral
axis in a way similar to QM

2z .

that once φ+
z and Q�

4z are condensed, the metal-to-insulator
transition is reached for smaller QM

2z amplitudes compared
to the previously discussed surfaces. Finally it also explains
why the gradient discontinuity does not appear at QM

2z = 0.
To fit the PES with Q�

4z and φ+
z condensed together, we had

to introduce a shift of the zero coordinate of QM
2z , which

extracts the amplitude of their effective QM
2z distortion. When

Q�
4z and φ+

z are condensed with their ground-state amplitudes,
QM

2z takes already �15% of its ground-state amplitude (i.e.,
0.06 Å). It can be extracted in Fig. 4(c) at the position of
the gradient discontinuity on the AFM-A surface. Despite the
trilinear term in Eq. (14), tetragonally and sheared distorted
unit cells stay higher in energy compared to the cubic case if
only the octahedral rotations are present. It is eventually AX

that induces an orthorhombic ground state through a quartic
term, linear in QM

2z and similar to Eq. (13):

F = α5
(
Q�

4zAX φ−
xy

)
QM

2z . (15)

The FM surface is also insulating around its QM
2z minima and

the AFM-A surface is the global ground state in all Q�
3z + Q�

4z
distorted cases.

To summarize, we have found here (i) that φ+
z and Q�

4z act
as an effective QM

2z motion and (ii) a quartic term that stabilizes
the ground-state unit cell shape.

4. Summary

From the discussion of the PESs, we can reach the follow-
ing conclusions.
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(i) Octahedral rotations trigger QM
2z by a negative bi-

quadratic coupling on the FM surface and by an enhanced
vibronic coupling on the AFM-A surface. This is attributed
to a reduced eg bandwidth.

(ii) Tetragonal strain Q�
3z is responsible for the magnetic

FM to AFM-A transition, by reducing the energy difference
between the AFM-A and FM surface. We note that this is in
line with recent ab initio studies [81,82] and an experimental
study of FM LaMnO3 thin films grown on SrTiO3 [83]. Here,
the canonical Jahn-Teller distortion notations allowed us to
extract Q�

3z as the key structural parameter.
(iii) On the FM surface, a band gap can only be opened by

QM
2z in the presence of compressive tetragonal strain Q�

3z and
the antiphase rotation φ−

xy. This is assigned to the combined
strong symmetry breaking of Q�

3z and φ−
xy along the Pbnm c

axis equivalent to the symmetry breaking of AFM-A order.
(iv) In none of the tested structures did we find a finite value

of αJT on the FM surface. There is no vibronic coupling in the
FM surface with respect to QM

2z .
(v) Various lattice couplings lead to almost identical

ground-state structures for FM and AFM-A orderings. This
explains the absence of a structural distortion at the magnetic
transition TN ≈ 140 K.

(vi) Shear strain Q�
4z and in-phase octahedral rotation φ+

z

act as an effective QM
2z distortion.

VI. QM
2z AND OTHER LATTICE DISTORTIONS AROUND

THE TJT TRANSITION

In this section we analyze the temperature evolution of the
amplitudes of all relevant strains and phonon modes around
the orbital-ordering transition at TJT ≈ 750 K, as measured
experimentally. We discuss the variation of the amplitudes
of lattice modes and strains in connection with the coupling
terms defined before. We recalculate the QM

2z PES within
the measured experimental structures around the transition.
We show by a simple Monte Carlo (MC) simulation of the
evolution of QM

2z amplitude with temperature that those PESs
qualitatively reproduce the phase transition. Our approach
highlights that an important contribution to the stabilizing
energy of the insulating phase is the spin symmetry breaking,
which appears dynamically in the PM phases around the MIT
but can be properly extracted from static DFT calculations.

Our experimental source is the recent study of Thygesen
et al. [13], in which the authors measured the lattice structure
over TJT between 300 K and 1000 K. The aim of their study
was to identify the differences in the local structure of the
orbitally ordered O′ and disordered O phases in order to derive
a better understanding of the O phase (sometimes also called
the orbital-liquid phase, and the transition has been described
as orbital melting [8,84]).

