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We study the all-to-all connected XYZ (anisotropic-Heisenberg) spin model with local and collective
dissipations, comparing the results of mean-field (MF) theory with the solution of the Lindblad master
equation. Exploiting the weak P7 symmetry of the model (referred to as Liouvillian PT symmetry), we
efficiently calculate the Liouvillian gap, introducing the idea of an antigap, and we demonstrate the presence
of a paramagnetic-to-ferromagnetic phase transition. Leveraging the permutational symmetry of the model
[N. Shammah et al., Phys Rev. A 98, 063815 (2018)], we characterize criticality, finding exactly (up to numerical
precision) the steady state for N up to N = 95 spins. We demonstrate that the MF theory correctly predicts
the results in the thermodynamic limit in all regimes of parameters, and quantitatively describes the finite-size
behavior in the small anisotropy regime. However, for an intermediate number of spins and for large anisotropy,
we find a significant discrepancy between the results of the MF theory and those of the full quantum simulation.
We also study other more experimentally accessible witnesses of the transition, which can be used for finite-size
studies, namely, the bimodality coefficient and the angular-averaged susceptibility. In contrast to the bimodality
coefficient, the angular-averaged susceptibility fails to capture the onset of the transition, in striking difference
with respect to lower-dimensional studies. We also analyze the competition between local dissipative processes
(which disentangle the spin system) and collective dissipative ones (generating entanglement). The nature of
the phase transition is almost unaffected by the presence of these terms. Our results mark a stark difference
with the common intuition that an all-to-all connected system should fall onto the mean-field solution also for

intermediate number of spins.

DOI: 10.1103/PhysRevB.101.214302

I. INTRODUCTION

Many-body quantum physics with light and matter is at the
center of intense research, being at the crossroad of condensed
matter, statistical mechanics, quantum optics, and quantum
information. In these open quantum systems, excitations,
energy, and coherence are continuously exchanged with the
environment, and they can be driven via pumping mechanisms
[1-3]. Experimentally, light-matter interactions can be studied
using Rydberg atoms confined between high-quality mirrors
[1], superconducting circuits [4,5], semiconductor cavities
[6-8], and optomechanical systems [9]. In many of these
setups, a key role is played by the “photons,” that is, elec-
tromagnetic field excitations dressed by the matter degrees
of freedom, thus permitting a finite effective photon-photon
interaction (e.g., the polariton [10-12]).
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The experimental advances of the last decade provided the
opportunity to realize extended lattices of resonators, allowing
to explore criticality in this out-of-equilibrium context. While
quantum or thermal phase transitions can be determined by
(free-)energy analysis [13,14], their dissipative counterparts
need not to obey the same paradigm [15-20], and by properly
designing the coupling with the environment and the driving
mechanisms, it is possible to stabilize phases without an
equilibrium counterpart [21-27]. There exist a plethora of
theoretical examples discussing the emergence of such dis-
sipative phase transitions for photonic systems [28—42], lossy
polariton condensates [43—45], and spin models [15,25,27,46—
56]. Moreover, some key experiments proved the validity of
the theoretical predictions in single superconducting cavi-
ties [57] and lattices of superconducting resonators [58,59],
Rydberg atoms in optical lattices [60,61], optomechanical
systems [9,62], exciton-polariton condensates [12,63], and
semiconductor micropillars [64,65].

In particular, the competition between interaction, driving,
and dissipation processes can lead to exotic physics, such as
a transition from a photonic Mott insulator to a superfluid
phase [66-70], similar to that observed with ultracold atoms
confined in optical lattices [71,72]. Moreover, in the limit of
a very strong nonlinearity one enters the regime of photon
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FIG. 1. Sketch of the dissipative XYZ model, with local and
collective dissipation. In the legend we illustrate the possibility of
implementing the spin model on an ensemble of two-level systems,
or (artificial) atoms, interacting with an electromagnetic field. Each
two-level system can switch between a ground |g) and excited state
|e). While the spin-spin interactions,  J,, of the all-to-all connected
lattice can be mediated by the coherent interaction with the photonic
field, its collective mode dissipates, at a rate o I', and all other
spin-flip mechanisms contribute to local dissipation, < y.

blockade [73-76], where the presence of two photons inside
the cavity becomes practically impossible. This effect has
been observed experimentally both in a single atom in a cavity
[77] and in a single superconducting circuit [78]. Interestingly,
a system of coupled superconducting resonators [58,68,79—
81] or Rydberg atoms [48,82-86] can be mapped onto an
effective spin model, as sketched in Fig. 1.

In this regard, the XYZ Heisenberg model describes, with
a high degree of generality, these systems and other spin
models. In the dissipative XYZ model, each spin interacts with
its nearest neighbors via an anisotropic Heisenberg Hamil-
tonian. Moreover, each spin is coupled to the environment
inducing random spin flips in the z-axis direction. Due to its
relative generality and simplicity, this model has been taken
both as an example of a system exhibiting dissipative phase
transitions, as well as a benchmark to test numerical methods.
Indeed, a single-site Gutzwiller mean-field (MF) theory can
already retrieve a rich phase diagram for this model [25].
Numerical studies, capable of including long-range correla-
tions, have confirmed a critical behavior in two-dimensional
lattices and the absence of criticality in one dimension (1D)
[27,38,52,55,87-89]. Notwithstanding the fact that a collec-
tive bosonic field can be mapped onto an all-to-all-connected
spin system [90], we emphasize that the rich XYZ model
phase diagram in different regimes is a cornerstone of the
study of many-body spin quantum systems, magnetism, spin
dynamics, and quantum phase transitions [86]. Indeed, it is the
most general case of the Ising model and of the XXZ model,
of the Lipkin-Meshkov-Glick model and other spin-squeezing
Hamiltonians, to which it can fall onto, for the appropriate
choice of parameters [49].

This work

In this paper, we investigate the properties of an all-to-all
(or fully) connected dissipative XYZ system. The interest and
purpose of this study is manifold:

(1) Inthe general study of a quantum system, one can think
of the all-to-all connected model with uniform coupling as one
in which long-range correlations cannot take place since all
sites are at distance one. In this regard, it is “common wis-
dom” that a high-dimensional large system should recover the
results of the mean-field prediction. Even if this can be argued
for thermodynamic systems (where Landau-Ginzburg theory
can be applied to determine phase transitions [91]), the lack
of free-energy analysis does not allow such an easy argument
in open quantum systems. We will consider the simplest type
of nonthermal bath to try to address this question.

(ii) Even if the mean field were to work, it should be pre-
dictive only in the thermodynamic limit. What is not clear is
how the system behavior scales up to the infinite spin number.
The high degree of symmetry of the all-to-all connected sys-
tem allows for a dramatic reduction of the computational cost
of the numerical calculations [92]. Moreover, many atoms-
in-cavity experiments can be recast as all-to-all connected
models by the mediation of the electromagnetic field, which
collectively interacts with the atoms [90]. However, since in
these systems there is a limited number of particles, identify-
ing the correct observables to characterize the emergence of
the phase transition is of paramount importance. We provide
a thorough study of the spin-structure factor, the collective
magnetization, the bimodality coefficient, and the angular-
averaged susceptibility. We also characterize less experimen-
tally accessible quantities signaling the phase transition, as the
von Neumann entropy of the steady state and the Liouvillian
spectrum and its gap. We test which one fares better in this
intermediate regime to capture the onset of criticality.

(iii)) The permutational method which we use here is exact
(that is, no approximation on the model has been done). Exact
computations on open-spin systems have been carried out for
systems up to 16 spins [55]. This paper pushes this boundary
far beyond this limit.

The all-to-all connected geometry under consideration
constitutes also an ideal benchmark for linked-cluster expan-
sion theories [93]. In this kind of approach, one develops a
perturbation expansion in power series of the coordination
number around the Gutzwiller (or atomic) MF limit of a
lattice model [94]. In the limit of weak spatial fluctuation, the
effect of correlations is known to produce a correction scaling
as the inverse of the coordination number to the Gutzwiller
mean-field limit, and therefore MF results are expected to be
exact [95,96]. As pointed out in Ref. [97], however, around
second-order critical points correlations diverge, and higher-
order correlation schemes should be taken into consideration
to properly capture criticality.

Finally, we also stress that linked-cluster expansions ex-
plicitly deal with infinite lattice size, while our study is a
finite-size one. Moreover, in our lattice, the ratio between the
number of sites and the dimension of the lattice N/d is of
order one for large lattices, while in the usually defined ther-
modynamic limit, the number of sites diverges with respect to
the dimension.

1. Original results

Our extensive investigations of various thermodynamic
properties of the all-to-all dissipative XYZ model are made
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possible by the use of permutational symmetry in Liouvillian
space [92] and are relevant for state-of-the-art noisy quantum
simulators. The original results obtained in this paper are as
follows:

(i) We derive the phase diagram from mean-field and
quantum steady-state solutions, as well as from the study of
the Liouvillian gap. We find the absence of an antiferromag-
netic phase and only one phase transition, from a paramag-
netic to a ferromagnetic phase.

