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Kinetically constrained freezing transition in a dipole-conserving system
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We study a stochastic lattice gas of particles in one dimension with strictly finite-range interactions that
respect the fractonlike conservation laws of total charge and dipole moment. As the charge density is varied,
the connectivity of the system’s charge configurations under the dynamics changes qualitatively. We find two
distinct phases: Near half filling the system thermalizes subdiffusively, with almost all configurations belonging
to a single dynamically connected sector. As the charge density is tuned away from half filling there is a
phase transition to a frozen phase, where locally active finite bubbles cannot exchange particles and the system
fails to thermalize. The two phases exemplify what has recently been referred to as weak and strong Hilbert
space fragmentation, respectively. We study the static and dynamic scaling properties of this weak-to-strong
fragmentation phase transition in a kinetically constrained classical Markov circuit model, obtaining some
conjectured exact critical exponents.
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I. INTRODUCTION

The exploration of far-from-equilibrium quantum many-
body systems continues to be a rich source of interesting
new phenomena. While many systems eventually approach
thermal equilibrium [1–4], understanding how and when ther-
malization breaks down in a many-body system is of funda-
mental interest. At least one robust mechanism for avoiding
thermalization has been established: Many-body localization
(MBL) [5–12], and along with it has come an active effort to
understand the associated dynamical phase transition, where
the MBL mechanism breaks down and the system thermal-
izes [7,13–26]. While MBL systems rely on the quenched
breaking of translational invariance to induce localization,
the search for mechanisms to circumvent thermalization in
translationally-invariant systems is also an active area of re-
search [27–35]. Among recent developments in this direction
is the exploration of constrained quantum systems such as
Rydberg-blockaded chains [36], which has lead to a surge
of research on nonthermal “quantum scar” states [37–51],
and models with fractonlike excitations [52–56], which have
been shown to exhibit a form of localization under certain
ideal conditions [57–60]. In this work we explore a dynamical
phase transition between thermalizing and frozen phases that
occurs in one such system with fractonlike constraints on the
dynamics.

References [57–60] showed that the combination of strictly
finite-range interactions and the fractonlike constraints of
charge and dipole conservation results in a fragmentation of
Hilbert space into exponentially many (in volume) dynami-
cally disconnected sectors, herein referred to as Krylov sec-
tors. This means that a graph, where nodes represent charge
configurations and edges represent local dipole-conserving
transitions, consists of exponentially many disconnected com-

ponents within each of the polynomially many symmetry
sectors of configurations with a common total charge and
total dipole moment. Hilbert space fragmentation comes in
two distinct types: Strong and weak [57,58]. In systems that
are strongly fragmented, the system fails to thermalize be-
cause for any initial charge configuration it is constrained to
explore only a vanishingly small fraction of the states with
the same charge and dipole moment. On the other hand, in
the case of weak fragmentation the configuration space still
shatters into exponentially many disconnected Krylov sectors,
but the fraction of states that belong to the largest sector
approaches one in the limit of large systems, and therefore
typical initial states are in this largest Krylov sector and thus
can thermalize.

In this paper we study a charge and dipole-conserving
model that is weakly fragmented at charge densities around
half filling, for which typical initial states do thermalize. How-
ever, as the total charge in the system is varied, a critical point
is encountered beyond which thermalization cannot occur due
to strong fragmentation of the set of all charge configurations
with that total charge. Since the fragmentation in this case is
dictated by fundamentally classical constraints—because we
are working in a basis where fractonic degrees of freedom
are assumed to exist without having to emerge from an un-
derlying quantum model—we study a kinetically constrained
[61,62] classical Markov circuit model. We study the static
and dynamic properties of the phase transition between the
weakly and strongly fragmented phases by constructing and
supporting a simplified theoretical model that we believe
captures many of the key features of the critical point, as
well as by simulating the full dynamics. Our simplified model
gives conjectured exact critical exponents of ν = 2 for the
correlation length and β = 1 for the density of frozen sites
which serves as an “order parameter” for the frozen phase.
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FIG. 1. The Markov circuit model. Markov gates (blue) can shuf-
fle the local charge configuration in any way that conserves the total
charge and dipole moment of those four sites. Hollow black circles
represent the charge configuration before the action of the gates, and
pink circles represent it afterwards. Each site is constrained to have
0, 1, or 2 particles. The black arrows show some possible actions of
the gates; the only transitions that are allowed in this model are “pair
hopping” moves where one (or two) particles hop to the left and one
(or two) hop to the right. This model has a detailed balance so that in
the long-time steady state all moves are equally likely to occur as the
reverse of the same move.

The dynamics in the thermalizing, weakly fragmented phase
away from the phase transition is demonstrated to be subdif-
fusive, with the transport time growing as the fourth power of
the length. At the phase transition, the dynamics is slower, as
expected, with a dynamical critical exponent z that appears to
be near 7, but this can only be explored numerically over a
modest range of length scales, so the true asymptotic z might
be larger than this.