In Fig. 6(a) we show the symmetry-adapted strain and in
Fig. 6(b) the symmetry-adapted phonon mode analysis of the
experimental data around TJT . The low-temperature ampli-
tudes noted in Table II are shown as dashed lines. Addition-
ally, we show the variation of the unit-cell volume through the
volume strain Q�

1 , which points out the well-known volume
collapse at TJT [8–10,13]. The tetragonal strain Q�

3z and shear
strain Q�

4z show a linear decrease in amplitude for tempera-

FIG. 6. Experimental lattice modes and strain amplitudes across
the O′/O transition at TJT ≈ 750 K. Structures extracted from
Ref. [13] and analyzed with ISODISTORT. Dashed lines show low-
temperature amplitudes.

tures lower than TJT . At TJT they abruptly disappear almost
completely and have only small amplitudes in the orbitally
disordered O phase. From the inspection of symmetry strains
in Fig. 6(a), it is obvious that the disappearance of Q�

3z and Q�
4z

is much more severe at TJT than the volume collapse of Q�
1 .

Although this has been previously pointed out by Carpenter
and Howard [53], recent studies continue to emphasize the
volume collapse [13].

The amplitudes of the modes at 300 K are close to their
low-temperature values. The amplitude of the antiphase rota-
tions φ−

xy stays approximately constant and close to the low-
temperature value across the whole temperature range from
300 K to 1000 K. The amplitudes of the in-phase rotation
φ+

z and the antipolar motion AX decrease linearly between
300 K and TJT . The Jahn-Teller distortion QM

2z keeps an almost
constant amplitude between 300 K and TJT . At TJT there is a
discontinuity for φ+

z , AX , and QM
2z with a sudden reduction in

their amplitude. However, QM
2z does not completely disappear

directly at TJT as could be expected. Above TJT , φ+
z , AX ,

and QM
2z continue to decrease linearly (QM

2z until it reaches
approximately zero amplitude at ≈900 K).

The similar linear temperature dependence of φ+
z , AX , QM

2z
in the O′ and O phases can be easily explained by Eqs. (9) and
(10). The amplitude change of φ+

z should be associated as the
driving force as AX is stable by itself and the amplitude of φ−

xy
is nearly constant. Then AX follows simply the amplitude of
φ+

z through the trilinear coupling in Eq. (9). Consistently, QM
2z

follows the amplitude of φ+
z through the trilinear coupling in

Eq. (10).
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The small but nonzero amplitude of QM
2z just before the

transition might suggest that the variation of φ+
z with temper-

ature induces the transition by the trilinear improper mecha-
nism of Eq. (10).

To get a more detailed insight, we recalculated the PESs
of QM

2z in the experimental structures extracted from Ref. [13]
between 523 K and 973 K and then executed a simple MC
simulation on these surfaces to find the mean amplitude of
QM

2z at a given temperature. To account for the PM state at
the transition, we calculated the PESs in four distinct simple
magnetic orders [FM, AFM-A, AFM-C, and AFM-G; see
Figs. 7(a)–7(d)]. Then we execute a MC simulation of the
QM

2z amplitude on each magnetic surface individually. We
perform 100 times 10 million MC steps from which we extract
the mean QM

2z amplitude and the standard deviation of the
amplitude. Finally, we find the overall mean amplitude as the
mean of the four surfaces. The resulting mean amplitude is
shown alongside the measured one in Fig. 7(e). Error bars
show the standard deviation of the QM

2z amplitude, which gives
a measure on how much QM

2z fluctuates at a given temperature.
The approach of mixing together the simulation of various
magnetic orderings can be seen as a simplified account for
the multi-Slater-determinant character of a PM electronic
wave function that is more rigorously treated by advanced
material-specific many-body methods like DFT+DMFT. On
the other hand DFT+DMFT calculations typically exclude the
influence of the lattice by parametrizing an Anderson impurity
model on a given lattice configuration.

Although a renormalization of the temperature is needed
(Tsim/Texp = 0.625), it can be seen that the qualitative features
of the QM

2z amplitude with reducing temperatures are well
reproduced by our simple simulation approach: in particular,
a small linear increase of QM

2z before the transition and a
sudden jump to larger amplitudes below. The error bars show
a huge distribution above TJT , which is consistent with the
experimentally described “liquidish” behavior, and a strong
reduction of the distribution below.

