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Microscopic model for switching kinetics in organic ferroelectrics following the Merz law
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From an application perspective, one of the most important parameters of a ferroelectric is its switching
time, and understanding its limiting factors is key to improve device performance. While there is a variety
of competing models for switching kinetics in realistic (disordered) ferroelectrics, they are often merely
descriptive and provide little insight into the underlying microscopic mechanisms. This holds in particular for the
classical Merz law, which describes the commonly observed exponential field dependence of the switching time.
Here, we investigate the switching kinetics in the archetypical molecular ferroelectric trialkylbenzene-1,3,5-
tricarboxamide using an electrostatic kinetic Monte Carlo model. The simulated field dependence follows
the Merz law, which shows that a simple system of interacting dipoles is sufficient to obtain this behavior,
even without explicitly considering domain walls or defects that are commonly thought to be involved in the
emergence of the Merz law. Through a detailed analysis of the nucleation process, we can relate the macroscopic
switching time to the microscopic nucleation energy barrier, which in turn is related to a field-dependent nucleus
size. Finally, we use the acquired insight into the nucleation process to derive the Merz law from the theory
of thermally activated nucleation-limited switching. This analytical model provides a physically transparent
description of the switching kinetics in both experiments and simulations.

DOI: 10.1103/PhysRevB.101.214301

I. INTRODUCTION

The speed of polarization reversal is an important parame-
ter for ferroelectric applications. It determines the maximal
operating frequency of ferroelectric devices such as mem-
ories. While the switching speed in inorganic ferroelectrics
such as lead zirconate titanate and barium titanate typically
goes down to the order of several nanoseconds [1–3], or
even subnanoseconds [4], organic ferroelectrics quite literally
lag behind. For example, the ferroelectric copolymer P(VDF-
TrFE) typically switches on the order of several microseconds
[5–7], although that can be pushed down to nanoseconds
for very high fields applied on very thin films [8]. A good
understanding of the switching kinetics is paramount if the
switching speeds are to be increased further.

A multitude of competing models describing switch-
ing kinetics in ferroelectric materials exist. Classically, the
Kolmogorov-Avrami-Ishibashi (KAI) model is used, which is
based on polarization reversal through nucleation and growth
[9–11]. The change in polarization is given by

�P(t ) = 2Pr (1 − exp[−(t/τ )n]), (1)

*martijn.kemerink@cam.uni-heidelberg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

where Pr is the remanent polarization, τ the characteristic
switching time, and n the dimensionality of the domain
growth. While applicable to bulk single crystals, the KAI
model fails to describe the switching dynamics in polycrys-
talline, thin film, or organic ferroelectrics [12–15].

The switching time typically decreases when the tempera-
ture T or the applied electric field E are increased. The latter
dependence is usually described by the semiempirical Merz
law [16]:

τ = τ∞ exp

(
Ea

E

)
, (2)

where τ∞ is the switching time at infinite applied field, and Ea

the so-called activation field, both of which typically depend
on temperature, although a variety of functional dependencies
has been observed [1,5,6,17,18]. While this description works
over a remarkable range of materials, electric fields, and
timescales, several deviations have been observed [1,8,19–
22]. Furthermore, as an empirical law it provides no insight
into the underlying mechanisms of switching. Theoretical and
experimental efforts to uncover the physical origin of the
activation field have related it to nucleation and domain-wall
depinning [17,18,23–26], but it is not always evident how uni-
versally valid those insights are and how they translate to, e.g.,
organic ferroelectrics. For the liquid crystalline organic fer-
roelectric trialkylbenzene-1,3,5- tricarboxamide (BTA), sig-
nificant deviations from the Merz law were observed [19].
Similar deviations were found for the polymer ferroelectric
P(VDF:TrFE) [8,22].

Due to the failure of the KAI and Merz models to describe
disordered ferroelectrics, and the lack of physical insight they
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FIG. 1. Morphology of the BTA system. (a) The BTA molecule consists of a benzene core, three dipolar amide groups, and flexible alkyl
tails. (b) The molecules stack into columns, forming a triple hydrogen-bonded helix. (c) A real device consists of hexagonally packed columns
with defects that introduce disorder.

provide, several more advanced theories have been devel-
oped. One of these is the nucleation-limited switching (NLS)
model by Tagantsev et al. [1,12], which essentially introduces
a distribution of switching times into the KAI formalism.
Zhukov et al. came to a similar result but provided a physical
basis for this distribution with their inhomogeneous field
mechanism (IFM) model [3,27]. Vopsaroiu et al. took a more
fundamental approach starting from the Landau free-energy
landscape to derive a theory of thermally activated nucleation
limited switching (TA-NLS) [28]. This model allows one
to extract microscopic parameters but is at odds with the
Merz law in that it predicts the switching time to scale as
τ ∝ exp(−E ). Recently, we have combined several of these
models to describe the shape of the dispersive switching
transients in organic ferroelectrics based on their particular
morphology [29].