II. MODEL

We study a model of indistinguishable particles hopping on
a one-dimensional lattice of L sites. Interactions are strictly k
local and each site i can host 0 � ni � nmax particles. Equiva-
lently, one can consider classical spin models where each site
hosts a spin S = nmax/2 degree of freedom, and particle con-
figurations map to spin configurations in the z basis. Both the
total charge (particle number) N0 = ∑

i ni and dipole moment
N1 = ∑

i(xi − x0)ni are conserved by the dynamics, where x0

can be chosen to be the midpoint of the system, and the sites
are at integer positions 1 � xi � L. The dynamics are given by
a kinetically constrained classical Markov circuit. The circuit
is made up of layers of k-local Markov gates that stochasti-
cally map any local charge configuration to any other with the
same charge and dipole moment on those k consecutive lattice
sites. A time step consists of one tightly-packed layer of gates
with a randomly chosen spatial shift of up to k − 1 sites. Most
of our results are for systems with open boundaries. Gates that
extend past either edge of the system must act only on less
than k sites. Figure 1 depicts one step of the time evolution.
We use gates that assign an equal probability to all possible
transitions, i.e., the “infinite temperature heat-bath” case. The
average of any quantity in the steady state is then given by
averaging over all charge configurations in the Krylov sector
of the initial state. Numerically doing this average exactly is
only possible for small systems in practice, so we statistically
sample the distribution for larger systems for which we can
numerically simulate the steady state, while for even larger
systems near the phase transition we can only numerically
access nonequilibrium dynamics.

For the rest of this paper we focus on the specific case of
nmax = 2 and k = 4, which connects the charge configuration

space in exactly the same way as the 4-local spin-1 quantum
models of Refs. [57,58], and on systems that have approxi-
mately zero total dipole (N1 = 0). Thus the phase diagram we
study is as a function of the average charge density n̄ = N0/L,
which is the parameter that tunes the system from weakly to
strongly fragmented. Systems with nmax = 2 and k < 4 do not
have a weakly fragmented phase at all, so k = 4 is the minimal
generic case for nmax = 2. We provide more explicit details
about the four-site Markov gates in Appendix A. If one con-
siders systems with a substantially nonzero dipole moment,
the equilibrium charge density is spatially nonuniform and
the freezing transition occurs locally where the local charge
density reaches its critical value. For these systems with zero
total dipole, we say the system thermalizes if in the limit of
a large system and long times for almost all initial states the
time average of the local density is n̄ at all sites that are far
from the ends of the system. This model has a particle-hole
symmetry that dictates that the behavior at n̄ = n is the same
as that at n̄ = 2 − n, so for the remainder of this paper we only
consider the regime n̄ � 1.

III. RESULTS

A. Exact enumeration

We first study small systems (L � 18) for which we can
eliminate finite-time effects, but not finite-size effects, by
enumerating all possible configurations and constructing all
of the Krylov sectors exactly. This can be done numerically
by first constructing a sparse matrix representation of the
graph defined by configurations (nodes) and the allowed tran-
sitions between them (edges) and then finding the connected
components of this graph. This is similar to the approach of
Refs. [57,58]. The authors of those works defined a quantity to
diagnose strong fragmentation that we herein call Dmax/Dsum;
it is the ratio of the number of configurations in the largest
Krylov sector (Dmax = max j D j) to the total number of con-
figurations in all of the Krylov sectors combined (Dsum =∑

j D j). Since charge and dipole are conserved, the index j
runs over all Krylov sectors corresponding to a certain total
charge N0 and dipole N1 of interest, and Dj is the number
of charge configurations in Krylov sector j. To make contact
with previous studies we plot this quantity for a range of small
system sizes and charge densities in Fig. 2(a). This shows an
onset of strong fragmentation as the charge density is tuned
away from half filling, however finite-size effects are strong
and we cannot argue from these data alone that there is a sharp
transition in the thermodynamic limit.

In an attempt to improve on this measure of fragmentation
in small systems we define the entropy of fragmentation

sfrag = −∑ jmax
j=1 p j log p j

log jmax
, (1)

where p j = Dj/Dsum and jmax is the total number of Krylov
sectors being summed over. We do this to minimize the effects
of Dsum becoming small as n̄ → nmax in very small systems;
these effects cause the quantity in Fig. 2(a) to curve down-
wards as n̄ → 2. A weakly fragmented system is characterized
by limL→∞ sfrag = 0, and a strongly fragmented one will have
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FIG. 2. Measures of the fragmentation transition in small sys-
tems. All plots correspond to zero total dipole: N1 = 0. (a) One
minus the fraction of states that belong to the largest Krylov sector.
(b) The entropy of fragmentation, as defined in the main text. (c) The
infinite-time fraction of frozen sites ρF averaged over all possible
initial states. All system sizes from L = 12 (lightest blue) to L = 18
(darkest blue) sites are represented, but only systems where the total
charge and system size have the same parity have states with exactly
zero total dipole. These data are symmetric about half filling (n̄ = 1)
so only n̄ � 1 are shown.

sfrag > 0. The entropy of fragmentation is shown in Fig. 2(b)
for comparison.