Through the PESs, we can examine the origin of this
transition. The FM surface shows that the rotation amplitudes
of φ−

xy and φ+
z are large enough even at the highest temperature

to produce a weak instability through the biquadratic coupling
in Eq. (7). Then through the trilinear coupling of Eq. (10), a
weak asymmetry of the surface is induced which increases
before the transition. After the transition this asymmetry is
significantly amplified such that the minimum on the negative
side of QM

2z disappears. This change can be mainly attributed
to the relaxation of the strains Q�

3z and Q�
4z and the associated

couplings in Eqs. (12), (13), (14), and (15), which are linear
in QM

2z . Only taking into account the FM surface a lattice
triggered picture would be convincing. However, the minima
on this surface are much too shallow to explain the transition
at such a high temperature.

The shallow minima are corrected by taking into account
the AFM PESs to mimic the PM phase. On the AFM PESs,
deep minima exist due to the Peierls condition that is met
in all AFM orderings. This translates into a finite vibronic
coupling, whose strength is increased going from AFM-A
over AFM-C to AFM-G as the eg bandwidth is decreased.
Taking the AFM PESs into account in the MC simulation
instead of relying only on the FM surface increases the tran-

FIG. 7. (a)–(d) PES of QM
2z distortion as calculated from DFT

within the lattice structures measured by Thygesen et al. at the
indicated temperatures and magnetic orders. Markers show the DFT
energies, continuous lines a polynomial fit. (e) Experimental am-
plitudes of QM

2z and mean amplitudes resulting from a Monte Carlo
(MC) sampling of the above PESs with Tsim/Texp = 0.625. Error bars
show the standard deviation of the MC simulation.

sition temperature strongly. This underlines the importance of
spin symmetry breaking to activate the strong electron-lattice
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coupling stabilizing the insulating phase. Also, it shows that
the importance of the dynamical fluctuations of the spin in the
PM phase for stabilizing the insulating phase lies only partly
in the activation of dynamical correlations, but equally in the
instantaneous symmetry breaking it produces. The effect of
spin symmetry breaking, although experimentally dynamical,
can be properly extracted by static DFT calculations as shown
from our simplistic approach.

Finally, a multifaceted image about the origin of the tran-
sition emerges. On one hand it is “improperly” induced by
the lattice, favoring one side of the QM

2z well over the other.
On the other hand, it incorporates also the characteristics of
an order-disorder transition as deep minima for QM

2z persist
in the high-temperature O phase, which is magnetically and
structurally disordered. The origin of these deep minima is
the dynamic symmetry breaking of the spin-order in the PM
phase.

However, our MC approach does not allow us to comment
on the persistent debate of the importance of dynamic cor-
relations over dynamic spin symmetry breaking and lattice
symmetry breaking [31]. Nonetheless, the least we can deduce
is that instantaneous electronic symmetry breaking contributes
to a large part of the stabilization energy that drives the MIT
by inducing a large electron-phonon coupling. It has been
noted before that such a large electron-phonon coupling is
necessary to explain the high MIT transition temperatures and
the dynamic Jahn-Teller deformations in the high-temperature
phase in KCuF3 [85] and LaMnO3 [27].

Finally, we note that it would be possible to optimize (U |J )
values that bring the MC simulation transition temperature to
the experimental transition temperature. This would however
not lead to any additional insights as it would merely mean
to tune a parameter in a reduced model description. To gain
more microscopic insight into the transition mechanism and
the dynamical properties of the high-temperature metallic O
phase, nucleic and electronic subsystems have to be treated
dynamically coupled in large supercells at finite temperature.
An approach to realize such a dynamic coupling is the so-
called second-principles models [86–88].