Here we investigate the field dependence of the switching
kinetics in organic ferroelectrics using a combination of ana-
lytical and microscopic modeling. With the previously intro-
duced electrostatic Monte Carlo model we simulate switching
transients in the molecular ferroelectric BTA [30]. The field
dependence of the switching time is found to follow the Merz
law, showing that Merz-type behavior can arise in a simple
system of interacting dipoles. We can directly relate this
behavior to the microscopic nucleation process. This allows
us to construct a physically transparent analytical description
of the switching kinetics.

A. Electrostatic kinetic Monte Carlo model

Our model system is the prototypical molecular ferroelec-
tric BTA. The hierarchical morphology of this material is
shown in Fig. 1, which shows the formation of supramolecular
columns that organize into a hexagonal liquid crystal. The
ferroelectricity in this material is caused by the dipolar amide
groups that align and form a hydrogen-bonded triple-helix
structure. By applying an electric field, the dipoles can be
flipped and thereby the polarization reverses. We have re-
cently shown BTA to be truly ferroelectric [19], and that its
ferroelectric properties can easily be tuned by modifying the
molecular structure [31,32].

The model we will use to study the polarization switching
in BTA is described in detail in a previous work [30] and in
section 1 of the Supplemental Material (SM) [33], and we will
therefore only give a brief overview here. As the ferroelectric-
ity in BTA stems from the dipolar amide groups, we focus
solely on these dipoles and their electrostatic interactions.
The positions of the dipoles are fixed and determined by the
morphology of BTA. Using simple electrostatic calculations,
we determine the energy it would cost to flip a certain dipole
and convert this into a flipping rate using a Boltzmann factor.
The flipping rates of all dipoles are the input for a kinetic
Monte Carlo simulation, which results in a real-time evolution
of the polarization in the material.

In previous works, we have shown the large influence struc-
tural disorder can have on the properties of BTA derivatives.
In simulations, an increase in disorder was associated with
a deterioration of the ferroelectric properties, especially the
retention time [30]. Experimental results show a similar trend
[31,34]. In contrast, the (negative) piezoelectric coefficient
was found to increase in magnitude with increasing disorder
[35]. We can introduce this disorder into our model by having
defects that represent a break in the hydrogen-bonded triple
helix, dividing the quasi-one-dimensional (1D) columns into
subcolumns. Each defect will introduce a translational and
rotational offset, and possibly a change in helicity.

II. RESULTS AND DISCUSSION

A. Field dependence of switching time

We first simulate the switching transients, i.e., the polar-
ization response to a step in the applied electric field, using
a similar configuration as in our previous work [30]. The
switching time is taken as the point in the switching transient
where the polarization crosses zero. In Fig. 2 the results (blue
triangles) are compared to representative experiments for
BTA. Although we do reproduce the functional Merz shape of
Eq. (2) in the simulations, we find that the switching is either
too fast at high fields, or too dispersive at low fields, as shown
in detail in Fig. S2 [33]. Furthermore, Fig. 2 shows that the
field dependence of the switching time is much stronger in the
simulations than in the experiments. It should be noted that in
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FIG. 2. The switching time τ as a function of the reciprocal
applied field 1/E normalized to the coercive field Ec (at 1 Hz). Data
for the three BTA homologues C6, C12, and C18 are taken from
Ref. [31]. Solid lines are fits to the Merz law of Eq. (2) with the
indicated parameters.

other ferroelectrics, the normalized slope Ea/Ec is generally
between 10 and 40, i.e., close to the simulated value of 40,
suggesting that BTA is a unique system with a low normalized
activation field around 3 [23].