Both of the diagnostics of strong fragmentation discussed
so far rely on constructing the Krylov sectors exactly, which
is prohibitively expensive for all but very small systems.
Furthermore the charge density at these small system sizes
is not an approximately continuous tuning parameter and this
adds difficulty to studying the phase transition. We therefore
propose a different diagnostic that can be computed from local
measurements and thus can be estimated in larger systems
with some finite-time effects without constructing the full
Krylov sectors. It is inspired by studies of kinetically con-
strained classical models of glasses [63].

We propose that the frozen, strongly fragmented phase can
be characterized by a nonzero fraction of frozen sites in a
typical history, where we say that site i is frozen at time t if
ni has remained unchanged for all times �t . As time evolves
frozen sites can become active, but with this definition active
sites never become frozen. This is the same definition of active
and frozen sites used in the discussion of “shielding regions”
and the construction of nonthermal states in Refs. [57,58].
In those works the focus was on systems at half filling
with various ranges of interactions k and on constructing the
partially frozen states even in weakly fragmented systems
where these are vanishingly rare. To relate the notion of frozen
sites back to Krylov sectors and fragmentation: For a given
initial state a site will remain frozen for all times if for every
configuration in its Krylov sector that site has the same charge
ni. The fraction of frozen sites ρF at infinite times, averaged

over all initial states, serves as an order parameter heralding
the onset of the strongly fragmented phase. Much of our
analysis is focused on this notion of frozen and active regions.
In Fig. 2(c) we show the infinite-time ρF averaged over all
states with charge density n̄ and total dipole N1 = 0. This
shows finite-size indications of the phase transition between
weakly and strongly fragmented phases near the nominal
critical density n̄c = 1.5, where ρF becomes nonzero.

B. Active vs frozen regions

In the vicinity of the critical density large systems typically
contain regions that are initially frozen and regions that are
initially active. The regions that are initially frozen are typ-
ically contiguous blocks of sites with a local charge density
near nmax = 2, and the initially active regions are typically
contiguous blocks of sites where the charge density is closer
to half filling and below the critical density. For example, by
identifying the initially frozen sites as the sites that cannot
evolve to any other value of charge during the first step of
time evolution, no matter what spatial shift that first layer of
the Markov circuit has, we find that systems with L = 106

and n̄ = 1.5 contain contiguous blocks of frozen (F ) sites
with mean charge density 〈nF 〉 ∼= 1.95 and active (A) blocks
with 〈nA〉 ∼= 1.28, where the averages are taken over equally
weighted blocks. As time goes on, a frozen site can become
active if a neighboring active block is a good enough charge
bath to move some of its charge, so the active blocks can
thus grow and merge. As the active blocks grow and occupy
a larger fraction of the system their charge density increases.
The growth stops when the charge density of the active block
approaches the critical value and the active block thus stops
being able to move the charges on the neighboring frozen
sites.

C. Single active blocks

In order to understand this process we study the idealized
scenario of a half-filled initial block of L0 contiguous sites,
with initial charges ni = 1 on all of those L0 sites, embedded
in an otherwise fully-filled system of infinite length with
initial charges ni = 2 on all other sites. This is in some ways
similar to the idealized scenarios used to study the effects
of thermal inclusions in an MBL system and their relevance
to the MBL transition [22,24–26,64,65]. We stochastically
evolve this specific initial configuration multiple times, i.e.,
we run multiple histories. As a history evolves we keep track
of which sites have become active and the corresponding
charge density nA of the growing active bubble in that history.
When the length of the block of active sites has grown to
LA, then the charge density of the active block is nA = 2 −
(L0/LA). In Fig. 3(a) we show the resulting time evolution
of the history-averaged nA for active bubbles of initial size
L0 = 12 to 32. In each such history with even L0 � 48 the
active bubble converges to exactly twice its initial length and
a charge density of nA = 1.5 ∼= n̄c, where it finally ceases
to be a good enough charge bath to move charges from the
neighboring frozen sites. We have been able to show by an
explicit iterative construction that even length bubbles can
grow to twice their length, thus showing that n̄c � 1.50; we
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FIG. 3. Ideal active bubble. (a) The vertical axis is the mean
charge density of active sites over all histories and the horizontal
axis is the number of time steps (layers in the Markov circuit). All
histories were initialized with a block of length L0 sites with ni = 1
embedded in an otherwise frozen infinite system of ni = 2. From
left to right L0 = 12 to 32 in steps of four. Each line represents
an average over more than 103 histories. (b) Histogram of the
scaled time it takes for the active bubble to reach twice its initial
size (nA = 1.5). The times are scaled by Lz

0, where z = 7. There
are at least 103 histories for each curve, and the curves represent
L0 = 12 to 48 in steps of four (lightest purple to darkest purple).
(c) Estimate of the dynamic exponent z as a function of L0 via
z(L0) = log(〈τ 〉+/〈τ 〉−)/ log(L+/L−), where L± = L0 ± 2 and 〈τ 〉±
are the corresponding mean values of τ from the data shown in (b).
For example, the first point at L0 = 14 is obtained by setting L− = 12
and L+ = 16, then taking the corresponding mean values of τ from
(b) and calling those mean values 〈τ 〉− and 〈τ 〉+. Error bars represent
the standard error.

suspect that the exact value of the critical density does saturate
this bound, but we have not yet been able to prove that.