(i) Additionally, we exploit the PT symmetry of Liouvil-
lians [98] emerging in spin models whose Hamiltonian has
an all-to-all interaction, and the Lindbladian part introduces
homogeneous local dissipation processes. We introduce an
efficient method to calculate the Liouvillian gap, whose clos-
ing marks a dissipative phase transition in the thermodynamic
limit, from its symmetric antigap, which, as we detail, can
be numerically computed much more easily. We provide a
general description of this technique since it may be applied
to the study of other models.

(iii) We show that the full quantum Lindblad dynamics
converges, with a power-law behavior, to the Gutzwiller
mean-field steady-state predictions. In the highly anisotropic
ferromagnetic regime, the discrepancy is much larger than
in other regimes, even for N >~ 100 spins; moreover, the
convergence to the mean-field results is much slower with
respect to the low-anisotropy ferromagnetic regime. In this
regard, even though we do not find a second phase transition
[27], we find that the high- and low-anisotropy regimes are
profoundly different from one another.

@iv) In the presence of both local and collective dissipa-
tion, the phase transition is a second-order one, just like the
case of local dissipation only (differently from the case of
collective dissipation only [49]).

2. Paper structure

The paper is organized as follows: In Sec. II we intro-
duce the spin model, also providing possible experimental
implementations. In Sec. III we provide a description of
the Liouvillian superoperator and its spectral properties. In
Sec. IIT A we introduce the concept of Liouvillian antigap for
PT-symmetric Liouvillians. In Sec. III B we then compute the
closing of the Liouvillian gap and its critical slowing down
for the XYZ model with local dissipation. In Sec. IV we derive
the mean-field equations, considering both the case of local
and collective dissipation, and the well-studied case of local
dissipation only, on which we focus for the main part of the
subsequent analysis.

In Sec. V, we then compare the mean-field predictions,
obtained from analytical solutions, to a numerical study of the
quantum model, performed exploiting permutational symme-
try, in the two qualitatively different regimes of the phase dia-
gram: across criticality and for large anisotropy. In particular,
in Sec. V A we study the properties of the phases across the
critical region (paramagnetic phase, critical point, and ferro-
magnetic phase) comparing various quantities (spin-structure
factor, magnetization, von Neumann entropy). In Sec. VB
we focus on pinpointing the phase transition, introducing the
bimodality coefficient and the angular-averaged susceptibility.
In Sec. VC we characterize the region of high anisotropy.

In Sec. VD, we consider the steady-state properties and
phase transition in the presence of both local and collective
dissipation. Finally, in Sec. VI we provide our concluding
remarks.

The interested reader can find in the Appendices some
general remarks as well as details about the techniques used
to perform the numerical and MF analysis. In particular,
in Appendix A we discuss in general the symmetries of
Liouvillians, the properties of the Liouvillian spectrum, and
the characterization of phase transitions in these systems; in
Appendix C we highlight the properties of collective dissipa-
tion only and the connection of spin models with superradiant
models in cavity-QED; in Appendix D we provide details on
the use of permutational symmetry in Liouvillian space in the
presence of homogeneous local dissipation; in Appendix E we
provide a detailed definition of all the quantities used for the
MF validity study.

II. MODEL

The Heisenberg model describes the physics of a d-
dimensional lattice of spins or two-level systems, character-
ized by nearest-neighbors interaction. Its Hamiltonian reads
as(h=1)

H= 1 Z (J6767 + 16767 + J.676%), (D

N

where Z indicates the coordination number, (i, j) indicates the
sum over nearest-neighbor links, J, (0 = x, y, z) represent the
coupling strengths of spin-spin interactions, 67 are the Pauli
matrices of the ith spin. Since we consider J; # J, # J;, we
will refer to this anisotropic Heisenberg model as an XYZ
model. If such a system weakly interacts with a Markovian
environment, its dynamics is captured via a Lindblad master
equation [1,2]. In the simplest model, the environment induces
the system to relax in a preferential direction, e.g., aligning
the spins along the z direction; this can occur with two quali-
tatively different mechanisms. The first one flips a single spin
toward the negative direction of the z axis, with y quantifying
the rate of spin-flip processes. The second one characterizes
the collective loss of one excitation at a rate I'. The state of
the system is thus captured by a density matrix p(¢) evolving
via

ap()
Jt

N
= Lp(t) = ~ilH. p)] +y Y_ D6 1p()
j=1

T N

+~—P ;o; @), )

where N is the number of two-level systems, 6j.i = (6}6 +

i&; )/2 are the raising and lowering operators for the jth spin,
DIA] represents a Lindblad dissipator of the form

DIAIp(1) = Ap)AT — JATAp() + p()ATA),  (3)

acting on the jth site, and £ is the Liouvillian superoperator.
These processes are sketched in Fig. 1.

Given a Lindblad master equation, a central role is played
by the steady-state density matrix pg, Which is the matrix
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which does not evolve anymore under the action of the
Lindblad master equation, i.e., d; pss = Lpss = 0. For systems
admitting a unique steady state (such as the XYZ for a finite
number of sites), the steady state describes the system after its
transient dynamics took place, and as such it corresponds to
Pt — 00).

If we consider an all-to-all connected model with uniform
couplings, i.e., all the spins interact with each other with the
same strength, the Hamiltonian in Eq. (1) can be recast as

T o axy\2 Sy\2 Q22
H = XN -1 1)[JX(S )+ (8T + L8557, “)

where we have introduced the collective operators S¥ =
Zf\’: 67 fora = x, y, z. Notice the factor 2 is due to the fact
that in Eq. (1) the sum is over the links while to obtain Eq. (4)
we have to sum over the sites. Moreover, in the all-to-all
connected model, the coordination number Z = N — 1. The
collective dissipation becomes D[ ; &j’] = D[8~], while
the local dissipation cannot be recast in terms of a single
collective operator. In this regard, in the all-to-all connected
model, the Hamiltonian and collective dissipation processes
will tend to create correlated states, while local dissipation
will disentangle them.

However, it is commonly accepted that in a high-
dimensional model d >> 1, in the thermodynamic limit fluc-
tuation is suppressed and the correct result should be captured
by a mean-field decoupling procedure [46,47]. The resulting
steady-state density matrix is a tensor product of identical
local density matrices.

In this work, we will investigate the phase transition from
a paramagnetic phase with no magnetization in the xy plane
(6%) = Tr[ps671 =0, (6”) = Tr[,?)ss&}'] = 0) to a ferromag-
netic phase with finite magnetization in the xy plane ({(6¥) #
0, (6”) # 0) which is expected to happen in the thermody-
namic limit of the XYZ model for anisotropic coupling J, # J,
[25,27,38,52,87-89]. Note that at 7 = 0 and in the absence of
dissipation no quantum phase transition of this kind exists in
this system.

Experimental implementations

We envision that the predictions that will be detailed
hereafter can be observed in experiments with noisy quan-
tum simulators and long-range interaction, based on a
broad variety of platforms: atomic clouds [83], Rydberg
atoms [48,50,82,84,86], trapped ions [99-102], as well as
in solid state [103,104], e.g., in superconducting circuits
[5,23,58,105-107] and especially in hybrid superconducting
systems [108], where a bosonic field mediates the effective
spin-spin interactions. Indeed, Ref. [86] shows the feasibility
of investigating exactly the all-to-all connected XYZ model in
Rydberg atoms. Probing the dissipative regime here studied
only requires implementing a weak-coupling interaction with
an additional cavity mode allowing for dispersive measure-
ment of the radiated field. Trapped ions provide another
platform on which to engineer long-range spin interactions
[100-102] and already allow one to investigate dissipative
phase transitions with tens of two-level systems, which can
also be locally manipulated [109].

Superconducting circuit elements and condensed matter
magnetic degrees of freedom can be plugged together to
implement hybrid quantum systems. One such example is
provided by a collection of nitrogen vacancies (NV) or color
centers in diamond interacting with the magnetic field con-
trolled by a superconducting resonator. This platform offers
the advantage of large-N spins, actually implementing a
good approximation of the thermodynamic limit since N ~
10'2-10' there, and physical conditions that allow to explore
various regimes of both collective and local dissipation. The
former is determined by the superconducting resonator quality
factor, the latter by the intrinsic impurities of the condensed
matter system and couplings to the crystal lattice. In these sys-
tems, superradiant light emission has been recently observed
[108,110], as well as steady-state bistability and critical slow-
ing down [111]. In the bad-cavity regime, the cavity mode
decay allows an adiabatic elimination of the bosonic degree
of freedom, allowing the implementation of effective spin
Hamiltonians, while tuning spin subensembles in and out of
resonance allows to vary N and thus study system-size scaling
[108].

III. LIOUVILLIAN SPECTRUM AND PHASE TRANSITION

We begin our analysis by studying the spectral properties
of the Liouvillian, which can signal the emergence of phase
transitions [18]. We refer the interested reader to Appendix A
and the referenced works for a more elaborate discussion.