Before analyzing the data in Fig. 2 in terms of a field-
dependent nucleation barrier and volume, and accordingly
coming to an improved description of the experimental data,
we ruled out several alternative explanations, full details of
which are given in Appendixes A and B. In short, Appendix A
shows that introducing different types of defects (chiral and
achiral) in the simulations cannot remove the discrepancy with
experiment, nor does introducing intercolumn interactions.
Appendix B shows that neither the inclusion of “dead” inter-
facial layers, being highly disordered or even non-switching,
can resolve the issue. Likewise, interpretations of the experi-
ments in terms of the “leaky layer” model by von Seggern and
Fedosov or in terms of system RC times are ruled out [36,37].

A reason for the discrepancy could be the finite dipole
switching time in the actual material. There, the reversal of
one dipole requires a physical rotation of the amide group
and its attached alkyl chain, which is hindered by steric
interactions and takes a finite amount of time. However, in our
numerical simulations dipoles flip instantaneously, and such
a reversal time is thereby ignored. The total switching time
is still limited by the attempt frequency, which determines
how often a flipping event can be initiated per unit time, but
this is fundamentally different from the reversal time, which
determines how long such a flipping event, once initiated,
takes. It is unfortunately not possible to incorporate this in
the kMC model, as this would require multiple events to
take place at the same time. It is not unreasonable to assume
that such a reversal time would not only reduce the absolute
values, but also the field-dependence of the switching time, as
especially at higher fields, where switching initiates faster, the
response will be slowed down by the reversal time.

B. Merz law and nucleation

Both the experimental and the simulated results in Fig. 2
fit well to the functional form of the Merz law, even if the
slopes do not match. The experiments show a slight deviation
towards faster switching at higher fields, as has been observed
before [19]. The simulations show a different deviation at high
fields, where the switching time no longer decreases. At these
fields (Ec/E < 0.1), switching is no longer stochastic nor
nucleation limited, with all dipoles switching immediately.
The switching time is then limited by the attempt frequency
ν0 that is set to 1 THz in the simulations.

We would like to emphasize the fact that this simple system
of interacting dipoles follows the Merz law. The origin of
the Merz law is typically given as creep behavior of the
ferroelectric domain walls in a pinning potential or, equiva-
lently, as nucleation of a reversed domain [17,18,25,26,38].
Following classical nucleation theory one can construct an
energy balance between bulk and surface energies of the nu-
cleus. From this the correct 1/E scaling of the energy barrier
for nucleation can be obtained. However, this derivation is
highly dependent on the assumed geometry of the nucleus
[17,18,23,24].

In our case, Merz behavior emerges from a collection of
purely electrostatically interacting dipoles, without explicitly
including terms like domain wall or depolarization energy.
Furthermore, it is also obtained in a system without any
defects that could provide pinning sites, and even in an
infinitely long column without contacts, see Fig. S3 [33]. This
agrees with simulations from Leschorm et al., who observed
similar behavior from a slightly different electrostatic model,
although Merz behavior was there found only over a smaller
range of fields [39,40]. This shows that the Merz law is more
general than previously assumed.

Previously, we have shown that the polarization switching
in BTA is nucleation limited in both experiments and simula-
tions [19,30,31]. To investigate the nucleation process and its
relation to the Merz law in detail, we continue by simulating
individual columns without defects. This change from a box
of interacting columns to single-column simulations speeds
up calculations and simplifies the analysis. That this change
is justified is demonstrated by the gray points in Fig. 2;
the switching times of the single columns are close to that
of the full box and show the same functional dependence.
Section 3 of the SM and the corresponding videos further
show that the interaction between columns can be neglected
when investigating the nucleation mechanism [33].

In a single column without defects, the contacts at the top
and bottom of the material will be the preferred nucleation
sites. Aside from the switching time we also track the nucle-
ation process and directly obtain information about the energy
and size of the nucleus. An example of a typical nucleation
process is given in Fig. 3. From the energy as a function of
time in Fig. 3(a) we can obtain the critical energy barrier U ∗
as well as the critical nucleus size N∗.