We have also studied initial blocks of (L0 + 1) contiguous
sites where L0 of the sites in the block are singly occupied,
while one of the sites within the block and all sites outside
of the block are doubly occupied. Such active bubbles all
appear to stop their growth with length 2L0 contiguous active
sites, with the sole exceptions of all cases where the center
of mass of the active bubble is precisely on a site. These latter
cases instead stop with length (2L0 − 1). We have numerically
examined many bubbles with even and odd L0 � 48 and
various locations of their centers of mass, not finding any
exceptions to this behavior.

We denote the time at which the active bubble in any par-
ticular history first reaches its final length by τ and extract a
dynamical scaling exponent z ∼= 7.0(5), such that the history-
averaged τ scales as 〈τ 〉 ∝ Lz

0, by collapsing the distribution
of τ over histories for each system size, as shown in Fig. 3(b).

However the range of L0 over which we were able to compute
〈τ 〉 is quite small (on a log scale), and statistically significant
drift towards higher z is present [see Fig. 3(c)], thus it is
possible that z drifts upwards indefinitely with increasing L0,
or it may converge to a finite value. We therefore leave our
estimate of z ∼= 7 as a lower bound. We also performed the
same “ideal active bubble” experiments but with active blocks
that were initialized in a random configuration at half filling
embedded in a fully-filled system. In that case the density
of the active blocks of almost all samples still converges to
nA = 1.5, and the fraction of samples for which this is not
true decreases with L0. We therefore expect that the ideal
scenario studied above is representative of large active bubbles
embedded in typical large systems. In a typical system there
will be many such active blocks, and they will expand and
merge as time goes on. We propose that these blocks expand
until they self-tune to the critical charge density where they
are no longer good charge baths, and the critical point is where
the system is just able to be completely covered by the largest,
slowest active block at the latest times. Just above the critical
density, a finite density of frozen sites will persist indefinitely
and block charge transport, preventing thermalization.

D. Approximate model for the transition

By considering isolated active bubbles embedded in other-
wise frozen systems we have developed the idea that an active
bubble typically unfreezes the immediately adjacent frozen
sites and, in doing so, increases its average charge density and
length. This process continues until the critical charge density
is reached, at which point the growth stops because the active
bubble is no longer an effective charge bath. We therefore
propose an approximate scheme for partitioning a system with
n̄ > n̄c into frozen and active blocks at time t = ∞: Given a
system at t = 0 we first compute its initially active (A) and
frozen (F ) blocks of sites by considering which sites could
evolve to a different charge during a hypothetical first layer of
Markov gates, regardless of the spatial shift of that first layer.
Once we have set up the blocks of sites labeled as initially
active, we start to loop over all of these active blocks, one by
one, to allow them to expand if possible. An active block is
allowed to expand by one site to the left if incorporating that
left-neighboring site (and its charge) does not push the average
charge density of that active block over the nominal critical
charge density (nA � n̄c). The same condition is used for
expanding by one site to the right. If an active block qualifies
to expand in only one direction, it does so. If it qualifies to
expand in both directions, a direction is randomly chosen,
and the expansion is carried out. We iterate this procedure,
allowing a single active block to expand by one site at a time
as long as it does not overlap with another active block and
maintains nA � n̄c as described above, before moving on to
the next active block in the loop. Note that in this approximate
model we only keep track of the average charge density of
active blocks, assuming the system is thermalizing within
these blocks, and the charge configuration on the frozen sites
remains as it was initially, so we do not do explicit updates
of the charge configuration as in the exact dynamics. After
allowing all of the active blocks to grow like this, any two
active blocks that have come into direct contact are merged
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FIG. 4. Approximate model of the steady state. (a) Distributions
(“normalized counts”) of the final lengths of the active blocks.
Charge densities go from n̄ = 1.505 (darkest blue) to 1.550 (lightest
blue) in steps of 2.5 × 10−3. Each line represents 102 samples of
length L = 106 drawn randomly from all configurations with the
correct amount of total charge. The dashed line is ∼L−α

A with α =
3/2, as is expected for the small LA regime. (b) The correlation length
ξ = 〈L2

A〉/〈LA〉. The dashed line represents the expected scaling ξ ∝
(n̄ − n̄c )−ν where ν = 2. (c) Scaled versions of the curves in part (a).

and considered as one block from then on. We iterate this
process of looping over active blocks allowing them to grow
as much as possible, then merging ones that have come in con-
tact, until it has converged, i.e., all active blocks reach density
nA = n̄c and are thus unable to grow farther. This approximate
model of the steady state must be given the critical density
as an input parameter, so we choose to use n̄c = 3/2, which
is our current best (and perhaps exact) estimate of the critical
point. For n̄ � n̄c and typical initial states of large systems,
this model grows one active block that encompasses the entire
system and thus thermalizes.