Given any Liouvillian £, we can introduce its eigenvalues
A; and eigenmatrices p;, defined via the relation

Lpi = Aii. (5)

The steady state of the system under consideration is then
given by the density matrix pg such that Lpi =0, i.e.,
the eigenmatrix of the Liouvillian associated to the zero
eigenvalue. A fundamental role in the system dynamics is
played by p, that is the eigenmatrix associated to the smallest
eigenvalue A; bigger than zero, which describes the slowest
relaxation scale toward the steady state. A phase transition
takes place in the thermodynamic limit when A; becomes
exactly zero, both in its real and imaginary parts. For any
finite size of the system under consideration, however, A; # 0.
Nevertheless, the study of A; and p; provides much useful
information about the scaling and nature of the transition [41].

A. PT symmetry and Liouvillian antigap

There exists a class of non-Hermitian Hamiltonian systems
which are invariant under the composition of unitary (parity
P) and antiunitary (time-reversal 7) transformations: the P7T
symmetry [112-114]. This P7 symmetry cannot be directly
extended to the Liouvillian case, due to the dissipative nature
of the contractive dynamics [115]. However, certain systems
admit a P7-symmetric transformation once a shift parallel
to an average damping rate is added to £ [98]. Therefore,
the PT symmetry of £ is not a superoperator symmetry
(that is, it does not describe a property of the steady state).
Instead, it is a spectral property related to the emergence of a
reflection symmetry of the eigenvalues in the complex plane,
i.e., introducing a dihedral (D,) symmetry. Indeed, there exist
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FIG. 2. Liouvillian spectrum for the dissipative XYZ model with local dissipation only I' = 0 (a), and both local and collective dissipation
I' =2y (b). Here, N = 4 and we choose J,/(y +T')=0.6, J,/(y +T) =J./(y +T) = 1. We mark Ay and A, with a black star and a red
square, respectively. All other eigenvalues A; are marked by circles. (a) The PT symmetry of the Liouvillian with only local dissipation is
visible by the additional plane symmetry (vertical dashed line) of the eigenvalues (green circles). The Liouvillian gap and the Liouvillian
antigap of the PT-symmetric model are highlighted, showing the correspondence of Ay with A, (black star), and A; with Ay _; (red square).
(b) The Liouvillian spectrum with local and collective dissipation, showing no PT symmtery.

a real number n > 0 such that, for all the eigenvalues A;,
there exist a A; = —2n + A;. This can be easily visualized
by plotting the eigenvalues of the Liouvillian in the complex
plane A; = x; +iy;.

The PT symmetry results in a reflection symmetry of the
eigenvalues with respect to a line x = —n parallel to the
imaginary axis [98,116,117]. The spectrum of the dissipative
all-to-all connected XYZ spin model is shown in Fig. 2, setting
N =4,J,=0.6J, and J, = J.. In Fig. 2(a) we consider the
case of homogeneous local dissipation, I' = 0 in Eq. (2), and
for comparison, the case of collective and local dissipation
is shown in Fig. 2(b), I' = 2y in Eq. (2), showing instead no
additional symmetry in the spectrum. We have verified that the
absence of PT symmetry occurs also in the case of collective
dissipation only, y = 0, I' # 0. Similarly, also in the case of
local dephasing and local pumping, the Liouvillian spectrum
of the model displays the additional dihedral symmetry typical
of PT symmetry.

To clarify the discussion, let us consider a PT-symmetric
Liouvillian with (M + 1) eigenvalues. Therefore, there exists
an eigenmatrix py; whose eigenvalue is Ay, which is the sym-
metric counterpart of pg. Since Ag = 0 and Ay = —21n, we
can directly access the value of 1. Similarly, we can define the
eigenmatrix Py which mirrors p;, and an “antigap” Ay—1,
such that Ay;_; — Ay = A;. This property allows for an easier
numerical computation of the gap and associated p;. Indeed,
if one is interested in computing only a few eigenvalues of the
Liouvillian, one could resort to an iterative diagonalization
method, based on Krylov subspaces. This method works
extremely well for large-magnitude eigenvalues. However, if
one is interested in computation of small eigenvalues, this
method performs worse. Indeed, one has to invert the matrix
L, so that the eigenvalues of smallest magnitude become the
most relevant ones. Moreover, for non-Hermitian matrices,
this method is known to be unstable [118]. Knowing that

the Liouvillian is PT symmetric (and knowing 1) can mit-
igate these numerical problems: by considering the shifted
Liouvillian £ = L + 251, the steady state is characterized
by Ay = 2n and A} = 25 — Ay, where [ is the identity matrix.
Since A} = —Ay—1, we will call the eigenmatrix obtained like
that the PT-symmetric antigap.

In a XYZ spin system, a sufficient condition to have this PT-
symmetric behavior is to have dissipation only on the border
of the chain [116]. This condition is trivially satisfied for the
all-to-all connected XYZ spin model with local dissipation
since all spins are at the border of the system.

B. Closing of the Liouvillian gap: Critical slowing down

As detailed in Appendix A, the occurrence of a second-
order phase transition in the XYZ model is marked by the
closing of the Liouvillian gap in a whole region. In Fig. 3
we compute the Liouvillian gap exploiting the PT-symmetric
antigap method introduced in Sec. IIT A.

In Fig. 3(a), the real part of the Liouvillian gap, A =
|[Re[A]], is calculated as a function of J, (normalizing both
quantities by a fixed value of y), for various system sizes
N, also setting J, =y, J, = 0.6y. In Fig. 3(a), no critical
behavior is observed for small or negative values of J,/y,
hinting at the absence of an antiferromagnetic phase.

For positive J, the gap tends to close abruptly after J,,/y =~
1. The minimum is for J,/y ~ 3 for N = 10, and for larger
values of J,/y we see that the Liouvillian gap again increases.
However, by comparing A(N) for different system sizes, we
see that for J, 2 y, A(N) > A(N + 1). This aspect corrobo-
rates the idea that a second-order dissipative phase transition
is occurring, as these are characterized by a closing of the gap
over an extended region of the control parameter [18].

In Fig. 3(b), we plot the minimum of the Liouvillian gap
for each system size N of Fig. 3(a) against the system size
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FIG. 3. Study of the Liouvillian gap, in units of the local dis-
sipation rate y, and its critical slowing down for the dissipative
XYZ model with local dissipation only. The system parameters are
chosen as specified in Fig. 4(b). (a) The Liouvillian gap A is plotted
as a function of J,/y for various system sizes N =2, ..., 10. The
markers are only a guide for the eye (101 points have been calculated
for each value of N). (b) The minimum of the Liouvillian gap,
normalized by y, for each of the curves in the top panel is plotted
as a function of the system size N in a log-log plot, showing a linear
scaling of the Liouvillian gap typical of phase transition [min (1) o
N¢, with exponent « = —0.3] leading to a critical slowing down in
the thermodynamic limit.

in a log-log plot. Since the position of the minimum changes
for each system size, the minimum of the Liouvillian gap
allows us to estimate the slowest timescale of the system.
The shift of the minimum is due to finite-size effects; we
refer the interested reader to Appendix B for a more in-
depth discussion of these finite-size effects and the finite-size
scaling. Given the excellent fit by a power law min(A/y) =
BN* with exponent @ = —0.3, we conclude that for N — oo
there is a diverging timescale (i.e., a critical slowing down)
associated to y /min(}), resulting in the presence of multiple
steady states.

Having demonstrated via spectral analysis the presence of
the paramagnetic-to-ferromagnetic phase transition and the
absence of an antiferromagnetic regime, we focus now the
properties of the steady-state density matrix, obtained both via
Gutzwiller MF analysis and via exact numerical resolution of
the equation of motion.

IV. MEAN-FIELD PHASE DIAGRAM

One can derive the mean-field equations for the system
by calculating the time dependence of the expectation values
of the Pauli matrices and assuming a Gutzwiller ansatz for
the density matrix. In other words, we calculate Tr[d, p(¢)6],
with @ = x, y, z, the time dependence of the magnetization in

Jy/’Y

FIG. 4. Steady-state solution of the mean-field equations (6) in
the case I' =2y (a) and in the case I' = 0 (b), having fixed the
value (y 4+ I') = 1. The parameters used here are J,/(y + ') = 0.6,
J./(y +T)=1, and N — oco. The horizontal black dashed lines
correspond to (6,) =0, —1.

each direction. The Gutzwiller ansatz for the system density
matrix amounts to assuming that p(¢z) is the tensor product
of identical density matrices, each one representing the state
of the jth spin, j =1,...,N. Under this hypothesis, the
Lindblad master equation (2) can be recast as

AX ~ ~ JN/ AX I AX\ JAZ
(6% =20, ~ 1 (61169 — L (6% + 5 (6% (69,
(60)
U R
(67 = 20— 1016 67— L (67 + T (67 69,
(6b)
8, (6%) = 20 — 4,) (6%) (6") — 7((6%) + 1)
— (), (6¢)

having defined y =y + I'/(IN — 1) and (6) the single-site
approximation of the Pauli matrix expectation values, with
a=x Y, z

Equation (6) cannot be analytically solved, even in the
steady state (9; (6“) = 0). Indeed, the inclusion of collective
emission introduces nonlinear terms that, for Egs. (6a) and
(6b), are similar to the Hamiltonian ones, hinting at the
fact that they contribute to entanglement generation in the
dynamics. Similarly, the presence of local dissipation prevents
the equation of motion from being simplified since the spin
length, Eq. (C1), is not preserved. Both the local and collective
dissipation, however, act as an effective transverse magnetic
field in the z direction.