We perform this analysis for ensembles of columns at
different temperatures and the results are shown in Fig. 4. Not
only the switching time [Fig. 4(a)] but also the energy barrier
[Fig. 4(c)] and nucleus size [Fig. 4(d)] are proportional to 1/E
for low temperatures. We therefore analyze these results using
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FIG. 3. An example of the nucleation process in a column without defects. (a) The energy and polarization throughout the nucleation phase.
Steps are defined relative to the start of the nucleation at step 0. The critical nucleus size and energy, occurring at step 11, are indicated. (b)
The energy, polarization, and time throughout the subsequent steps in the entire switching process, where the steps shown in (a) are indicated.
(c) Schematic view of the nucleation corresponding to the indicated steps in (a).

a more general form of the Merz law in Eq. (2):

τ (E , T ) = τ∞ exp

(
Ea(T )

E

)
= τ∞ exp

(
U ∗(E )

kBT

)

= τ∞ exp

(
U0

kBT

E0

E

)
, (3)

with U0 the field-independent energy barrier and E0 a critical
field. We fit the data in Fig. 4(b) to the temperature-dependent
activation field Ea(T ) = U0E0/kBT . Note that a constant
offset Eoffset = −3.9 V/nm needs to be added to Ea(T ) to
account for the activation field reaching zero already at a finite
temperature. At this temperature the maximum switching
speed of 1 THz is obtained even for small fields. Similarly,
we fit the data in Fig. 4(c) to the field-dependent nucleation
energy barrier U ∗(E ) = U0E0/E including an offset. Since we
are mainly interested in the proportionality with field, both
offsets are of minor importance for any of the subsequent
analyses. The fits give U0E0 = 0.43 and 0.36 eV V/nm,
respectively, and the reasonable agreement between these two
values quantitatively confirms the relation between the macro-
scopic switching time and the microscopic nucleation barrier.
In other words, it suggests that it is the field dependence of
the nucleation barrier that leads to the Merz behavior of the
switching time.

The slight discrepancy between the two fits is likely caused
by the oversimplification of considering the nucleation as a
simple activation over an energy barrier. The prefactor τ∞

as well as the fits in Fig. 4(c) are not fully temperature
independent as Eq. (3) assumes, which we will discuss in
more detail below. The pathway of nucleation is complex and
involves several successive flips, some of which are upwards
in energy. As can be seen in Fig. 3(c), dipoles can also flip
back during the nucleation. Figure 3(c) also shows that the
shape of the critical nucleus is not trivial and has a large
surface area. This contrasts with most inorganic ferroelectrics,
where the surface area of the nucleus is typically minimized
resulting in a compact nucleus [17,18,25].

The complex nature of the switching process also comes
forward in the transition that is again visible around 0.63
V/nm (≈1.6 nm/V) in Fig. 4(a), where the slope of the
τ (1/E ) plot changes as in Fig. 2. The simulations allow us
to see that this corresponds to a region where, at higher tem-
peratures, the nucleation barrier and critical nucleus size no
longer decrease with increasing applied field and can even in-
crease again. We attribute this to more convoluted nucleation
pathways becoming energetically accessible to the system at
high fields and temperatures. At low fields and temperatures
nucleation can only occur through a limited number of close
to optimal pathways. In contrast, increasing the applied field
decreases all energy barriers while increasing the temperature
facilitates a type of thermal diffusion across the entire energy
landscape. This combination leads to use of nonoptimal, in
the meaning of shortest available, pathways. The result is an
increase in the mean critical energy barrier and nucleus size,
as well as an increased variation in those properties.
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FIG. 4. Analysis of simulated switching transients at different temperatures. (a) Field dependence of switching time τ (symbols), lines are
fits to Eq. (3). (b) Extracted parameters from the fits in (a), lines are fits to Eqs. (7) and (8). (c) Nucleation barrier U ∗ (symbols), lines are fits to
U ∗ = U0E0/E . (d) Size of the nucleus (symbols), lines are fits to Eq. (5). Results are averaged over 100 independent columns without defects.

C. Thermally activated nucleation-limited switching

Using the above, an insightful formulation of the Merz
formula can be derived within the framework of thermally ac-
tivated nucleation-limited switching developed by Vopsaroiu
et al. [28]. As the name suggests, this framework regards
ferroelectric switching as thermal activation over an energy
barrier Wb. Within this framework an expression for both the
coercive field as well as the switching time could be derived:

τ = 1

ν0
exp

(
(wb − PrE )V ∗

kBT

)
, (4)

where wB is the energy barrier per unit volume, and V ∗ the
volume of the critical nucleus. The logarithmic switching time
here is linearly dependent on the applied field, as opposed
to inversely as follows from Merz. Depending on the range
of applied fields, this can also give optically satisfying fits to
the experimental switching times. However, such fits lead to
material parameters that correspond to negative coercive fields
at experimental timescales, i.e., they are unphysical.

