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We investigate light transport in three-dimensional scattering systems generated according to subrandom
sequences and demonstrate subdiffusive behavior typical of wave transport in disordered systems at the critical
point for metal-insulator-transitions but in a wider range of parameters. Specifically, we solve the electromagnetic
multiple scattering problem using the Green’s matrix spectral theory for aperiodic systems based on Halton,
Sobol, and stochastic Latin hypercube sequences. By studying the Thouless number and the level-spacing
statistics of the electromagnetic resonances at different scattering densities, we demonstrate that light transport
in deterministic Halton and Sobol structures exhibit multifractal behavior characterized by inverse power-law
scaling of level-spacing statistics across a wide range of densities of dipolar scatterers. On the other hand, this
scenario is absent in the stochastic Latin hypercube array, whose behavior instead resembles standard diffusion
in uniform random media. Our findings establish a connection between subdiffusion and subrandom aperiodic
order and provide a strategy to design three-dimensional structures with multifractal properties over a broad
spectral range.
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I. INTRODUCTION

The near-field dipole-dipole coupling between randomly
located scatterers is considered one of the main reasons pre-
venting the onset of a delocalization-localization-transition
(DLT) of vector waves in three-dimensional (3D) disor-
dered systems [1,2]. One of the peculiarities of light trans-
port around the DLT is that it acquires subdiffusive and
multifractal properties, giving rise to the weak localization
regime [3–8]. Due to the uncorrelated nature of the uniform
disorder model [9–12], the DLT is predicted to occur only
when a strong magnetic field is applied to a 3D ensemble
of two-level atoms [13–15]. Moreover, uniform random (UR)
systems lack efficient design protocols, often limiting their ap-
plications to optical design engineering [16,17]. To deal with
these problems, strategies have been developed to localize
electromagnetic fields based on aperiodic order in combina-
tion with defect engineering [18] and tailored disorder [19].
More recently, it has been shown that aperiodic systems that
leverage flat-band physics [20,21] or deterministic aperiodic
geometries [22,23] can support a DLT as well as multifrac-
tality in the optical response across the visible spectrum of
aperiodic nanoparticle arrays based on fundamental structures
of algebraic number theory [24].

In the present paper, we study light transport in 3D aperi-
odic systems generated from subrandom sequences and we
demonstrate a transition from a diffusive to a subdiffusive,
or weak localization, transport regime. Moreover, we found
that these scattering systems behave similarly to a disordered
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medium around the critical DLT point, but across a wider
range of densities of dipolar particles. Generally, localization
arises due to the presence of structural complexity in disorder
media [9–12]. This can result from random fluctuations in the
scattering potentials, such as in the case of Anderson local-
ization, or can be introduced deterministically by leveraging
aperiodic order, which is the approach that we have chosen in
our paper.

Subrandom sequences fill a d-dimensional space more
uniformly compared to uncorrelated random ones [25–27]
and they are extensively used in statistical sampling theory
where they provide superior accuracy and convergence prop-
erties [28,29]. Interestingly, we show that the mathematics
of subrandom sequences offers unique opportunities for the
design of a class of complex media with enhanced light-matter
interaction properties with respect to standard UR systems.
Specifically, using the rigorous dyadic Green’s matrix spectral
method, we study the light transport properties of 3D arrays of
electric dipoles geometrically arranged according to the Hal-
ton, Sobol, and Latin-hypercube (LH) subrandom sequences.
By performing a scaling analysis of the Thouless number [30]
and by evaluating the first-neighbor level-spacing statistics of
the complex Green’s matrix eigenvalues, we observe clear
signatures of a transition into a subdiffusive (i.e., weak
localization) regime in the Halton and Sobol configurations,
which we found to be hyperuniform deterministic structures.
In particular, we discover that this transition in subrandom
hyperuniform media is described by level-spacing statistics
that does not follow the Ginibre’s ensemble of random ma-
trix theory and does not exhibit Poisson statistics at large
scattering density, as for random media in a strong magnetic
field [13–15]. Instead, we find that the probability density
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function of the level-spacing statistics of the Halton and Sobol
configurations is well-reproduced by the Gaussian unitary
ensemble (GUE) of random matrices in the diffusion regime
and by an inverse power-law scaling in the weak localization
regime. On the other hand, we find that the structures gen-
erated by the LH stochastic algorithm are not hyperuniform
and do not show any signature of weak localization of vector
waves.