We plot the MF solution to Eq. (6) in Fig. 4 in the case
I' =2y [Fig. 4(a)] and in the case I' = 0 [Fig. 4(b)]. The
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total dissipation (y + I') is kept fixed. We notice that both
MF solutions predict a second-order phase transition and that
the value of J, triggering the phase transition is the same
in both cases. However, the two plots exhibit a different
dependence of the mean values (6%) on J,, with o = x, y, z.
In the presence of local and collective dissipation [Fig. 4(a)],
the transition appears to be sharper than in the presence of
local dissipation only [Fig. 4(b)].

Local dissipation only

Here, we briefly analyze the case I' = 0 in Eq. (6), which
was extensively investigated in Refs. [25,27,38,52,55,87—
89,119] in lower dimensions and in Ref. [49] in infinite
dimension. We notice that, in this case, Eqgs. (6) only con-
tain nonlinear homogeneous terms, and one can thus obtain
(6%)ss exactly. A discussion of the properties of this model
in presence of only collective dissipation can be found in
Appendix C.

We study the mean-field phase diagram through an insta-
bility analysis analogous to the one performed for the nearest-
neighbor XYZ Hamiltonian [25]. We determine the instability
of the paramagnetic phase in the xy plane to a d-dimensional
perturbation with wave vector k. To this end, a Fourier
transform of (6) is performed in which the perturbations can
be easily applied. Due to the all-to-all connected structure,
the perturbations with wave vector k= (ki, kp, ..., kg) are
restricted by k; only being able to attain the values 0 and
. A straightforward calculation shows that the presence
of an antiferromagnetic phase (k; = &) is nonphysical for
any value of the coupling parameters. Hence, the mean-field
phase diagram consists only of a paramagnetic phase and a
ferromagnetic one (k; = 0). The latter is present when the
condition

e
T (x =Ty —J2) (N
is fulfilled, which is found by applying the perturbations
with k; = 0. In the following, we will choose J,/y = 0.6 and
J;/y = 1. Consequently, we can define the critical y coupling
Jy as the minimal Jy satisfying Eq. (7), i.e.,

L _ L, v
y v 16U, —J))

The absence of an antiferromagnetic phase in this all-to-all
connected model can be expected. Each spin is connected to
every other spin in the system, and no unique spatial structure
is present for this type of interaction. It is impossible for
the spins to take alternating directions with respect to their
neighbors. The results of this instability analysis lead to the
phase diagram shown in Fig. 5, where the black dashed-dotted
curves show the transition boundary between both phases
according to the mean-field approximation.

Having derived the MF solutions and the phase diagram,
we will now proceed to study the dynamics in the full quantum
formalism, beyond results found for dissipative spin-boson
models [20,120]. Since we show that, at the MF level, the
model with local and collective dissipation displays a second-
order phase transition similar to the local dissipation only
case, we will at first focus on the latter case.

= 1.15625. ®)

FIG. 5. Phase diagram for local dissipation only, where I' = 0
and J,/y = 1. The phases are determined from the intersection
in the bimodality coefficient curves for in the x and y directions
for N =50 and 60, i.e., the transition from a paramagnetic phase
(PM) to a ferromagnetic phase (FM) in the xy plane. The black
dashed-dotted curves show where the transition takes place in the
mean-field approximation, while the background color defines the
PM (dark gray) and FM (light gray) regions from calculations using
the bimodality coefficient in the full quantum model (discussed in
Sec. V B). The orange vertical dashed line is located at J, = 0.6y
and shows the cut that will be used in the next figures to characterize
the phase transition. The three points on the cut J,/y = 0.6 indicate
the values of J,/y which will be used for benchmarking the MF with
the full quantum solutions: J;/y = 1.1, in the PM phase (hexagon
with yellow contour), at criticality, J,/y = 1.15625 (square with red
contour), and at J,/y = 1.7 in the moderately anisotropic FM region
(circle with a cyan contour).

V. MEAN-FIELD VALIDITY ACROSS
THE PHASE DIAGRAM

To compare the mean-field analysis to the full quantum
solution, we interpret the all-to-all coupled spin system as a d-
dimensional system. Every time we add a spin, the dimension
of the system is also increased by one. This implies that a
d-dimensional system consists of d spins and that infinite di-
mensions are reached when the system has an infinite amount
of spins. Hence, we test if mean-field theory becomes exact in
infinite dimensions, i.e., for an infinite number of spins.

In the following, we use the permutational invariant quan-
tum solver (PIQS) [92], a module of QUTIP, the quantum tool-
box in Python [121,122], developed to efficiently solve prob-
lems with permutational invariance (see also Appendix D).
This is an open-source computational library that leverages
the flexibility of numerical and scientific Python libraries
(NUMPY and SCIPY) and implements efficient numerical tech-
niques by interfacing with the Intel Math Kernel Library
(MKL). Performance is enhanced by using compiled scripts
in Cython and by natively supporting cross-platform paral-
lelization on clusters, with open multi-processing (Open MP)
[121,122]. To obtain the steady-state density matrix, we will
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use the direct method of the qutip.steadystate solver,
which is based on the lower-upper (LU) decomposition of the
Liouvillian matrix to solve the equation Lpss = 0. The results
are exact up to numerical tolerance (having set the absolute
tolerance to 107'2).! We will characterize criticality by cal-
culating the expectation values of operators on the steady-
state density matrix of the system, i.e., (A),, = Tr[Aps], and
by investigating the properties of py (see Appendix D for
details).

Based on the preliminary study of the MF solution and of
the Liouvillian gap (see Figs. 3 and 5), and Secs. IV and III B,
we can identify three main regions in the phase diagram of the
XYZ model: (i) paramagnetic far from criticality (J, < Jy); (ii)
critical (J, < J, < J;,‘); (iii) highly anisotropical (J, > 2.3y =
Jyh) (see discussion in Sec. V C). The paramagnetic one (i)
seems to present a saturation of the Liouvillian gap and no
antiferromagnetic phase for J, < 0. We may argue that this
region can be safely approximated by a MF solution. We
numerically tested this hypothesis, and found it to be correct
(not shown).

In the critical region (ii), a fundamental question is the
determination of both the existence and the position of
the critical point. Regardless of our ability to determine the
point of transition, we are able to access the validity of
the mean-field solutions through a finite-size scaling. For
almost-critical anisotropy, we will consider three domains: (1)
the paramagnetic region before the transition J; < J, < J§;
(2) the critical point according to MF prediction J, = J;
(3) the ferromagnetic region J§ < J, < J)',‘. These are, respec-
tively, represented as the yellow hexagon, the red square, and
the blue circle in the phase diagram of Fig. 5.

Finally, we are interested in the properties of the high-
anisotropy phase (iii). The MF does not predict a second phase
transition to a paramagnetic phase. Nevertheless, several dif-
ferent methods [25,27] have pointed out that this regime
of parameters leads to a completely different behavior with
respect to the standard ferromagnetic phase.

Note that in all the curves in this section which show the
behavior of the system as a function of J,/y, the markers on
the curves are a guide for the eye, and each curve is obtained
from a simulation of 100 points. We also computed more
values of the system size N than those shown in those figures.

In the following we choose, unless specified otherwise,
J. =y, J, = 0.6y and we vary J,.

A. Critical region

To characterize the properties of the steady state, we con-
sider the spin-structure factor in the x direction

XX 1 AXAX
SN = v 2950 ®
J#l
the z magnetization

M, = (§)/N = Tt[8pss]/N, (10)

I'The interested reader can find a series of notebooks dealing with
similar systems in the section ‘“Permutational invariant Lindblad
dynamics” of the QUTIP project tutorials http://qutip.org/tutorials.

and the von Neumann entropy

S =S[psl == pin(p:), (11)

where p; are the eigenvalues of the density matrix pg. While
at MF level it is possible to have (6*) # 0, for any finite-size
system the Z, symmetry imposes (6*) = 0 (see the discussion
in Appendix A). The spin-structure factor S*™(N) contains
information on the orientation of the spins with respect to
each other and can be different from zero even for finite-size
systems. Ferromagnetic order is present in the xy plane if
the steady-state spin-structure factor in the x direction or
(and) the y direction is different from zero. The magnetization
M, instead, is expected to show a first-order discontinuity,
according to the mean-field prediction. Finally, we will use the
von Neumann entropy per spin S(N)/N, it is an indicator of
the degree of mixture of the steady state. A detailed discussion
of these observables can be found in Appendix E.

In Fig. 6 we plot the spin-structure factor [Fig. 6(a)], the
z magnetization [Fig. 6(b)], and the von Neumann entropy
[Fig. 6(c)] in the region 0.75 < J,/y < 1.75 for different
values of N, and we compare them to the results obtained via
MF analysis (black dashed curve) of which the calculation is
explained in Appendix D. Note that we define the point where
the mean field predicts a change between the PM and FM
phases as the critical point. All the three top panels of Fig. 6
show that the results of the full quantum simulations become
closer to the MF prediction by increasing the number of sites.
Nevertheless, we notice that the results at the critical point are
still in visible disagreement with respect to those obtained via
MF analysis.