The original theory of TA-NLS assumes a constant nucle-
ation volume V ∗, which is shown in Fig. 4(d) to be incor-

rect. Instead we found this nucleation volume to be roughly
inversely proportional to the applied field:

V ∗(E ) = V0N∗(E ) ≈ V0EV

E
, (5)

where V0 is the effective volume of a single dipole and EV a
characteristic field that corresponds to the slope of the fit in
Fig. 4(d). Combining Eq. (5) with Eq. (4) we can modify the
TA-NLS expression for the switching time:

τ = 1

ν0
exp

(−EV V0Pr

kBT

)
exp

(
wbV0

kBT

EV

E

)
. (6)

By introducing the field-dependent nucleation volume, we
have thus obtained a version of the Merz law from the theory
of TA-NLS. This provides us with more transparent expres-
sions for the mostly phenomenological parameters in Eq. (3):

τ∞ = 1

ν0
exp

(−EV V0Pr

kBT

)
, (7)

Ea = wbV0EV

kBT
, (8)

and U ∗ = U0E0/E , where U0 = wbV0 and E0 = EV .
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FIG. 5. Energy as a function of nucleus size in a simple 1D system of dipoles, shown (a) schematically and (b) graphically.

The energy-barrier density wb can independently be ob-
tained from the frequency and temperature dependency of
the coercive field and was previously found to be around
0.18 eV/nm3 [30,31]. The effective volume V0 is determined
by the morphology of the system and calculated to be
around 0.4 nm3. Using EV from Fig. 4(d) we find wbV0EV ≈
0.41 eV V/nm, which is in good agreement with the value for
U0E0 obtained from the fits in Figs. 4(a) and 4(c).

Through Eq. (7) we also know the temperature dependence
of the prefactor τ∞, which is not explicitly included in the
Merz law. We can fit this dependence to our simulation results
for τ∞ in Fig. 4(b). We get a perfect agreement using the same
parameters used for the other fits. We find an effective attempt
frequency of ν0 ≈ 77 GHz which is fairly low but reasonable.

The field-dependence of the switching time can thus be
traced back to the field dependence of the nucleation mech-
anism and specifically the (variable) nucleus size. This depen-
dence, quantified in Eq. (5), can be qualitatively understood
by considering the width of the nucleation barrier, i.e., the
number of switched dipoles from which point the energy
becomes lower than the initial configuration. This width sets
an upper limit for the nucleus size and makes for a more
straightforward argument than the nucleus size itself.

For this argument we reduce the material to a collection
of dipoles, as was done for the kMC model. If we consider
only nearest-neighbor interactions and ignore intercolumnar
interactions, we can describe the BTA columns as a quasi-1D
stack of dipoles, or equivalently a 1D Ising chain. When
an electric field is applied, a nucleus with dipoles that have
aligned along the field direction may form. The energy of this
system decreases linearly as a function of both nucleus size
and applied field, as is shown in Fig. 5. The change in energy
by aligning N neighboring dipoles along the field direction
is then �U = 4J − 2μEN , where J > 0 is the interaction
energy between two neighboring dipoles. Setting �U = 0,
this gives Nwidth = J/μE .

This simple argument thus gives a nucleus size inversely
proportional to the field. While presented here for the 1D
case, it can easily be extended to two-dimensional and
three-dimensional systems where it results in similar expres-
sions (see SM section 4 [33]). We would like to empha-
size that while this intuitive argument rationalizes the 1/E -
dependency, it is not meant to be a rigorous derivation of
the nucleus energy and the simulation results are the main
rationale behind introducing Eq. (5). In passing we note that

any system with a linear dependence of energy on both field
and length will show a similar 1/E -dependency, as for ex-
ample in the well-known case of Fowler-Nordheim tunneling
through a triangular barrier [41].