VII. CHARGE VERSUS ORBITAL ORDERING IN LaMnO3

Until this point, we have investigated the relevant statically
appearing distortions in the single-crystal ground-state phase
of LaMnO3. However, at a few occasions, a charge-ordering
instability has been discussed as an alternative and competing
mechanism to orbital ordering [89,90] or as the origin of the
transition in the high-temperature orbital liquid phase, which
has been, in that picture, described as an electron-hole liquid
phase [29,91]. Such a charge-ordering instability in the high-
temperature phase should be accompanied by the instability
of a breathing-type distortion QR

1 (see Table I). Recent works
showed that the charge-ordering transition in RNiO3 (a e1

g
perovskite with doubly occupied t2g states) can be understood
as a Peierls transition [33] triggered by the appearance of
octahedral rotations. Moreover, the same picture applies to
alkaline-earth ferrites, AFeO3 [32], with the same formal
occupation of Fe-d states as Mn-d states (d4 = t3

2ge1
g). In those

ferrites, the instabilities of QR
1 and QM

2z compete and can be

FIG. 8. PES of QR
1 and QM

2z distortions within FM ordering in
cubic structure (top curves), with condensed octahedral rotations φ−

xy

and φ+
z (middle curves), and with additionally condensed antipolar

motion AX (bottom curves).

tuned by epitaxial strain. A similar behavior has been found
in HoNiO3 [92].

In Fig. 8, we show that the same competition exists for
the RMnO3 series with the example of LaMnO3. Here, we
limit ourselves to calculations within the FM ordering. At the
top of Fig. 8, the PESs of QR

1 and QM
2z within cubic LaMnO3

can be seen. Both of them show stable single wells, with
comparable harmonic and higher-order dependencies. If the
octahedral rotations are condensed, the total energy of the
system is significantly reduced and both distortions become
dynamically unstable, with QR

1 slightly favored. This result
shows that the approach of a Peierls transition in the QR

1
coordinate triggered by octahedral rotations [33] is equally
valid in RMnO3. The argument is point-by-point similar to
that in AFeO3 and RNiO3 compounds, as can be found in
[32,33]. We note also that, on the AFM surfaces, we find the
same vibronic coupling for QR

1 as for QM
2z , which we do not

show for simplicity. Finally, the competition between QR
1 as

for QM
2z is decided in favor of QM

2z by the trilinear coupling
with the antiphase rotation φ−

xy and the antipolar motion AX

[Eq. (10)], since there is no such coupling incorporating QR
1 .

If the tetragonal and shear strain Q�
3z and Q�

4z are relaxed,
QR

1 and QM
2z get strongly separated (not shown). These results

are consistent with the proposed self-trapping of the charge-
disproportionated phase [29] and the observation of the coex-
istence of different phases depending on heat treatments and
the history of samples [93].

VIII. CONCLUSIONS

In conclusion, we presented first-principles calcula-
tions able to consistently reproduce the bulk ground-state
properties of LaMnO3. We systematically investigated the
PESs of LaMnO3 around its aristotype cubic reference struc-
ture. To do so, we used the decomposition of orthonor-
mal symmetry-adapted strains and phonon-like modes using
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ISODISTORT [39]. We connected those strains and modes with
Van Vleck’s notation of Jahn-Teller distortion in the iso-
lated octahedral transition-metal complex. We introduced a
canonical notation that shows in a simple way the local and
cooperative character of such distortions.

The investigation of the QM
2z PES in the cubic phase by

our first-principles calculations showed that the origin of the
vibronic coupling in the QM

2z coordinate lies in a Peierls effect.
The Peierls condition is met in the AFM-A phase when the
spin symmetry is broken along the cubic z direction. Then, the
QM

2z distortion and AFM-A order break all three translational
symmetries and open a band gap.

Through the analysis of the PESs under the presence of
other significant lattice distortions that appear in the Pbnm
phase of LaMnO3, we were able to explain a number of inter-
locked mechanisms between strain/phonon-like distortions,
magnetic ordering, and the opening of an electronic band gap.
Among these, the most important are the following:

(i) Octahedral rotations trigger the QM
2z mode on the FM

surface by a negative biquadratic coupling and the AFM
surfaces by an increase of the vibronic coupling. The origin
of both is the reduced eg bandwidth.

(ii) The most important structural parameter for stabilizing
FM over AFM-A magnetic ordering is the tetragonal strain
Q�

3z. Reducing this strain will favor the FM state serving as a
paradigm for engineering FM phases in rare-earth manganites.