Although we will provide analytic arguments for all of
the following results, it is convenient to first present the
numerical data from simulations of this approximate model
of the steady state. At each of a series of charge densities n̄
approaching n̄c from above we simulate this process on 102

samples of large systems (L = 106), initialized randomly from
all configurations with precisely the correct amount of total
charge, and store the distribution of the lengths LA of the final
active blocks; the final frozen blocks remain of length of order
one for n̄ near but above n̄c. The resulting data are shown
in Fig. 4(a). The distributions, which we denote by pn̄(LA),
approach a power law ∼L−α

A with α = 3/2 as n̄ approaches n̄c

from above.
We define a correlation length ξ = 〈L2

A〉/〈LA〉, which we
compute from the data at each value of n̄, and we plot
this in Fig. 4(b). These averages are over all active blocks,

with each block equally weighted independent of its length.
Defined in this way, ξ is a characteristic active block length
where the distribution changes from a power law for LA � ξ

to something steeper for LA 	 ξ . From this we see that ξ

diverges at the critical density as ξ ∝ (n̄ − n̄c)−ν , with ν = 2
being consistent with the data. We assume the scaling ansatz
pn̄(LA) ∝ L−α

A f (LA/ξ ), where f is a universal function, to col-
lapse the data of Fig. 4(a) and we show the scaled distributions
in Fig. 4(c). With this scaling, 〈Lp

A〉 ∼ ξ (p+1−α) for any power
p > α − 1, which is why we defined ξ the way we did, rather
than as 〈LA〉, for example.

To summarize: This approximation yields the predictions
that the critical point is characterized by a power-law distri-
bution of the lengths of active blocks with an exponent of
α = 3/2, and by a correlation length ξ which diverges with
the exponent ν = 2 as the critical point is approached from
the strongly fragmented phase.

In order to argue analytically for the critical power-law
distribution pn̄c (LA) ∝ L−3/2

A we consider a critical (n̄ = n̄c)
system with an embedded active block whose total charge is
initially �N0,A below what it would be if the block were at
the critical density. The block will begin to grow and each
time its length increases by �LA it gains an amount of charge
�LAn̄c + δ, where δ is a random variable with mean zero.
Therefore �N0,A, the total charge deficit of the block relative
to the critical total charge, does an unbiased random walk in
one dimension with an “absorbing wall” at �N0,A = 0 where
the active block becomes critical and can no longer grow. The
analogous real-space problem is that of a random walk x(t ),
where x is position and t is time, that begins at a negative
position x(t0) = −x0 and we want to know: What is the
distribution of final times t f at which the walker reaches x = 0
for the first time? This can be solved in the continuum by the
method of images, with the result being that the distribution
of final times goes like p(t f ) ∼ t−3/2

f , which is analogous to
the observed result that pn̄c (LA) ∼ L−α

A with α = 3/2.
We can also argue for the result ν = 2: The frozen blocks

of the system have an average charge density 〈nF 〉 that is
always well above n̄c and close to nmax, and we have argued
that large active blocks will converge to the critical charge
density nA = n̄c at late times. Therefore we consider an ap-
proximation where all frozen blocks have nF = nmax = 2 and
all active blocks have nA = n̄c as t → ∞. In that case the
shifted charge density can be expressed as n̄ − n̄c = (nmax −
n̄c)〈LF 〉/(〈LA〉 + 〈LF 〉), and since 〈LF 〉 does not diverge at the
transition this implies 〈LA〉 ∝ (n̄ − n̄c)−1 as the critical point
is approached within the frozen phase. If the distribution of LA

takes the form pn̄ ∝ L−3/2
A f (LA/ξ ), then the identity 〈LA〉 =∫


pn̄(
)d
 and dimensional analysis implies 〈LA〉 ∝ √
ξ and

therefore ξ ∝ (n̄ − n̄c)−2, i.e., ν = 2. We can also obtain the
critical exponent β of the order parameter ρF ∼ (n̄ − n̄c)β (the
fraction of frozen sites) via similar reasoning: Again because
〈LF 〉 does not diverge at the transition and 〈LA〉 diverges
as (n̄ − n̄c)−1, the identity ρF = 〈LF 〉/(〈LF 〉 + 〈LA〉) implies
β = 1.

E. Simulation results

At this point our understanding has been built up from
idealized initial conditions and simplified models. We now
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FIG. 5. Time evolution of typical large systems. All plots rep-
resent the same simulations of the full Markov circuit dynamics
of systems with L = 104 out to times t = 108. Each data point is
averaged over 5–10 samples. Quantities are shown at 40 times from
t = 0 to 108 spaced evenly on a logarithmic scale (light to dark
green). (a) The fraction of frozen sites. The dashed curve represents
the simplified theoretical prediction detailed in the main text. (b) The
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active, i.e., nA = ∑

i∈A ni/(1 − ρF )L. (c), (d) The absolute difference
in ρF and nA, respectively, from each of the 40 times at which ρF and
nA are shown to the next.