We thus identify a paramagnetic and a ferromagnetic phase
in qualitative agreement with the mean-field calculations.
Note that, as a result of finite-size effects, the transition from
the paramagnet to the ferromagnet is smoothed, making it
difficult to pinpoint the exact location of the phase transition,
even more so as the region close to the transition is subject to
sizable fluctuations. We will return to the determination of the
point of transition in Sec. V B.

Normally, one expects the finite-size effects to disappear
in the thermodynamic limit. To better quantify whether the
exact quantum solutions would retrieve the mean-field results
for N — o0, we study the absolute difference between the full
quantum solution and the MF prediction for corresponding N,

AS™(N) = |S™(N) — Sy (V)| (12a)
AM (N) = [M(N) — M.mp(N)I, (12b)
AS(N) = |S(N) — Smr(N)I, (12¢)

for the steady-state spin-structure factor, the z magnetization,
and the von Neumann entropy, respectively. How these
quantities fare as a function of J, is shown in Figs. 6(d)-6(f).
The discrepancies are largest at the critical point (marked
by a vertical red dashed line in each panel) and in general
the MF tends to perform better in the anisotropic FM region
Jy > J;, J, than in the PM region. We will better investigate
the highly anisotropic region in Sec. V C. As a general trend,
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FIG. 6. Study of the paramagnetic-to-ferromagnetic dissipative phase transition in the presence of only local dissipation for the system
parameters specified in Fig. 4(b). The first row shows the steady-state spin-structure factor in the x direction (a), the z magnetization
(b), and the von Neumann entropy per spin (c) as a function of J, for different system sizes (N increases for darker curves). The
markers are a guide for the eye, 100 points are calculated for each curve. The second row shows the absolute value of the difference

between the variables in the corresponding upper panel and the mean-field value for N — oco. (d) AS™(N) = [S™(N)

— Syr(V)1/N.

() AM,(N) = [M,(N) — M,mp(N)]/N. (f) AS(N) =[S(V) — Smp(N)]/N. See Eq. (12) for details. In all panels, the black dashed curve
represents the MF value. The dashed vertical lines refer to the points chosen in Fig. 5 and also studied for the system-size scaling in Fig. 7: the
PM phase (yellow line, hexagon marker); the critical point (red line, square marker); the FM phase (cyan line, circle marker).

we can see that, as the system size is increased, the difference
between the MF and the computed quantities from the

quantum pg becomes smaller. However, the three
curves display different behaviors in their scaling
properties.

In Fig. 7 we show the finite-size scaling of the solution
toward the MF, for the quantities of Eq. (12), for the follow-
ing three regions: (i) paramagnetic, J,/y = 1.1 [Fig. 7(a)];
(ii) critical, J,/y = J,/y [Fig. 7(b)]; (iii) ferromagnetic,
Jy/y = 1.7 [Fig. 7(c)]. We notice that all the results display
a power-law behavior up to good approximation. Thus, we
perform a power-law fit of the form y = BN* for unknown
coefficients 8 and «;. Clearly, «; are negative for each ob-
servable, i.e., the mean-field solutions are in fact exact in
the thermodynamic limit. However, different quantities in
different regimes present different behaviors. We notice that
the ferromagnetic phase presents the highest convergence
rate, the critical region being the slowest-converging one.
This is surprising since even if the critical point is at lower
entropy than the ferromagnetic region, the latter can be better
captured by a Gutzwiller ansatz. Indeed, the ferromagnetic
structure is not that of an ordered phase in which all the
spin tends to be aligned, but every spin is, instead, in the
same mixed state. Instead, at criticality, the system shows
significant fluctuations around the MF results, which slows
the convergence rate regardless of the less mixed nature of the
system.

B. Pinpointing the phase transition: Success of the bimodality
coefficient and failure of the averaged susceptibility

Having proved that the MF results recover the expected
outcomes in the thermodynamic limit, we turn our attention
now to the study of the critical point in finite-size systems.
Indeed, in any experiment, one cannot access an infinite
number of spins, but instead one has to infer the presence of
criticality via finite-size scaling. In this regard, we consider
which quantity can better infer the existence of a phase
transition in the thermodynamic limit.

In Fig. 8(a) we show results for J, = 0.6y. The vertical
black dashed-dotted line shows the mean-field prediction for
the position of the phase transition, the vertical red dashed line
shows the position as predicted by the point of intersection
of the bimodality coefficient B, = ((§%)?)2/(($¥)*)s between
the curves N = 50 and 60. It is clear that finite-size effects im-
pose a quantitative difference with the mean-field prediction
for the location of the phase transition. Comparing the results
for finite-size systems to those of the MF (Fig. 5), the quali-
tative behavior is, however, in good agreement. Moreover, the
phases on either side of the transition coincide. On the left
we see the values of the bimodality coefficient approaching %
indicating a unimodal, i.e., paramagnetic, region. And, on the
right side, they approach 1, indicating a bimodal region, i.e., a
ferromagnetic one.

One can wonder if there actually is a quantitative agree-
ment in the thermodynamic limit and, if not, how large the
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FIG. 7. The panels show the finite-size scalings of the quantities
plotted in Fig. 6 for J,/y = 1.1 (a), J,/y = J,/y (b), and J,/y =
1.7 (c). We show the exponents o of a power-law fit of the form
y = BN® next to the curves, for unknown coefficients 8 and «;.
The absolute difference of the spin-structure factor with respect to
the MF prediction, for corresponding value of N, is marked by
a blue line with stars and fit by «;. Similarly, in each panel the
z-magnetization MF discrepancy is marked by an orange line with
circles and exponent «,, while the von Neumann entropy is marked
by a green line with crosses, the exponent for the fit given «3. The
markers in the top-right corner of each panel refer to the points in the
phase diagram of Fig. 5.

quantitative deviation from the mean-field value is. To gain a
better idea of this, we show the point of transition as predicted
by the point of crossing of the bimodality coefficient curves
for N and (N + 5) as a function of 1/N in Fig. 8(b). As the
system size increases, the point of transition moves toward
the mean-field critical point. Even though we can simulate
systems with a number of spins of the order of 100, we are still
far away from the thermodynamic limit. To gain an estimate
of the convergence in the thermodynamic limit, we make a
polynomial fit of third (orange dashed line) and fourth degree
(green dashed-dotted line). These results show us that in the
thermodynamic limit, the critical point is predicted with a
reasonable, although not excellent, accuracy.

In Figs. 8(c) and 8(d) we report on a study of the angular-
averaged susceptibility yx,y, as introduced in Ref. [52] (see
Appendix E for a definition). We find that this quantity is not
a good predictor of the position of the phase transition for
finite number of spins N in the all-to-all connected XYZ spin
model with local dissipation. Even if for small-N values the

maximum of the susceptibility keeps shifting toward bigger
Jy/y as N increases, for bigger N the peak is at a value
Jy = 1.35y [Fig. 8(c)]. This value is different from that of the
transition point predicted by the MF. However, x,, becomes
divergent for N — oo, as shown in Fig. 8(d). A log-log fit of
the maximum extracts an exponent ¢ = 1.1. We conclude that
the angular-averaged susceptibility, while signaling a diver-
gence, is not associated to the one of the symmetry breaking.
This is in stark contrast with lower-dimensional cases [52].

C. Highly anisotropic regime: Highly entropic ferromagnet

We now focus on the study of the high-anisotropy regime.
We define it as the region of J,/y where the phase is ferro-
magnetic but $** decreases. In our case, this corresponds to
Jy, > 2.3y . We verified that this point coincides exactly to that
where the bimodality coefficient obtained via the MF solution
starts to decrease. In this regard, the high-anisotropy regime
is the one where, by increasing J,, the ferromagnetic phase
peaks become less distinguished.

As already stated, this regime is particularly interesting.
Indeed, far from isotropy, the simultaneous creation of two
spin excitations is energetically favorable. The Hamiltonian
part tends to create correlations in the lattice while dissipa-
tion can act continuously to destroy them. The competition
between the two actions creates very mixed and correlated
states. Indeed, the state remains very entropic even in the limit
in which the Hamiltonian should dominate the dynamics.

Figure 9 shows a detailed study of the steady-state spin-
structure factor in the x direction. We recall that in Fig. 6 we
found that, for low anisotropy (i.e., |/, — J,| small), the exact
results converged quite well to the mean-field calculations, for
the steady-state spin-structure factor as well as for the other
quantities. For large anisotropy, this appears no longer true,
as illustrated by Fig. 9(a) up to J,/y = 30. In Fig. 9(b) we
highlight the difference to the mean-field prediction, Eq. (12).
A study on the scaling of the exponent S™(N) o« N*' is
given in Fig. 9(c), for each point J,/y, up to J,/y = 100,
extracting the exponent for different values of N. Even though
the scaling predicts a very slow convergence to the mean
field (e.g., N~%% for J,/y > 60) we derive a very different
description of this regime. Since these exponents tend to zero
for larger J, coupling, the MF prediction becomes less and
less accurate the more we enter in the anisotropic regime.
The inset in Fig. 9(c) provides a log-log scale of |«;| versus
Jy,/y to even better illustrate the presence of different scaling
regimes. The plots of Figs. 6 and 9 show that the correctness
of the mean-field solutions depends on the parameter regime.
More specifically: for low anisotropy it holds, and for larger
anisotropy it does not.