(iii) The minimum of FM and AFM-A surfaces has the
same structural distortion. This explains the absence of any
structural transformations at the AFM to PM transition at
TN = 140 K.

Then, we went further and showed from MC simulations
that the orbital-ordering transition at TJT = 750 K can be
qualitatively reproduced by the PESs provided by our DFT
calculations. The analysis of this transition showed mixed
characteristics of order-disorder, lattice-improper, and elec-
tronically induced transitions. In this view, the electronic driv-
ing force of the MIT can be attributed to spin symmetry break-
ing in the PM metallic phase. It enables the large electron-
phonon coupling to explain the high MIT in LaMnO3. Al-
though the spin symmetry breaking appears dynamically in
the PM phase, its importance lies more in the instantaneous
symmetry breaking, which can hence be extracted from static
DFT calculations, than in its dynamical nature. Nonetheless,
this does not rule out any contribution from dynamical elec-
tron correlations in stabilizing the insulating phase since ap-
propriate U correction to DFT remains important for treating
properly LaMnO3.

Finally we showed from first principles that a subtle com-
petition between charge-ordering and orbital ordering exists
in LaMnO3, which further enriches its behavior.

While we believe that our work will serve as a sound
basis for general lattice-electronic dependencies in LaMnO3

and related compounds, we are aware that not all questions
have been addressed. Especially the dynamic nature of the
O phase and the precise mechanism of the orbital-ordering
transition remain highly debated and we emphasize the need
for new general predictive model descriptions. Our work high-
lights that such model needs to describe self-consistently the
interplay between lattice and electronic degrees of freedom.
A promising tool to achieve such a model description is the

generation of a so-called second-principles model transferring
first-principle results into coupled-lattice and electronic effec-
tive models. Such a second-principles approach would then
provide access to larger-scale simulations at finite temperature
with access to complete local information and allow for
combined atomic and electronic fluctuations needed to study
the cooperative Jahn-Teller effect in its dynamical complexity.
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APPENDIX A: FITTING OF QM
2z PES

In the following, we discuss briefly the parametrization of
the QM

2z surface in a free energy expansion. To do so, we fitted
each of the PESs in Fig. 4 by a polynomial of the shape

F = E0 + αJT

∣∣QM
2z

∣∣ + αQM
2z + β

(
QM

2z

)2 + γ
(
QM

2z

)4
, (A1)

where the introduction of the absolute function allows us
to quantify the vibronic couplings independently of linear
asymmetries of the whole PES due to the crystal field. By
generation of invariant terms using the INVARIANTS [40] tool,
we defined the following free energy expansion:

F
(
QM

2z

) = E0 + αJT

∣∣QM
2z

∣∣ + α1
[(

φ−
xy

)2
φ+

z

]
QM

2z

+α2(φ−
xyAX )QM

2z + α3
(
Q�

3zφ
−
xyAX

)
QM

2z

+α4
(
Q�

4zφz
)
QM

2z + α5
(
Q�

4zAX φ−
xy

)
QM

2z + β1
(
QM

2z

)2

+β2φ
2
(
QM

2z

)2 + β3A2
X

(
QM

2z

)2 + β4Q�
3z

(
QM

2z

)2

+β5
(
Q�

3z

)2(
QM

2z

)2

+β6
(
Q�

4z

)2(
QM

2z

)2 + γ
(
QM

2z

)4
, (A2)

where we denote coefficients of terms that are of first order
in QM

2z with α, second with β, and fourth with γ . All modes
have been normalized such that 1 represents their ground-state
amplitude, which can be found in Table II. Since we are not
interested in the fourth-order couplings, we wrote only one
fourth-order term and we will not list the variation of its value.
Moreover, we used

φ = φ+
z = φ−

xy (A3)

in the β2 term, to define a total rotation amplitude φ, as we did
not vary the rotations individually. Equation (A3) implies that
β2 is only valid along a line where the ratio of the amplitudes
of the rotations φ+

z and φ−
xy is the same as in the ground

state. E0, the energy at QM
2z = 0, is a function of the applied

structural distortions. It can be decomposed in the following
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FIG. 9. Electronic band structures of the majority spin in FM ordering around the Fermi level. Green dotted lines correspond to the
electronic bands in the cubic lattice (Pm3m) and continuous black lines to the cubic lattice plus 10% QM