We can thus consistently describe the switching kinetics in
our simulations using the adapted form of the TA-NLS theory
of Eq. (6). We now turn back to the experiments. Figure 6
shows the switching time of BTA-C12, obtained using the
experimental procedures described in Ref. [31]. We fit the
data to Eq. (6) using a single parameter set for all curves
and find a reasonable agreement over the full temperature and
field range. While the individual experimental curves show
deviations from Merz behavior, the overall behavior of the
system is reproduced for reasonable parameters, again with
the addition of an offset field Eoffset = −3.3 V/nm to account
for the effective vanishing of the activation barrier at finite
temperatures. We find that wbV0EV ≈ 0.10 eV V/nm, again
showing that the field dependence, specifically the parameter
EV , is lower than in the simulations. A possible reason for
that could be the existence of strong pinning defects in the

0 5 10 15
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(s
)

1/E (nm/V)
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 40°
 50°
 60
 70°
 80°

FIG. 6. The experimental switching time τ as a function of the
reciprocal applied field 1/E for a range of temperatures on BTA-C12.
Straight lines are a global fit to Eq. (6). Details on the fit are presented
in SM section 5 [33].
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FIG. 7. Single columns with defects that break the hydrogen-bonded triple helix. α denotes the rotational offset between the subcolumn
below and above the defect. Defects can be (a) nonchiral and (b) chiral, where the helicity changes from M to P. The nonchiral defect might
easily rotate, which restores the triple helix, and thereby removes the defect. The chiral defect cannot be removed this way.

real material, which will restrict the nucleus size and thereby
weaken the field dependency.

It should be noted that the prefactor τ∞ is very sensitive
to the exact parameters of the fits, and therefore not too
much weight should be placed on its temperature dependence.
In literature, the prefactor is often ignored altogether, or at
least assumed to be constant with both temperature and field.
Within the literature that does investigate it, a variety of
different dependencies is observed [1,5,6,17,18].

Several extensions of the analytical model are possible
but beyond the scope of this work and we will therefore
just briefly mention them here. Our description of V ∗ in
Eq. (5) is merely a first-degree approximation of reality, and
beyond the used constant offset one could expect higher-
order dependencies. The nucleus shape and size could also
be restricted by the morphology of the material, leading to a
weaker field dependency. The nucleus size can also depend
on temperature, as suggested by Fig. 4(d). Finally, one could
combine Eq. (6) with the concept of the Preisach distribution
to obtain a distribution of switching times [12,29]. Finding out
which of these factors, or other factors, are experimentally
most relevant will require a richer experimental dataset than
used here in view of the risk of overparametrization of the
model.

III. CONCLUSION

To summarize, we have studied the switching kinetics in
an organic ferroelectric using both a microscopic electrostatic
model as well as an analytical model. The microscopic model
succeeded in reproducing the overall behavior of the experi-
ments, and while the field dependence in the simulations was
stronger than in experiments, both follow the Merz law for
the field dependence of the switching time. It is especially
remarkable that the Merz law is obtained in a system of simple
interacting dipoles as in the presented model. The Merz law

is often associated with domain walls and defects, neither
of which were (explicitly) included in the presented model.
This suggests that the Merz law is even more general than
previously assumed.

Detailed analysis of the switching process showed how the
macroscopic switching time is the result of thermal activation
over an energy barrier, which in turn directly relates to the pro-
cess of nucleation. This insight allowed us to extend the theory
of thermally activated nucleation-limited switching with the
concept of a field-dependent nucleus size. The resulting model
has the functional shape of the Merz law and provides a single
consistent parameter set when analyzing both the macroscopic
switching time and the microscopic nucleation, proving the
relation between the two. The analytical model could also
describe the experimental field and temperature dependence
of the switching time in BTA. While doing so, it provides
a natural explanation for the emergence of Merz behavior,
which is generally applicable to polycrystalline ferroelectrics.
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APPENDIX A: DIFFERENT TYPES OF DEFECTS

To investigate the effect specific defects might have, we
have simulated several different scenarios of single columns
with one type of defect. Since the chirality of the helix can
change at a defect, we can distinguish between chiral and
nonchiral defects, as shown in Fig. 7. The rotation angle of
a defect can also vary. Normally, these angles are chosen
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FIG. 8. Comparison of the simulated switching transients for
systems with different types of defects with a transient obtained from
experiment. Random refers to the rotation angle at the defects as
shown in Fig. 7. The simulation results are shifted to have the same
switching time as the experiment by adjusting the attempt frequency
ν0, as shown in the inset. Results have been averaged over 100
independent columns of 200 molecules with a subcolumn length of
10 ± 4 and an applied field of 0.4 V/nm. The full box simulation was
performed on a system of 8 × 8 interacting columns with random
chiral defects.

randomly, but we have also included a scenario where the
angle is fixed to give the slowest possible switching (being
60°).