By systematically comparing both the structural properties,
up to the fourth-level correlation order, and the spectral prop-
erties of subrandom media with the ones of UR structures,
we attribute the observed weak localization behavior to the
following structural features: (i) a probability density function
for the nearest-neighbor separation of the particles that is
smaller at short distances from the one of homogeneous
Poisson point patterns [31] and (ii) the inhibition of long-
wavelength density fluctuations. Importantly, these distinc-
tively geometrical characteristics reduce the possible excita-
tion of proximity resonances, which are “dark” subradiant
modes localized over just few scatterers [32]. In turn, this
helps reduce the near-field mediated dipole-dipole interac-
tions, which have been recently identified as key contributions
that prevent the occurrence of light localization in 3D UR
media [33].

II. GEOMETRICAL PROPERTIES OF LOW
DISCREPANCY SEQUENCES

The 3D scattering media considered in this paper have
been designed using the theory of subrandom sequences. This
theory is concerned with point sets and sequences having
a uniform distribution inside a real interval, such as the
distribution of the fractional parts of certain sequences of real
numbers {xn} = xn − [xn] in the unit interval I = [0, 1). Here
[xn] denotes the integer part of xn, which is the greatest integer
smaller or equal to xn. The fundamental notion is the one of an
equidistributed sequence, or a sequence uniformly distributed
modulo one, and abbreviated u.d. mod(1). A sequence xn of
real numbers is said to be u.d. mod(1) when the proportion of
terms falling inside any half-open subinterval of I is propor-
tional to the length of that interval. More formally, xn is said
to be u.d. mod(1) is if it satisfies the relation

lim
N→∞

A([a, b); N )

N
= b − a (1)

for every pair of real numbers a and b with 0 � a < b � 1,
where A([a; b); N ) denotes the number of terms xn with 1 �
n � N for which the fractional parts of xn belong to the inter-
val [a; b) [26]. Informally, this definition means that a number
sequence xn is u.d. mod(1) if every half-open subinterval of I
eventually contains its “proper share” of fractional parts.

A central theorem in the theory of equidistributed se-
quences is the Weyl criterion that provides the necessary
and sufficient condition for a general sequence xn to be u.d.
mod(1) in terms of the asymptotic behavior of the correspond-
ing exponential sum. The Weyl’s theorem [26], which can be
generalized in any dimension, states that an arbitrary sequence

xn of real numbers is u.d. mod(1) if and only if

lim
N→∞

1

N

N∑
n=1

e2π iqxn = 0 (2)

for all integers q �= 0. We note that the trigonometric sum
appearing above coincides with the array factor of kinematic
diffraction theory. In particular, its squared modulus is propor-
tional to the far-field diffracted intensity from an array of point
scatterers with coordinates xn. Therefore, Weyl’s theorem
implies that large-scale arrays of point scatterers that form
a u.d. mod(1) sequence strongly suppress far-field scattering
radiation everywhere, except along the forward direction.

The degree of uniformity of equidistributed sequences is
quantified by the mathematical concept of discrepancy. For
a 1D sequence xn of N real elements, the discrepancy DN =
DN (x1, . . . , xn) is defined by [26]

DN = sup
0�a<b�1

∣∣∣∣A([a, b); N

N
− (b − a)

∣∣∣∣. (3)

For any sequence of N numbers, we have 1/N � DN � 1.
Clearly, the discrepancy DN of a sequence xn will be low if
the fraction of points falling into an arbitrary subset of the
unit interval is close to be proportional to the length of the
interval. An important theorem establishes that a sequence
xn is u.d. mod(1) if and only if limN→∞ DN = 0 [25],
thus proving a fundamental equivalence between uniform
sequences mod(1) and zero-discrepancy sequences. Finite-
length sequences with such asymptotic property are often
referred to as subrandom, low-discrepancy, or quasirandom
sequences. They differ substantially from traditional random
or pseudorandom sequences, such as the ones utilized in
random number generators. In fact, while pseudorandom gen-
erators uniformly produce outputs in such a way that each
trial has the same probability of falling on equal subintervals,
subrandom sequences are constrained by the low-discrepancy
requirement and each point is generated in a highly corre-
lated manner [25]. As a result, subrandom sequences cover
a given range of interest more quickly and more evenly
than randomly generated numbers (see also Fig. 1) [25,26].
For this reason, subrandom sequences are extensively used
in statistical modeling techniques, such as the quasi-Monte
Carlo method [28,29], where they provide better accuracy
and faster numerical convergences [25–29]. Interestingly, the
elements of subrandom sequences can be generated either in
a deterministic fashion, as in the case of the Halton and Sobol
sequences, or by a stochastic algorithm, as in the case of the
LH sequence.