2z . The red dashed lines shows the Fermi
level. Blue dashed lines indicate the band opening at the high-symmetry points U and T. (a) (U |J ) = (5 eV|1.5 eV). (b) (U |J ) = (8 eV|2 eV).

way:

E0 = EFM
0 + E

Q�
3z

0 + E
Q�

3zQ�
4z

0 + Eφ

0

+ E
φ,Q�

3z

0 + E
φ,Q�

3z,Q
�
4z

0 + Eφ,AX
0 + E

φ,AX ,Q�
3z

0

+ E
φ,AX ,Q�

3z,Q
�
4z

0 , (A4)

where each quantity shows individual energy gains or costs
with respect to the cubic AFM-A phase dependent on distor-
tions or magnetic orderings in the superscript. As described
in the main text, the individual strains and distortions were
applied with their amplitude in the ground state of LaMnO3.
The values of E0 indicate hence the stability or instability
of strains and atomic displacements in the FM and AFM-
A phase in the absence of the QM

2z distortion. Finally, we
also investigated the variation of the electronic instability
parameter αJT as a function of the other lattice distortions:

αJT = α0
JT

(
1 + (λφ + λφ+AX AX )φ

+{
λQ�

3z
+ (

λQ�
3z+φ + λQ�

3z+φ+AX
AX

)
φ

+ [
λQ�

3z+Q�
4z

+ (λQ�
3z+Q�

4z+φ

+λQ�
3z+Q�

4z+φ+AX
AX )φ

]
Q�

4z

}
Q�

3z

)
, (A5)

where we assume a linear dependence of αJT to other lattice
distortions. Further studies would need to clarify the explicit
dependence of αJT to the surrounding lattice. As mentioned
in the main text, αJT is strictly zero on the FM surface, for
which reason only its values for AFM-A ordering have been
reported here in Table IV.

APPENDIX B: EFFECT OF (U |J) PARAMETERS
ON THE PES

In this section, we provide additional information for the
connection between the (U |J ) parameters and the shape of
the QM

2z PES.
First, we explain the different shapes of the PES presented

in Fig. 2 of the main text. For this purpose, we show the

electronic band structures of LaMnO3 in its cubic phase
(space group Pm3m) and in a 10% QM

2z distorted structure
(space group P4/mbm) in FM ordering using on one hand
(U |J ) = (5 eV|1.5 eV) and on the other (U |J ) = (8 eV|2 eV)
(see Fig. 9). All band structures are presented in the Brillouin
zone of the 20-atom supercell, which is the conventional unit
cell for the Pnma space group. The main difference between
(5 eV|1.5 eV) and (8 eV|2 eV) in Fig. 9 is the splitting energy
at gap openings at high-symmetry k points. These are em-
phasized with blue dashed lines for the high-symmetry points
U and T. The splitting energy is significantly increased by

FIG. 10. FM and AFM-A PES of QM
2z mode within the cubic unit

cell and with octahedral rotations condensed with their correspond-
ing ground-state amplitude, for two (U |J ) cases. Open (resp. filled)
symbols denote metallic (resp. insulating) states.
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the larger (U |J ) values (from about 0.5 eV to 0.8 eV). This
difference can explain the different curvature of the FM QM

2z
PES in Fig. 2. Through the larger splitting a band gap is
opened in a larger part of the Brillouin zone for the same
QM

2z amplitude. The path U-T represents an example. While
there is a band just at the Fermi level in the case of using
(5 eV|1.5 eV) which will induce a positive PES curvature,
the same band is well below the Fermi level in the case
of (8 eV|2 eV) and will therefore contribute to a negative
curvature.