We conclude that, even if there is not a second phase tran-
sition, in actual realization of the model the high-anisotropy
regime can be seen as profoundly different from the low-
anisotropy ferromagnet. Not only does the order parameter in
the MF become smaller and smaller, but the convergence of
the full quantum solution toward the MF also becomes slower
and slower. In this regard, the high-anisotropy region of the
phase diagram seems to be inaccessible via experimental
studies.
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FIG. 8. Study of the location of the phase transition using bimodality coefficient (upper row) and the angular-averaged susceptibility (lower
row) for the system parameters specified in Fig. 4(b). (a) Bimodality coefficient in the x direction, where the critical point in the mean field
(black dashed-dotted line) is Jy, ,,y = 1.15625y and in the exact solution (red dashed line) J, . = 1.144y, as determined by the intersection of the
N = 50 and 60 curves. The (gray) horizontal dashed line indicates the value %, expected for the PM phase. (b) Point of transition as predicted
by the intersection of the bimodality coefficient for systems with N and (N + 5) spins (black full line with stars). The (blue) horizontal line
indicates the mean-field prediction and the (orange) dashed and (green) dashed-dotted curves, respectively, show a polynomial fit of degree
three and four. The lower panels show a study of the angular-averaged susceptibility for increasing system size N. (c) The angular-averaged
susceptibility x,, is studied as a function of J,. The black dashed-dotted line shows the mean-field critical point. (d) Scaling of the maximum
of the angular-averaged susceptibility as a function of the systems size N. The log-log fit extracts an exponent o = 1.1.

D. Benchmark in the presence of local and collective dissipation observations are that the nature and position of the phase
transition are not modified by the inclusion of collective
dissipation, while some more refined qualitative features are
affected, as also predicted by the MF solutions.

Notably, the phase transition seems to become sharper,

as highlighted both by the magnetization and spin-structure

Finally, we consider the most general case in Eq. (2),
for y #0 and also I" # 0, i.e.,, we study the interplay of
local and collective dissipation. The results of our numerical
investigations are summarized in Figs. 10 and 11. The main

N=30 - N=50 —# N=70 —4— N=90 =--- MF
0.08F (b)
=
E 0.04
0N
0.1 T T
qF 10 100
O 1 n 1 Jy/7 1
0 50 100
Jy/’Y

FIG. 9. Study of the highly anisotropic ferromagnet and of the mean-field approximation validity, for local dissipation only. We set the
system parameters as specified in Fig. 4(b) and study the spin-structure factor as a function of J, for different system sizes (lighter to darker
curves as N increases). (a) Spin-structure factor $**(N), calculated from the steady-state density matrix obtained from the Liouvillian in a fully
quantum picture. (b) Absolute difference between S*(N) and the MF approximation for corresponding N. (¢) A power-law fit of the form
y = BN* is performed for S (V) for various points of Jy, using all the curves for different N in (a), but up to the value J,/y = 100. The inset
highlights the variations in scaling with a log-log plot of | |.
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FIG. 10. Study of the system in the presence of both local and collective dissipation near the paramagnetic-to-ferromagnetic dissipative
phase transition for the system parameters specified in Fig. 4(a). The plots show the same quantities and parameter range for J,/(y +I') as
Fig. 6 (there I" = 0). (a) Spin-structure factor S™(N). (b) z magnetization M,(N). (c) von Neumann entropy per spin S(N)/N. In all upper
panels, the black dashed curve represents the MF value for N — o0o. The lower panels highlight the discrepancy with the mean field for fixed

N [see Eq. (12)]. (d) AS™(N) = [S*™(N)

behavior as a function of J, across the critical region, in
Figs. 10(a) and 10(b). Similar features where observed when
studying the Lipkin-Meshkov-Glick model with local and
collective dissipation [49]. The von Neumann entropy, shown
in Fig. 10(c), displays an excellent agreement with the MF
prediction as the system size increases. Note that, similarly
to Fig. 6, the markers on the curves provide a guide for
the eye, and 100 points are calculated for each curve as a
function of J,. In the lower row of Figs. 10(d)-10(f), we more
precisely measure the difference from the MF result, showing
that the highest discrepancies occur at the point of the phase
transition and as the J,/y normalized anisotropic coupling is
increased.

Moreover, in Fig. 11 we report the scaling of these quan-
tities, as a function of N, in the PM region [Fig. 11(a)], at
criticality [Fig. 11(b)], and in the FM region with moderate
anisotropy with respect to the |J, — Ji| ratio [Fig. 11(c)].
Interestingly, Fig. 11(b) shows that, at criticality, the same
exponents as for the local dissipation case (see Fig. 7) for
o (z magnetization) and o3 (von Neumann entropy per spin)
are expected, with a slight discrepancy for o (spin-structure
factor). Similarly to the local-dissipation-only dynamics, in
the FM anisotropic region, shown in Fig. 11(c), the system is
well described by the MF even for low number of spins, as
highlighted by AM_(N), which decreases faster than a power-
law behavior. Indeed, the magnetization absolute difference
with respect to the MF displays a remarkable nonlinear trend,
that does not seem well captured by a linear fit in a log-log
plot (a fit would produce «y = —1.14, shown as a dashed
orange curve). This highlights the competition of processes
governed by different scaling laws, hinting at the competition

= Sye(N)I/N. (e) AM (N) = [M (N) — Mvp(N)I/N. () AS(N) = [S(N) — Smr(N)I/N.

between local and collective dissipation even for remarkably
large system sizes, N =~ 100.

VI. CONCLUSIONS

In full generality, the analysis performed in this paper
provides a benchmark for spin models on the correctness
of mean-field theory in dissipative systems. We studied the
steady-state properties of an all-to-all connected dissipative
spin model and tested the validity of the Gutzwiller mean-field
approximation in capturing them.

Specifically, we considered the benchmark model of the
XYZ anisotropic Heisenberg spin system, subject to both local
and local-and-collective dissipation in the Lindblad form. This
model is particularly interesting because it shows a second-
order phase transition from a paramagnetic to a ferromagnetic
phase. Moreover, for large anisotropy, this model presents a
highly entropic regime which was debated to be a different
phase according to cluster mean-field computations [27].

We simulated systems up to N = 95 spins exploiting the
permutational symmetry of the model [92]. We demonstrate
that, in both cases, the mean field correctly captures the
physics in the thermodynamic limit. However, the scaling in
the low-anisotropy regime strongly differs from that in the
high-anisotropy one: while in the former the agreement is
also quantitative, in the latter the mean-field approximation
fares worse. In this regard, we may advocate for the presence
of strong correlations also in the all-to-all connected model.
Even if we find no signs of a second phase transition, we may
still argue that the high-anisotropy ferromagnetic regime is
physically different from the lower-anisotropy ferromagnet.
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FIG. 11. Study of the system-size scaling, extracted from the
quantities plotted in Fig. 10, in the presence of both local and collec-
tive dissipation across the paramagnetic-to-ferromagnetic dissipative
phase transition. The same conventions as in Fig. 7 are used to
refer to the discrepancy between full-quantum simulation and MF
prediction for the spin-structure factor, the z magnetization, and
the von Neumann entropy. (a) We set J, = 1.1y, (b) J, = J, ., and
©J,=17y.

Concerning more technical points, in absence of collec-
tive dissipation, we exploit the Liouvillian PT symmetry
[98] to efficiently compute the spectral properties of the
Liouvillian superoperator. In the presence of this weak sym-
metry, the spectrum presents a second symmetry axis beyond
the complex-conjugation one. That, in turn, implies the exis-
tence of a state symmetric with respect to the steady state,
and one associated to the first-excited eigenmatrix of the
Liouvillian. The numerical computation of these two states is
much easier than finding the real gap and steady state. We thus
introduced the antigap of PT-symmetric Liouvillian systems,
which is equivalent to the true Liouvillian gap, and thus marks
criticality in open quantum systems [15,18].

The possibility to study a large range of spin system sizes
allowed us to address the question of how to better charac-
terize the emergence of criticality in finite-size systems. Our
results indicate that the physics of systems out of equilibrium
is more challenging to infer than one would naively expect,
even in the best case scenario of all-to-all connected models,
where dimensionality should induce a rapid decrease in
correlations and fluctuations. Additionally, we have proven

the resilience of the paramagnetic-to-ferromagnetic phase
transition in the presence of both local and collective
dissipation, finding that the presence of the two mechanisms
does not change the nature of the phase transition. In both
cases, one observes a second-order phase transition, and
the onset of criticality is for the same parameters. These
indications are especially relevant to a broad variety of
experimental platforms in which the dissipative phase
transition can be studied, such as trapped ions, Rydberg
atoms, superconducting circuits, and in solid state, especially
with hybrid superconducting systems. More generally, these
results provide a benchmark for the validity of mean-field
approximations in understanding the experimental results
obtained with noisy intermediate scale quantum simulators.