The results of the simulations with all these types of defects
are shown in Fig. 8. We apply a fixed external field of 0.4
V/nm, which is chosen as a trade-off between speed (lower
at lower fields) and dispersion (stronger at lower fields). The
timescale of the simulation results is solely determined by
the attempt frequency ν0, which we have so far fixed at the
expected phonon frequency of 1 THz, but deviations from
this value are possible. For a better comparison between the
scenarios we have therefore adjusted the attempt frequency
such that all curves have the same switching time as the
experiment. Corresponding attempt frequencies are shown in
the inset to Fig. 8.

The cases of fully random and random nonchiral defects
are both too dispersive compared to the experiment. When
considering only chiral defects, either with random angles or
fixed at the slowest angle of 60◦, a moderate agreement with
the experiment is obtained. The best agreement, especially
in terms of dispersion, is obtained for no defects. However,
this scenario is physically very unlikely, since defects are
known to be present in these disordered liquid crystalline
materials [31,42,43]. These results therefore suggest that in
the experimental device, mainly chiral defects are present.

It is known that in solution the self-assembled BTA
columns contain very few chiral defects due to the large
energy penalty [44–46]. An argument as to why in thin-film
devices one could nevertheless have mainly chiral defects
goes as follows. In solution it is easy for the molecules to

assemble and disassemble into the columns. This is not
the case during device fabrication and conditioning, which
happens in solid state under an applied field at elevated
temperature and is a highly nonequilibrium process. When
two columns of opposite chirality connect, they have limited
freedom to dissociate again, and are stuck in place forming a
chiral defect.

Furthermore, nonchiral defects are likely to disappear
during device conditioning. While the columns cannot fully
dissociate after forming a defect, they have some freedom to
rotate. Since the energy is minimized if there is no defect,
the columns will lock into place as shown in Fig. 7(a). The
combination of the likely formation of chiral defects and the
selective removal of nonchiral defects thus makes it likely for
the experimental device to contain mainly chiral defects.

It should be noted that the results discussed so far were
obtained for single isolated columns. While this case is in-
structive for understanding the effect of defects, in reality
we have a system of many interacting columns. Letting the
columns interact results in an even larger dispersion, as shown
in the orange curve for a simulation box with intercolumnar
interaction. This is in agreement with previous observations
[29,30] and increases the discrepancy between simulations
and experiment in terms of dispersion.

Possible explanations for the discrepancies between the
kinetic model and the experiment in terms of field depen-
dence, dispersion and absolute timescale are discussed in
Appendix B below.

APPENDIX B: POSSIBLE EXPLANATIONS FOR
DISCREPANCIES BETWEEN SIMULATIONS AND

EXPERIMENTS

1. Disordered or dead interface layers

There are several possible explanations for the discrepancy
in field dependence between simulations and experiments that
we will discuss here. The first possibility is the presence of
dead or highly disordered layers at the interface. These layers
are commonly assumed to be caused by the device fabrication
process and have been observed experimentally [19,42].

Highly disordered layers are implemented by having mul-
tiple defects close to the interface, resulting in a few short
subcolumns at this interface. Since nucleation happens at the
interface, having many defects there might slow down the
polarization switching. In Fig. 9(a) we indeed see a slight
slowdown of the kinetics, but far insufficient to reach agree-
ment with experiments.

A slightly larger slowdown is obtained in a simulation with
dead interface layers, shown in Fig. 9(b). These dead layers
consist of dipoles that are “frozen,” i.e., they cannot flip their
direction. This again provides a barrier for contact nucleation,
slowing down switching. Nevertheless, the dispersion and
field dependence of the results remain too large compared to
the experiments.

2. Leaky layer model

Another effect non-ferroelectric interface layers can have is
to reduce the effective field over the ferroelectric layer. If the
material has a finite conductivity, the effective field becomes
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FIG. 9. Switching transients for the case of (a) interface disorder and (b) dead interface layers. The applied field is increased from 0.5 to
2 V/nm. Note that the no interface or dead layers case is the same as in Fig. S2 [33].

time-dependent which can delay the switching. This situation
was first described and modeled by von Seggern and Fedosov
for the case of PVDF [36,37]. Here we apply it to our system,
where we use our previous simulation results as the intrinsic
system response for input in the model.