go back to the full dynamics of large systems in an effort
to validate as much of the picture we developed above as
possible. We randomly initialize systems with definite charge
density n̄ of size L = 104 and stochastically sample their full
dynamics up to t = 108 layers of the Markov circuit. This is
still very early times for such large systems (see Fig. 3), so
we are targeting the infinite system, finite time limit, contrary
to the infinite time, small L results shown in Fig. 2. In Fig. 5
we show the time evolution of the fraction of frozen sites ρF

and the charge density of the active fraction of the system
nA. Figure 5(a) is consistent with the result of Fig. 2(c)
for small systems and it appears that ρF ∝ (n̄ − n̄c)β with
β = 1 and n̄c = 1.50 is consistent in the strongly fragmented
phase, as our simplified theory and previous numerical results
suggested. The slight deviation of the late-time data from
the simplified theoretical prediction (dashed line) deep in the
frozen phase is understood: In typical systems the frozen
blocks contain some sites that do not have charge ni = nmax,
thus ρF → 1 more rapidly than n̄ → 2, and indeed this was
observed in small systems as well (see Fig. 2). This effect is
significant deep in the frozen phase because that is where the
frozen blocks are largest and can contain a small number of
isolated frozen sites that have ni < nmax.

In the second plot, Fig. 5(b), we show that the charge den-
sity of the combined active blocks of the system is converging
to nA = n̄ from below in the active phase (low density active
blocks activate high density frozen blocks until the system is
entirely active) and in the frozen phase near the critical point
there is an extended regime where the active portion of the
system self-tunes to the critical density nA → n̄c, as we have

suggested. Deep in the frozen phase almost all of the active
bubbles are very small and many of them have a two-state
Krylov sector (...2220222... and...2212122...) that grows only
to density nA = 4/3, so the average nA becomes noticeably
less than n̄c (dashed line), as is visible in Fig. 5(b). Finally
in Figs. 5(c) and 5(d) we show how ρF and nA are converg-
ing to their final values at each n̄ in order to demonstrate
that n̄c = 1.5 is a reasonable estimate of the critical density
for typical large systems. Since we are only able to access
rather early time dynamics, we have not been able to test
the prediction that the critical distribution of the lengths of
active blocks goes like pn̄c (LA) ∝ L−3/2

A . This may be because
we are not able to build up large active blocks from small
ones during the full simulation of large typical systems during
the accessible times. Thus we leave the results presented in
Fig. 4 as predictions of our simplified theory, not yet tested by
simulations of the exact dynamics.

F. Subdiffusion in the thermalizing phase and charge
autocorrelations at criticality

Most of our analysis so far has focused on the properties
and statistics of active bubbles embedded in frozen or near-
critical systems. In this subsection we study the dynamics in
the thermalizing phase and at the critical point by examining
the averaged charge-charge correlation function C(xi, t ) =
〈(ni(t ) − n̄)(n0(0) − n̄)〉 in systems with L = 103 sites. The
results presented here are the only ones for which we employ
periodic boundaries because it allows for averaging over all
sites.

In Fig. 6(a) we show the averaged on-site charge auto-
correlation function C(0, t ) at charge density n̄ = 1 in the
middle of the thermalizing phase. We find that the charge
dynamics of the weakly fragmented phase is subdiffusive
with a characteristic space-time (x-t) scaling x ∝ t1/4, and
we believe this dynamical scaling is characteristic of dipole-
conserving systems that thermalize.

An argument for the subdiffusive x ∝ t1/4 scaling in the
thermalizing phase goes as follows: We work with a one-
component hydrodynamics of the charge density n(x, t ),
which is now a continuous-valued field in the coarse-grained
system. Since the dipole moment is conserved, the fundamen-
tal process for moving charge is not one that displaces charge
from position x to x + dx, instead it is one that displaces equal
amounts of charge from x to x + dx and x − dx, and thus
preserves the dipole moment. We call the density of these pro-
cesses the pair hopping density p(x, t ) and take the convention
that a positive p(x, t ) depletes the charge at position x. Since
these processes are isotropic, a gradient of them can generate a
local charge current j, i.e., j ∝ −∇p. Assuming the system is
entropy-driven and that the entropy density s at position x only
depends on the density at that position, the change in entropy
due to local pair hopping is ∝ − ∇2n when expanding around
a uniform-density equilibrium. In order to understand where
this comes from we can again imagine the displacement of an
amount of charge δn from site x to sites x + dx and x − dx
in equal amounts. To leading order the entropy change due to
this would be

δs ∼= s′[n(x − dx)]
δn

2
− s′[n(x)]δn + s′[n(x + dx)]

δn

2
, (2)
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FIG. 6. Autocorrelations of charge density fluctuations in half-
filled and critical systems. (a) On-site charge autocorrelations at half
filling n̄ = 1. The dashed line represents the subdiffusive scaling
C(0, t ) ∝ t−1/4. Data for C(0, t ) (black crosses) was generated by
simulating the dynamics of 103 samples of systems with L = 103

sites and periodic boundaries out to time t = 106. Averaging was
done over all sites, samples, and windows of time surrounding
each data point shown above. (b) The scaled charge autocorrelation
function for critical systems plotted as a function of x for several
times 104 < t < 108. The scaling exponent was taken to be z = 7.
Data (black crosses) was generated by simulating the dynamics of
8 × 102 samples with L = 103 sites and periodic boundaries out to
time t = 108. Averaging was done in the same way as in part (a).
The curves are associated with times spaced evenly on a log scale
(light to dark blue). (c) The distance at which charge autocorrelations
crossover from positive to negative, i.e., C(xC=0, t ) = 0, in critical
systems (n̄ = 1.5). The dashed line represents the scaling xC=0 ∝ t1/z

again with z = 7. The data is the same as for part (b). (d) Onsite
charge autocorrelations at the critical density n̄ = 1.5. Data and
averaging is the same as in parts (b) and (c). The dashed line
represents the scaling C(0, t ) ∝ t−1/10.