The principal example of a subrandom sequence is pro-
vided by the van der Corput sequence, which represents the
fundamental building block for the construction of many
others [26]. It is defined by reversing the base b representation
of the number n, as explained below. Let b � 2 be a positive
integer and Zb = {0, 1, . . . , b − 1} the least residue system of
modulo b. Then, every positive integer n � 0 has a unique
expansion in base b,

n =
m−1∑
k=0

ak (n)bk, (4)
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FIG. 1. (a)–(c) 104 electric point dipoles spatially distributed by following the Halton (green points), Sobol (red points), and Latin
hypercube (grey points) subrandom sequences. (d)–(f) Nearest-neighbor distance probability density function of the point patterns reported on
top of each panels. Panel (f) compares the Rayleigh density function, which describes the nearest-neighbor distance distribution of uniform
random (UR) point processes [31], with the averaged probability density of the nearest-neighbor separation of the dipoles in the LH arrays. The
average is performed with respect to 1000 different LH realizations. The continuous black lines identify the decay behavior of the dipole-dipole
interaction term that it is proportional to 1/r3

i j . The scaling of the number of variance μ2 = 〈N (R)2〉 − 〈N (R)〉2 of 104 particles arranged by
following the Halton, Sobol, and LH subrandom sequences within a spherical observation window of radius R is reported in panels (g)–(i),
respectively. Panel (i) displays in blue line the average value of the μ2 two-point correlation function performed over 2000 different UR
realizations. Higher-order correlation functions γ1 and γ2 of the Halton (j), Sobol (k), and LH (l) arrays. Panel (l) displays the analytical trends
of the skewness and excess of uncorrelated Poisson processes in continuous and dotted blue lines, respectively. The error bars of panels (f), (i),
and (l) are the statistical errors evaluated with respect to 2000 different realizations of LH point patterns.
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where ak (n) ∈ Zb and m is the smallest integer such that
ak (n) = 0 for all j > m [34]. To define the van der Corput
sequence, we have to introduce the so-called radical inverse
function [26]. For an integer b � 2, consider the expansion
Eq. (4) with n ∈ N. The function φb : N → [0, 1), defined as

φb(n) =
m−1∑
k=0

ak (n)b−k−1, (5)

is the radical inverse function in base b. In reversing the
number representation, this function makes sure that its values
lie in the (0,1) interval. Moreover, φb(n) can be obtained from
n by a symmetric reflection of the expansion Eq. (4) with
respect to the decimal point. The sequence with terms xn =
φb(n) is the base-b van der Corput sequence, where b > 1 is
a fixed prime number [26]. This sequence has a discrepancy
that scales with the number of elements N as ∼ ln(N )/N [26].

The Halton sequence is a multidimensional extension of
the van der Corput sequence. To build the Halton sequence,
we use the van der Corput sequence with different bases
for each spatial dimension. To generate the 3D Halton array
reported in Fig. 1(a), we have used the sequences φb(2), φb(3),
and φb(5) in correspondence to the x, y, and z coordinates
of the electric point dipoles [35]. On the other hand, the
generation of the deterministic Sobol configuration shown in
Fig. 1(b) is more sophisticated and requires us to permute the
order of the elements of the van der Corput sequence. This
procedure relies heavily on number theory and on the prop-
erties of primitive polynomials to implement permutations
along each dimension [36]. The theoretical underpinnings
regarding the generation of the Sobol sequence can be found
in Ref. [37]. Finally, in Fig. 1(c), we display a realization
of an array generated using the stochastic algorithm known
as LH sampling [34]. This method of generating subrandom
sequences is fundamentally different from the previous ones
since it is no longer deterministic. In its implementation, it
divides each dimension of space into N equally probable
sections and positions the values of a UR variable in each
row and in each column of the grid. This step is repeated to
distribute random samples in all sections of the grid with the
requirement that there must be only one sample in each row
and each column of the grid, ensuring that different random
samples are never spaced too closely in each dimension [34].