As a future outlook, we note that the interplay between
local and collective dissipation beyond the all-to-all connected
model demands further investigation with the adoption of both
analytical and numerical approximate techniques. Exploiting
other symmetries, such as translational invariance, it should
be possible to further reduce the numerical resources for
Liouvillian representation. Moreover, it will be interesting to
investigate the system time evolution toward the steady state,
as transient processes shall display even starker differences
between mean-field or classical results and full quantum
dynamics [49,123—-128]. Indeed, this study focuses on the
steady-state properties of the model, i.e., those which are
permutationally invariant. Phenomena breaking this spatial
symmetry, however, may arise in the dynamics toward the
steady state.
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APPENDIX A: LIOUVILLIAN SPECTRUM AND
PHASE TRANSITIONS

To obtain the eigenvalues and eigenmatrices introduced in
Eq. (5), we can by diagonalizing the matrix representation
L of the Liouvillian. For the model under consideration,
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we have

L=—iH®1-10HA")

& 6, ®1+1®4; aj.—)

N

ST @1+1@8+8~
RI1+1® ) (AD)

+T (S ®S 5
Here, AT represents the transpose of the operator A. Since
this Liouvillian is not Hermitian, in general its eigenvalues A;
need not to be real. It can be proved that for any Liouvillian,
given an eigenvalue A; whose eigenmatrix is p;, there exist
a p; whose eigenvalue is A} [18]. Therefore, the eigenvalues
are symmetrically distributed with respect to the real axis, as
shown in Fig. 2. Moreover, they are characterized by Re[};] <
0. We order the eigenvalues X; in such a way that [Re[A¢]| <
[Re[A1]] < - -+ < |Re[A,]] < ---, i.e., the eigenvalues are or-
dered by their real part. In this regard, the steady state, that is
the density matrix pgs such that £pg = 0, is the eigenmatrix of
the Liouvillian associated to the zero eigenvalue. The real part
of the eigenvalues describes the relaxation toward the steady
state of a generic matrix, while the complex part describes the
oscillatory processes which may take place.

Symmetry breaking and phase transition

The Lindblad master equation (2) is invariant under a &
rotation of all the spins around the z axis (67 — —67, 6] —
—6l:V V i). Thus, the system admits a Z, symmetry, that is,
there is a superoperator 2, such that

N
Z,p(t) = [ [ exp (~im6?) (A2)

j=1

o) 1_[ exp —i—ma

and one can verify that [£, Z;] = 0. While in a Hamiltonian
system the presence of a symmetry implies a conserved quan-
tity, this is not always the case for Liouvillian symmetries
[129-132]. A symmetry of an out-of-equilibrium system,
however, implies that the steady state cannot have an arbitrary
structure. In our case, pss must be an eigenmatrix of Z,, such
that Z,pgs X Dgs- In turn, this means that, for any finite-size
system (67') = (67) = 0 for all sites i.

The symmetry breaking takes place when, in the ther-
modynamic limit, A; = 0 allows to have two steady states
with nonzero and opposite magnetization. We thus expect
to observe a second-order phase transition associated to this
symmetry breaking of Z, [18]. For a finite-size system A; #
0, such symmetry breaking cannot be directly witnessed.
However, the precursors of the phase transition can be inferred
both via spectral analysis and via an extensive study of the
scaling of observables.

APPENDIX B: FINITE-SIZE SCALING AND EFFECTS

Throughout this work, a finite-size scaling is used to study
the behavior of the system in the thermodynamic limit. That
is, we exploit the presence of clear functional dependence
of observables on the size N of the system to argue about
the critical properties in the thermodynamic limit N — oo.
This extrapolation to infinite system size allows us to use

the terminology of phase transitions. It is worth noting that
the presence of clear functional dependencies on system size
do not exclude artifacts due to the finite system size. These
artifacts are often called finite-size effects and they disappear
as the system becomes larger. A few examples of finite-size
effects present in this work are as follows:

(1) the Liouvillian gap never being exactly zero;

(ii) the change of the position of the minimum of the
Liouvillian gap min(A(N)), with N;

(iii) the angular-averaged susceptibility never being
infinite;

(iv) the change of the position of the divergence in the
angular-averaged susceptibility with N.

The influence of these finite-size effects on the system size
can vary for different physical quantities, i.e., they become
negligible at different system sizes. As an example, we can
look at the Liouvillian gap, shown in Fig. 3. Our analysis
allows us to find a clear power-law scaling of min(A(N))
N793ie., the slowest timescale diverges by increasing the
system size, signaling a phase transition. However, the deter-
mination of the position of this minimum is not possible for
the observed system sizes.

We can thus determine the value of the Liouvillian gap in
the thermodynamic limit but we cannot precisely infer from
its study the critical coupling parameter Jy .. This shows that
finite-size effects for different quantities can persevere for
bigger system sizes. A similar conclusion can be found for
the angular-averaged susceptibility in Fig. 8, where the diver-
gence of the maximum indicates the presence of a second-
order phase transition but we cannot determine the critical
coupling parameter J, . solely from that analysis. To remedy
the shortcomings raised by these finite-size effects, one has
to study various physical quantities that can circumvent the
specific finite-size effects. An example in this work is the use
of the bimodality coefficient to pinpoint the location of the
transition, Sec. V B.

APPENDIX C: COLLECTIVE DISSIPATION ONLY:
SYMMETRY AND RELATION WITH SUPERRADIANT
LIGHT-MATTER MODELS

In the main text, we mainly consider the presence of either
local and collective dissipation, or only of the local one. Here,
let us briefly consider the properties of the system in the
presence of collective dissipation only, I' # 0 and y =0 in
Eq. (2) [46,47,49].

In this case, the total spin length

=8+ @)+ 8 (€1
is a conserved quantity
182, A1=15%8"1=0, (€2)

and therefore the presence of conserved quantities implies
the existence of several steady states for the Lindbladian
dynamics [129-131]. In more physical terms, this indicates
that there exist different multiplets, which are eigenstates of
$2, that are not connected by the dissipative dynamics. These
multiplets are known as Dicke ladders [133].

This terminology is inherited from the study of the Dicke
model. The similarities between the all-to-all connected XYZ
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and Dicke models are both due to mathematical similarities,
which become even more apparent when exploiting the per-
mutational symmetry, and because this is another benchmark
model thoroughly used to investigate both quantum phase
transitions and dissipative phase transitions, this time in the
field of cavity QED and quantum optics [49], instead of spin
models.

Describing the collective interaction between an ensemble
of two-level systems with a unique photonic field, the Dicke
model is known to display superradiant photon emission in the
presence of collective dissipation [134—136]. Superradiance
is also known to occur in crystals of molecular nanomagnets
[137]. Here, with superradiant emission we refer to the fact
that the light emission intensity scales as N2 and occurs
on a timescale that shrinks with the size of the system,
a macroscopic manifestation of cooperative behavior. Note
that this phenomenon does not require any strong coupling
between light and matter to occur (differently from the super-
radiant phase transitions), so that one can map the light-matter
model to an effective spin model that fulfils Eq. (C2), with
H = ».5%, where w, is the resonance frequency. Superradi-
ance has also recently been experimentally observed in novel
optical materials, such as erbium-doped yttrium orthosilicate
[138] and lead halide perovskite [139].

Note that, in the presence of collective coupling only,
a Holstein-Primakoff transformation can be performed to
map the system to a bosonic model [140], whose first-order
approximation is valid in the low-excitation regime and is
good in the thermodynamic limit. The main assumption of
coupling only to a collective field is based on the assump-
tion of identical two-level systems (spins) and their identical
coupling to the photonic field. When these assumptions are re-
laxed, intermediate superradiant regimes can still be obtained
[15,19,141-144], resulting from the population of different
Dicke ladders [145,146], experimentally verified in solid-state
systems [103,108,110]. In that case, a bosonic approximation
in terms of polaritonic populations can be performed, but only
in the low-excitation regime [146,147]. In the presence of
local incoherent pumping and collective dissipation, the su-
perradiant phase [148] and steady-state superradiant emission
[149] have been proposed and observed in cavity-QED setups
with atomic clouds [150,151]. Similarly, trapped ions and
atomic lattices provide the opportunity to engineer long-range
interactions and dissipation [152,153], relevant also for the
implementation of the anisotropic Heisenberg models [154].

APPENDIX D: EXPLOITING THE PERMUTATIONAL
SYMMETRY IN THE PRESENCE OF HOMOGENEOUS
LOCAL DISSIPATION

From a computational point of view, the numerical solu-
tion of the master equation (2) is a formidable task when
considering extended lattices. The density matrix for N spins
lives in a 2V-dimensional Hilbert space. If one were interested
only in the Hamiltonian unitary dynamics, the Hilbert space
dimension reduces to (N + 1), at most, using the basis of
collective spin states. These are the Dicke states |j, m), where
J is the cooperation number of the collective spin length and m
its projection along one of the axes (0 < j < % and |m| < j,
both are integer or semi-integer numbers).

However, in general, considering local dissipation to sepa-
rate environments in the Lindblad master equation (2) requires
storing a matrix of size 4" x 4".If one assumes that each spin
dissipates at the same rate y, the system possesses permuta-
tional symmetry also in Liouvillian space [92]. The presence
of local dissipation connects spin multiplets with different
cooperation number j. The description of the dynamics can
still be performed using only O(N?) computational resources,
as detailed in Ref. [92].