where the prime denotes a derivative with respect to the
argument. Near the maximum-entropy equilibrium n(x) = n̄
we have s′[n] ∼= s′[n̄] + s′′[n̄](n − n̄) and n(x ± dx) ∼= n(x) ±
∇n(x)dx + (1/2)∇2n(x)dx2. Plugging these into Eq. (2) we
get that the leading entropy change is ∝ − ∇2n as stated.
This implies the pair-hopping density is driven by p ∝ −∇2n.
Thus charge currents are driven by the “Fick’s Law” j ∝
∇3n. Combining this with charge conservation ṅ + ∇ j = 0
yields the desired result ṅ ∝ −∇4n, which implies an x ∝ t1/4

scaling for the relaxation of charge density perturbations. This
subdiffusive scaling is also in agreement with a more complete
theoretical framework for the hydrodynamics of thermalizing
systems of fractons that was recently developed [66], and it
was also recently observed in a cold atom quantum simulation
of a “tilted” Fermi Hubbard model [67] with an emergent
dipole moment conservation on length scales larger than the
lattice spacing. Such a platform could provide an experimental
testing ground for studying weak and strong Hilbert space
fragmentation in quantum systems and for investigating phase
transitions between the two like the one studied in this paper.

Finally, in Figs. 6(b)–6(d) we show the charge-charge
correlations of systems exactly at the critical density n̄ = 1.5.

A scenario supported by our data is as follows: At late times
and long distances the charge autocorrelation function at
the critical density scales as C(x, t ) = t−1/zF (x/t1/z ) [see
Fig. 6(b)], where F is a scaling function and z ∼= 7, consistent
with our earlier results shown in Fig. 3. Support for z ∼= 7
can be found by tracking xC=0, the relative position at which
correlations cross over from positive to negative, as a function
of time. This quantity is shown in Fig. 6(c) to scale as
xC=0 ∝ t1/7. At small x the charge autocorrelations decay
more slowly, for example C(0, t ) ∝ t−1/10 [see Fig. 6(d)].
This slower decay at small distances is consistent with a power
law divergence of the scaling function F as its argument goes
to zero: If F (y) ∝ y−η at small x then C(x, t ) ∝ t−(1−η)/z at
those small distances. Thus our data indicates an exponent
η ∼= 0.3. We believe this divergence at short distances is
caused by the low density of small frozen blocks of sites that
remain at finite times; this density was also found to decay as
roughly t−1/10 in critical systems.

IV. SUMMARY AND OUTLOOK

We studied the freezing phase transition encountered when
tuning the average charge density of a one-dimensional
system that conserves its total charge and dipole moment.
In the thermalizing phase the system is weakly fragmented in
the sense that almost all charge configurations are connected
to each other by the stochastic dynamics of our model, and
thus the system eventually reaches equilibrium from typical
initial states. In the frozen phase the set of global charge
configurations is strongly fragmented, so the set of charge
configurations shatters into exponentially many dynamically
disconnected sectors, with no single sector being dominant
over all others, and we explained how this manifests itself
in terms of the growth and isolation of locally weakly frag-
mented active bubbles. These bubbles act as charge baths and
help to thermalize the initially frozen regions of the system,
but in the strongly fragmented phase active bubbles eventually
stop growing and they remain isolated from each other for all
time. We studied the dynamic scaling of these active regions
and found that they self-tune to the critical charge density near
the critical point. Based on this understanding we developed a
solvable simplified model that yields several predictions about
the static properties of the critical point. We also showed
that in the weakly fragmented phase the charge dynamics is
subdiffusive and discussed the prospects for studying these
dipole-conserving systems experimentally.

This work has focused on the classical aspects of Hilbert
space fragmentation in dipole-conserving systems. Two re-
lated questions for future research are then: What are the
distinctly quantum aspects of systems that conserve dipole
moment? and: How is the physics of dipole-conserving sys-
tems related to the glassy phenomenology of other classical
kinetically constrained models?

Note added. Recently, we became aware of related work by
J. Feldmeier, P. Sala, G. de Tomasi, F. Pollmann, and M. Knap
[68]. Where our results overlap they agree.
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APPENDIX A: FOUR-SITE MARKOV GATES

The gates used in this work act on four sites, each with
charge ni ∈ {0, 1, 2}. There are 34 = 81 different local charge
configurations (n1n2n3n4) that a gate can encounter as an
input. When a gate is applied to any of these inputs, the output
is a randomly chosen (with equal probabilities) configuration
on those four sites with the same total charge and dipole
moment as the input. Thus the action of the gate can be
explicitly specified by listing the groups of configurations on
four sites with the same charge and dipole moment. There
are 26 configurations that can only map to themselves under
the action of the gate, 28 that can map to themselves or one
other configuration (14 groups of 2), and 27 that can map
to themselves or two other configurations (9 groups of 3).
All of these groups are labeled by their own distinct (N0, N1)
pair. These groups (and thus the allowed local transitions) are
shown in Table I .