To obtain more insight on the structural properties of these
aperiodic media, we analyzed the probability density function
P(d1) of the nearest-neighbor distance, which is among the
most important model utilized in the analysis of spatial point
patterns [31]. In Figs. 1(d)–1(f), we report the calculated
statistical distributions of the nearest spacing d1, normalized
by the averaged first-neighbor spacing d1. We found that
the Halton and the Sobol configurations are characterized
by highly fragmented P(d1) statistics with large amplitude
fluctuations, while the distance distribution of the dipole array
generated using the stochastic LH algorithm is essentially
indistinguishable from the one of a Poisson point process.
Indeed, in Fig. 1(f) we compare the averaged 〈P(d1)〉e, where
the subscript e refers to the ensemble average with respect
to 1000 different realizations of the disorder, of an LH array
(grey bars) with the analytical result (blue line) corresponding
to a UR array. For UR arrays, the nearest-neighbor distance is

statistically described by the Rayleigh density function [31]

P(d1) = d1

σ 2
e−d2

1 /2σ 2
(6)

for d1 � 0 where the variance σ is equal to
√

1/2πμ and
μ is the so-called intensity of the Poisson point process,
i.e., the average number of points per unit volume [31]. As
shown in Fig. 1, the probability to find electric dipoles with
a normalized separation lower than 0.5 is very low in the
Halton and Sobol arrangements, while the 〈P(d1)〉e of the
LH, which is well described by the Rayleigh distribution, is
significantly larger. This distinctive structural difference has a
dramatic effect on the strength of the dipole-dipole coupling
term, which scales proportionally to 1/r3

i j [black lines in
Figs. 1(d)–1(f)] as well as on the light localization properties
of the arrays. In fact, will be shown later in the paper, weak
light localization occurs in the 3D and deterministic Halton
and Sobol arrays but not in the LH or UR stochastic structures.

To further characterize the structural properties of subran-
dom arrays, we have evaluated the number variance, skew-
ness, and excess (or kurtosis), which are higher-order cor-
relation functions [38,39]. Indeed, each of these statistical
measures can be defined in terms of the moments

μ j = 〈(n − 〈n〉) j〉, (7)

where n is the number of elements in an interval of length
L and 〈. . .〉 represents an average taken over many such
intervals throughout the entire system [38,39]. In particular,
the number variance μ2 is a measure of two-point correlations
and enables the identification of the hyperuniform behavior
of arbitrary point patterns. Hyperuniformity, a concept intro-
duced by Torquato and Stillinger [40], is a correlated state of
matter characterized by the suppression of long-wavelength
density fluctuations [41]. This condition leads to the vanishing
of the structure factor S(k) → 0 in the limit k → 0 [41].
Equivalently, in 3D structures, hyperuniform systems are
characterized by considering the scaling of the fluctuations of
the number of points NR contained within a spherical window
of radius R, quantified by the growth of the variance μ2 =
〈N2

R〉 − 〈NR〉2 with respect to R. Specifically, a point pattern in
d Euclidean dimensions is hyperuniform if μ2 grows slower
than Rd . This feature is clearly reported in Figs. 1(g) and 1(h)
where the density fluctuations of the Halton (green-diamond
markers) and Sobol (red-diamond markers) scale proportion-
ally to R2 (black-dashed line fits), demonstrating their hyper-
uniform nature. On the other hand, in Fig. 1(i), we compare
the ensemble averaged (over 1000 stochastic realizations)
density fluctuations of the arrays generated according to the
LH algorithm (gray markers) and of a traditional Poisson point
process (blue line). In both cases, we show that the number
variance grows with the volume of the spherical window
instead with surface, i.e., μ2 ∝ R3 (black-dashed line fit),
indicating that UR and LH structures are not hyperuniform
(see also the inset of Fig. 1(i) ). Hyperuniform patterns arise
in a variety of biological, mathematical, and physical contexts,
which includes glass formations [42], colloidal packing, and
hard-sphere packing [43–45], avian retina [46], immune sys-
tems [47], large-scale observations of the universe [48], and
in the engineering of photonic devices [49–52], to cite a few.
The present paper adds another piece to this puzzle, showing
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that aperiodic scattering 3D media based on deterministic
subrandomness are also hyperuniform.