For numerical purposes, one of the key features of the
density matrix of the collective system is its block-diagonal
structure, arising from the fact that permutational invari-
ance forbids coherences between matrix elements p; . i =
(j', m'|plj, m) for j # j'. This allows to consider the matrix
Pjmm = @Ij\l i pj, where each block p; has dimension
(2j+ 1) x (2j + 1) through which m and m’ run, and juy,
is either O or % for even or odd number of spins, respectively.
There are thus O(N?) matrix elements in each block for O(N)
blocks, making the number of elements required to character-
ize p only O(N?). This matrix representation exploits the fact
that, for each block p;, there are actually d;N) identical blocks
with the same matrix elements [92,155]

N!
dM = Q2j+ 1)

Fir G-

When one calculates collective properties based on operator
expectation values (A) = Tr[Ap], the average over identical
blocks is implicit due to the linearity of the trace: one can
neglect the degeneracy, Eq. (D1), and directly compute the
expectation values.

However, in order to calculate quantities obtained from the
trace of nonlinear functions of the density matrix f[p], such
as the von Neumann entropy S[p] = Tr[0 In(p)] or the purity
wlpl = Tr[p?), itis necessary to account for the degeneracy of
each block of such block-diagonal density matrix, weighti N%
the contribution of each degenerate block with the factor d
of Eq. (D1):

D)

NJ2
f[[)j,m,m’] = Z d](N)Tr[f[ﬁj/dj(N)]]

J=Jmin

(D2)

APPENDIX E: CALCULATION OF PHYSICAL
QUANTITIES

In this Appendix we introduce the general definitions of
the spin-structure factor, z magnetization, and von Neumann
entropy, also providing their mean-field expressions. We also
give more details about the bimodality coefficient and the
angular-averaged susceptibility.

1. Spin-structure factor and z magnetization

To identify the possible agreement of the mean-field theory
with the exact numerical solutions, we study the order param-
eter of the system. Due to the Z, symmetry present in the
system, we cannot rely on the magnetization in the x and y
directions. As a result, we study the steady-state spin-structure

214302-15



DOLF HUYBRECHTS et al.

PHYSICAL REVIEW B 101, 214302 (2020)

factor, which is calculated as follows:

1 ~on
N(N 52 Zezk(.] l)< O,lﬂ) (E1)

S (k) =
where o, 8 = x or y and where (6"‘6[ )y = Tr[fr"‘&l Dss]. Tt
contains information on the orientation of the spins with
respect to each other. Ferromagnetic order is present in the xy
plane if the steady-state spin-structure factor in the x direction
or (and) the y direction is different from zero.

We note that in Eq. (E1) the spin-structure factor is defined
without the contribution of the self-energies, i.e., the sum over
the sites considers only different spins. We can thus calculate
these quantities even for permutational-symmetric systems,
subtracting the single-site contributions to the total second
moments.

If we consider $**(k = 0) or $*”(k = 0) (here and in the
main text we drop the k = 0), they predict a ferromagnetic
phase when they are nonzero and a paramagnetic phase when
they are both equal to zero. Aside from being able to identify
the phase, we are also interested in the quantitative agreement
of the mean-field theory with the exact solutions. To this
end, we also study the z magnetization in the steady state
M, = Tr[,?)SSS‘Z] /N, which can be readily calculated without
the limitations of the Z, symmetry.

Mean-field spin-structure factor and 7 magnetization

The system of mean-field equations in Eq. (E2) is ana-
lytically solvable for the steady state. By equating the time
derivative equal to zero we find the following solutions for the
magnetization in each direction:

7, — 1.
Mimr = £ [2M pMp(Movp + 1) , (E2a)
J— 1,
Jz _Jx
Mymr = F, | 2M Mmr(MomE + l)J 7 (E2b)
x — Jy
1
MzMF = — (E2C)

Y
4 vV (Jy - Jz)(Jz - Jx)'

One can also easily prove that the steady-state spin-
structure factor in the x direction can be written as
—J;

—-Jy

Site = Memp)® = 2Mmp(Mowr + 1) (E3)
by using the Gutzwiller mean-field properties. The calculation
in the y direction is analog.

2. Von Neumann entropy

The study of the von Neumann entropy of the steady state
is an interesting extension of our previous analysis since in
standard thermodynamics a second-order phase transition is
associated to a change in the entropy of the system. The von
Neumann entropy reads as

S=—Y_ pin(p, (E4)

with p; the eigenvalues of the density matrix. It can thus
provide information on the mixed nature of the steady-state

density matrix pg. Usually in many-body studies one is able
to calculate this observable only for small systems. However,
similarly to the other variables in this work, we are able to
calculate it up to the order of N = 95 spins. The von Neumann
entropy is an extensive quantity and in the main text we study
the von Neumann entropy per spin: S(N)/N.

Mean-field von Neumann entropy

The mean-field entropy can be calculated by noting that
the density matrix can be written in its Bloch sphere repre-
sentation p = %(]1 +e- 5). With € the Bloch vector, which
contains the magnetization in the x, y, and z directions, and
6 the Pauli matrices. The eigenvalues are given by p =
(1 £ |€])/2. These eigenvalues can be readily calculated from
the steady-state mean-field equations (E2) and give access to
the MF approximation of the von Neumann entropy through

(E4):
SMF (r+J) <(1+J)> 1-=J ((1—J)>
—_— == In — In ,
N 2 2 2 2

(E5)

where J? = (§2) = Tr[8%p(1)] is the expectation value of the
total spin length [cf. Eq. (C1)] in the mean-field approxima-
tion.

The von Neumann entropy solely depends on J in Eq. (ES),
illustrating the fact that states with maximum cooperation
number, lying on the surface of the Bloch sphere, have min-
imum entropy. Instead, the entropy increases with decreasing
spin length until the value Syp/N = In(2), which is indeed
the maximum entropy of a qubit. In particular, we can express
Eq. (ES) explicitly in terms of the steady-state values (6)gs,
(67)ss, and (67)g. These results would be true independently
of the model under consideration and even for the system dy-
namics, given the nature of the Gutzwiller mean-field ansatz

for two-level systems (61?6]%")SS ~ (&z)fs.

3. Bimodality coefficient

Using the permutational invariance present in this system,
one is able to calculate results for a higher number of spins
than usually feasible with other techniques. However, as noted
before, finite-size effects are still present, hampering our
ability to make a good estimate of the point of transition from
the paramagnetic to the ferromagnetic phase using the order
parameter. An indicator which is extremely suited for making
a good estimate of this transition point is the bimodality
coefficient, defined as

B, = —, (E6)

with m, being the nth moment of an observable. The bi-
modality coefficient gives information on the bimodal nature
of the operator used to calculate the moments. This bimodal
nature indicates the presence of a ferromagnetic phase or a
paramagnetic phase. A bimodal distribution for ), o;*, being
the magnetization in the x direction, indicates a ferromagnetic
phase and typically has values close to B, = 1. A param-
agnetic phase, i.e., a unimodal distribution, is indicated by
smaller values for B.. A Gaussian distribution with zero
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mean has a value B, = % [55,156]. Note that the bimodality
coefficient is closely related to the Binder cumulant [157,158].

Aside from information on the nature of the phases at a
specific parameter, the bimodality coefficient can also be used
to indicate the transition point between the different phases.
The curves for the bimodality coefficient for different system
sizes intersect, providing an estimate of the critical point.
In finite-size systems, these intersection points coincide due
to power-law dependence of correlations on the system size
around the critical point. In our case, since different number
of spins correspond to different dimensions, this intersection
point changes. However, for sufficiently large systems, this
transition point should converge, indicating the phase transi-
tion.

We are interested in the presence of a ferromagnetic or
paramagnetic phase in the xy plane, and as such we study
the emergence of ferromagnetic order in either the x or y
direction. The second and fourth moments of 6 and 67 are
readily calculated in the new basis, as they are expectation
values of global operators.

4. Angular-averaged susceptibility
If a small magnetic field of intensity % is applied in the xy
plane as a probe,

Ay(h.0) =hY_[cos(0)5] +sin(0)57].  (E7)

L

it explicitly breaks the Z, symmetry of the system. By ob-
taining the perturbed steady state p(h, 0) for Hey(h, 6) =
H + Hpg(h, 0), the resulting magnetization reads as

1 »
M, = N;Tr [p(h.0)6%]. o =x. . (E8)

Calling h, = h cos (0) and h, = h sin (0), the magnetic re-
sponse in the linear regime is

v Xex Xy ) (hcos(6)
M(h,0) = ) . , E9
(h, ) <ny ny) (h sin (0) (E9)
where the susceptibility tensor is defined as
oM,
Xap = . (E10)
8h/3 h—0

A scalar value can be obtained from this susceptibility tensor
through angular averaging of the determinant, i.e.,

1 % 3|M(h,0))

- do. (E11)
21 0 doh

h—0

Xav

The mean-field angular-averaged susceptibility can be calcu-
lated through numerically solving the mean-field equations
with an applied field as stipulated above and also applying
Eq. (E11).
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