APPENDIX B: SUPERCRITICAL ACTIVE BUBBLES

There are rare conditions under which blocks of active sites
can merge and exceed the nominal critical charge density of
n̄c = 1.5: If two of the idealized bubbles studied in Sec. III C
converge to nA = n̄c on their own, but they end up with only
one or two fully-filled sites between them, then the dynamics
will allow the two middle sites with ni = 2 to become active
(see the rightmost gate in Fig. 1) and the two active blocks will
merge into one. This produces one contiguous block of active
sites with an average charge density slightly greater than n̄c.
We explored this scenario in a series of simulations by evolv-
ing two half-filled active blocks of length LA ∈ {8, 10, 12}
with ni∈A = 1 separated by LA − 1, LA, LA + 1, or LA + 2

TABLE I. Allowed transitions for the four-site Markov gate.
Configurations n1n2n3n4 that have the same charge and dipole
moment are shown in groups of three (left) or two (right). Only
transitions between states within each group are allowed. The two
sets of groups shown contain a total of 55 configurations; the other
26 (of 81) belong to single-state groups, so they are not shown.

0120 0201 1011
0121 0202 1012
0210 1020 1101
0211 1021 1102
0220 1111 2002
1120 1201 2011
1121 1202 2012
1210 2020 2101
1211 2021 2102

0020 0101
0021 0102
0110 1001
0111 1002
0200 1010
0212 1022
0221 1112
1110 2001
1200 2010
1212 2022
1220 2111
1221 2112
2120 2201
2121 2202

−20 0 20

xi − x0

1.4

1.7

2.0

〈n
i〉

(a)

3 × 101 4 × 101 5 × 101

LA,fin

101

102

103

σ
(N

2
)

(b)

FIG. 7. Equilibrium of two merged active blocks. (a) Equilib-
rium charge distributions. The dashed line is at 〈ni〉 = 1.5, the critical
density. The purple curves correspond to the scenarios of two initial
blocks of length LA = 12 sites with ni = 1 separated by an initial
block of length LA + {−1, 0, 1, 2} sites (light to dark) with ni = 2.
Each system was time evolved for t f = 1010 time steps and the
curves represent the steady-state charge density distributions over
four samples during the final 2.5 × 109 time steps. (b) The standard
deviation of the quadrupole moment fluctuations of the final active
sites in equilibrium. The four rightmost data points correspond to
the same simulations that generated the curves in part (a), with
LA = 12. The center and left groups of four data points correspond
to LA = 10 and LA = 8, respectively. The lines are fits of the form
σ (N2) = AL5/2

A,fin, with A = 3 × 10−2, 3 × 10−2, 1 × 10−2, 8 × 10−3

from top to bottom.

fully-filled sites with ni∈F = 2 in an otherwise infinite system
of ni = 2. We ran the dynamics out to 1010 timesteps and
recorded the average charge density and the magnitude of
quadrupole moment fluctuations over samples and late times.
The results are shown in Fig. 7.

In the cases where the middle block of ni = 2 is LA sites
or fewer, the two active blocks are close enough to eventually
merge without exceeding the critical density, and the system
reaches a featureless equilibrium charge distribution. In con-
trast, when there are initially LA + 1 or LA + 2 fully-filled
sites in the middle then the active bubbles reach the critical
density when there are still one or two frozen sites between
them. The dynamics then allows the frozen sites that are left
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in the middle to become (nominally) active and the two active
bubbles coalesce into one that is a total of 1/2 or 1 charge
over the nominal critical density. In these cases at the latest
times the single supercritical active bubble retains a bump of
excess charge density at its center—a memory of its initial
condition—and thus an active block of this type should not
be considered fully thermalizing. Although the central sites
become nominally active, they are not active enough to allow
full thermalization. This is also indicated by the significantly
suppressed fluctuations of the quadrupole moment of the final
active bubble in the supercritical cases [see Fig. 7(b)].

From these “two bubble” simulations we conclude that
even though the conditions for creating “active” blocks with
nA slightly larger than n̄c will arise in typical systems, these

resulting supercritical active blocks do not fully thermal-
ize. Generating these supercritical active blocks requires two
growing active blocks to converge to the critical density
within one or two sites of each other, and this will happen
only rarely as the blocks get large. Sites that thermalize will
definitely be active, while the above examples show that
active sites do not always thermalize. Another example is
the infinitely-repeated charge pattern with spatial period three
sites: ...22122122122122... where all sites become active, but
the average density of n̄ = 5/3 is well above the critical
density and the system does not thermalize. However, we
expect that typical states with n̄ > n̄c will have a nonzero
density of frozen sites, and this density thus still can serve
as a useful order parameter for the freezing, when averaged
over initial states.
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