Second, we question whether changing the (U |J ) param-
eters would qualitatively change the results presented in this
work. Notably, would a different choice of (U |J ) change the
results, that the tetragonal strain Q�

3z controls the competition
between FM and AFM-A? From Fig. 2, we know that in
the cubic phase (space group Pm3m) applying (8 eV|2 eV)
keeps the FM ground state. Here, we additionally show in
Fig. 10 the QM

2z FM and AFM-A PESs within the cubic lattice
with octahedral rotations condensed with their corresponding
ground-state amplitude first using (U |J ) = (5 eV|1.5 eV) and

then (U |J ) = (8 eV|2 eV). The first main difference between
(5 eV|1.5 eV) and (8 eV|2 eV) is the increased stabilization
energy between QM

2z = 0 and the minima positions. The min-
ima positions themselves are not shifted and lie close to
the ground-state amplitude of QM

2z (= 1 in Fig. 10). The
second main difference is the insulating electronic ground
state around the minima on the FM PES when (8 eV|2 eV)
is used. Both these differences can be understood by the
analyses of the electronic band structures in dependence on
the (U |J ) presented in the paragraph above. However, the
important common ground between both (U |J ) cases is that
the FM PES is the lowest in energy. Hence, also in the case
of (8 eV|2 eV) octahedral rotations cannot tune the magnetic
ground state. From the analysis in the main text in Sec. V B 1
and in Appendix A, we know that the antipolar motion AX

shows an equal trilinear coupling with QM
2z independently of

the magnetic order. Therefore it cannot tune the competition
between AFM-A and FM. This leaves the tetragonal strain Q�

3z
to be the only structural deformation that can tune competition
between AFM-A and FM, which is independent of (U |J ).

[1] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K.
Samwer, Phys. Rev. Lett. 71, 2331 (1993).

[2] V. M. Goldschmidt, Naturwissenschaften 14, 477 (1926).
[3] P. Norby, I. G. Krogh Andersen, E. Krogh Andersen,

and N. H. Andersen, J. Solid State Chem. 119, 191
(1995).

[4] X. Qiu, T. Proffen, J. F. Mitchell, and S. J. L. Billinge, Phys.
Rev. Lett. 94, 177203 (2005).

[5] A. M. Glazer, Acta Crystallogr., Sect. B: Struct. Crystallogr.
Cryst. Chem. 28, 3384 (1972).

[6] M. W. Lufaso and P. M. Woodward, Acta Crystallogr., Sect. B:
Struct. Sci. 57, 725 (2001).

[7] M. Baldini, V. V. Struzhkin, A. F. Goncharov, P. Postorino, and
W. L. Mao, Phys. Rev. Lett. 106, 066402 (2011).

[8] T. Chatterji, F. Fauth, B. Ouladdiaf, P. Mandal, and B. Ghosh,
Phys. Rev. B 68, 052406 (2003).

[9] T. Maitra, P. Thalmeier, and T. Chatterji, Phys. Rev. B 69,
132417 (2004).

[10] M. R. Ahmed and G. A. Gehring, Phys. Rev. B 79, 174106
(2009).

[11] J. Rodríguez-Carvajal, M. Hennion, F. Moussa, A. H. Moudden,
L. Pinsard, and A. Revcolevschi, Phys. Rev. B 57, R3189
(1998).

[12] M. C. Sánchez, G. Subías, J. García, and J. Blasco, Phys. Rev.
Lett. 90, 045503 (2003).

[13] P. M. M. Thygesen, C. A. Young, E. O. R. Beake, F. D. Romero,
L. D. Connor, T. E. Proffen, A. E. Phillips, M. G. Tucker, M. A.
Hayward, D. A. Keen, and A. L. Goodwin, Phys. Rev. B 95,
174107 (2017).

[14] F. Moussa, M. Hennion, J. Rodriguez-Carvajal, H. Moudden,
L. Pinsard, and A. Revcolevschi, Phys. Rev. B 54, 15149
(1996).

[15] N. N. Kovaleva, A. V. Boris, C. Bernhard, A. Kulakov, A.
Pimenov, A. M. Balbashov, G. Khaliullin, and B. Keimer, Phys.
Rev. Lett. 93, 147204 (2004).

[16] A. Yamasaki, M. Feldbacher, Y. F. Yang, O. K. Andersen, and
K. Held, Phys. Rev. Lett. 96, 166401 (2006).

[17] N. N. Kovaleva, A. M. Oleś, A. M. Balbashov, A. Maljuk,
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