This leaky layer model is schematically represented in
Fig. 10(a). Following von Seggern and Fedosov, we assume
our material to exist of two layers: the ferroelectric layer
and a leaky dielectric layer. Taking a leaky dielectric at both
interfaces with the same effective thickness would lead to
equivalent results. The layers have a thickness d and di-
electric constant ε, and experience a time-dependent elec-
tric field E (t ). Due to the conductivity g of the material, a
surface charge σ will build up at the interface between the

layers:

dσ

dt
= g(E1 − E2).

Equating the current density j through the resistor R and
both layers, we can obtain the differential equations for the
electric fields:

dE1

dt
= 1

ε0ε1AR
(V0 − (d1 + ARg)E1 − d2E2),

dE2

dt
= 1

ε0ε2AR

(
V0 − (d2 + ARg)E2 − d1E1 − AR

dP

dt

)
,

where A is the area of the device.

(a) (b)
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FIG. 10. The leaky layer model. (a) Schematic overview of the model with the two different layers. (b) Fit to a typical experimental
switching transient using the indicated parameters.
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FIG. 11. Switching transients obtained in a simulation with a 1-
μs field sweep. The maximum applied field is increased from 0.5 to
2 V/nm.

What is left is to obtain an expression for the change in
polarization in the ferroelectric as a function of the field and
polarization, dP

dt (P, E2). We use our simulations results to de-
scribe this intrinsic response and parametrize and differentiate
the P(t, E ) curves of Fig. S2 [33]. We can now solve the
equations for σ, E1, E2, and P with the appropriate starting
conditions, giving us the switching transient P(t ).

We fit this model to our experimental result and find a good
agreement with reasonable parameters, as shown in Fig. 10(b).

The resulting switching transient is now dominated by the
resistor R, which is set to the 1-M� input impedance of
the oscilloscope used in experiments. When this resistance is
decreased, the switching speeds up. Omitting the series resis-
tance R precludes an accurate fit, that is, the leaky dielectric
alone cannot explain the discrepancy. This would imply that
in our experiments, we are limited by the RC time of our
measurement circuit.

We perform two checks to verify if this could be the case.
First, we check the effect of having a real applied voltage
sweep in the simulations, instead of an instantaneous step.
Our amplifier needs about 1 μs to reach a typical applied
voltage. In our simulations we therefore use a linear applied
field sweep from 0 to Emax in 1 μs. The results of these
sweeps are shown in Fig. 11. Unsurprisingly, we see that
the response becomes dominated by the sweep speed of the
applied field. The switching still happens much faster than
observed experimentally.

Secondly, we change our switching transient measurement
setup to reduce the RC time. The pulse sequence and measure-
ment circuit are shown in Fig. 12. The switched polarization
is measured as a function of the duration of the setting pulse
tset. This measurement is done using the oscilloscope with a
measurement and background pulse. Any limitation on the
switching speed due to the RC time of the circuit would arise
during the setting pulse. We therefore apply this pulse in two
different configurations: the “slow” way with the oscilloscope
as part of the circuit, and the “fast” way by directly connecting
the ferroelectric capacitor to the ground. We find no differ-
ence between the two configurations with different RC times,

Background

E

t

MeasurePoling

Set

(a)

(b)

(c)

Oscilloscope

Func�on 
Generator

Amplifier

Ferroelectric
Capacitor

1MΩ

20pF

10-5 10-4 10-3 10-2
0.0

0.2

0.4

0.6

0.8

1.0

P
 (-

)

tset (s)

 With Oscilloscope
 Without Oscilloscope

FIG. 12. Check of the experimental limitations. (a) The pulse sequence and (b) measurement circuit used to measure the switching time.
(c) The switching transient measured with and without oscilloscope connected during the set pulse of length tset .
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suggesting that the RC time of the circuit is not a limiting
factor in our measurement.

It thus seems unlikely that we are limited by our exper-
imental setup in measuring switching transients. This con-
tradicts the result of the fitting to the leaky layer model,
which leads us to the conclusion that the leaky layer

model cannot describe our system correctly. In addition
we note that the experimentally observed field- and tem-
perature dependencies would be hard to reconcile with a
model in which the time constant is set by external fac-
tors like a series resistance R associated with measurement
equipment.
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[29] I. Urbanavičiūtė, T. D. Cornelissen, X. Meng, R. P. Sijbesma,
and M. Kemerink, Nat. Commun. 9, 4409 (2018).

[30] T. D. Cornelissen, M. Biler, I. Urbanaviciute, P. Norman, M.
Linares, and M. Kemerink, Phys. Chem. Chem. Phys. 21, 1375
(2019).
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