We now discuss higher-order correlations. The γ1 and the
γ2 functions are defined in terms of the moments Eq. (7)
as [38,39]

γ1 = μ3μ
−3/2
2 , γ2 = μ4μ

−2
2 − 3, (8)

where μ3 and μ4 express the three-level and four-level
correlations, respectively. These high-order correlation func-
tions are reported in Figs. 1(j)–1(l) and display, as ex-
pected, a very different behavior in the Halton [Fig. 1(j)] and
Sobol [Fig. 1(k)] configurations with respect to the LH one
[Fig. 1(l)], that was averaged over 2000 different relations.
Different from the uncorrelated Poisson point process [contin-
uous and dotted blue lines in Fig. 1(l)], the Halton and Sobol
subrandom arrays are characterized by a skewness and an
excess that goes to zero in the R/d1 < 1 range. This difference
is attributed to intrinsic higher-order correlation effects [39].
Moreover, γ1 and γ2 go to zero for all the arrays when
R/d1 � 1. The approach to zero, however, is faster for the Hal-
ton and Sobol arrays, demonstrating the effects of third- and
fourth-order structural correlations [39]. On the other hand,
Fig. 1(l) shows that the LH array has no structural correlations
up to the fourth-level correlation order. Indeed, both their
higher-order correlations functions nicely match the analytical
expressions γ1 = a(R/〈d1〉e)−3/2 and γ2 = b(R/〈d1〉e)−3 that
are valid for an uncorrelated Poisson process. Here the coeffi-
cients a and b are equal to 1/2

√
ρ and 1/3ρ, respectively. The

parameter ρ is the scatterers density N/V , while N and V are
the number of point and the volume, respectively.

III. SPECTRAL PROPERTIES OF LOW
DISCREPANCY SEQUENCES

We now investigate the spectral and wave localization
properties of 3D electric dipole arrays generated according to
Halton, Sobol, and LH subrandom sequences. Multiple scat-
tering effects in these scattering media are studied by analyz-
ing the properties of the Green’s matrix with elements [53,54]

Gi j = i(δi j + G̃i j ), (9)

where G̃i j has the form

G̃i j = 3

2
(1 − δi j )

eik0ri j

ik0ri j

{
[U − r̂i j r̂i j]

− (U − 3r̂i j r̂i j )

[
1

(k0ri j )2
+ 1

ik0ri j

]}
(10)

when i �= j and 0 for i = j. k0 is the wave vector of light,
the integer indexes i, j ∈ 1, . . . , N refer to different parti-
cles, U is the 3×3 identity matrix, r̂i j is the unit vector
position from the ith and jth scatter while ri j identifies its
magnitude. The real and the imaginary parts of the complex
eigenvalues �n (n ∈ 1, 2, . . . 3N) of matrix Eq. (9) are
related to the detuned scattering frequency (ω0 − ω) and to
the scattering decay 
n both normalized to resonant width

0 of a bare dipole [53,54]. This spectral approach accounts
for all the multiple scattering orders of arbitrary arrays of
electric scattering point dipoles, so the multiple scattering

process is treated exactly. In addition, this method separates
the structural properties of arbitrary scattering systems from
their material characteristics. Therefore, the predictions of
the Green’s approach should be considered “universal” in the
limit of electric dipole scatterers that is valid for particles
with small size parameter x = kr̂ (k is the wave number and
r̂ is the particle radius). However, this method can also be
extended to include higher-order multipolar resonances [55],
which are outside the scope of the present paper. The study of
the spectral properties of the non-Hermitian Green’s matrix
Eq. (9) is an excellent approximation in the case of atom
clouds or of metal/dielectric particles whose size is much
smaller than the wavelength [56]. Cold atoms might represent
a suitable alternative to dielectric materials to experimen-
tally investigate light transport in 3D environments. Indeed,
even though state-of-the-art lithographic techniques allowed
the realization of complex 3D polymeric photonic inverted
networks [57–59], the fabrication of deterministic volumetric
structures embedded in a polymer matrix is one of the key
challenges of materials science today. On the other hand,
quantum-gas microscopes [60] enabled the engineering of
one [61], two [62], and even 3D [63–66] optical potentials
with arbitrary shapes while keeping single-atom control to
simulate models from condensed-matter physics in highly
controlled environments. Therefore, 3D optical scattering
potentials based on engineered subrandom sequences could
be effectively achieved [66], providing suitable platforms to
experimentally demonstrate the results of this paper.

To investigate the nature of light localization in these 3D
aperiodic structures, we have analyzed the scaling of the min-
imum value of Thouless conductance and the level-spacing
statistics as a function of the scattering density ρ/k3

0 . Here
k0 is the vacuum wave number. Specifically, we have studied
these spectral properties by numerically diagonalizing the
3N×3N Green’s matrix Eq. (9) that, in the present paper, can
describe the propagation of light in 3D atomic clouds with
subrandom geometries based on the Halton, Sobol, and LH
sequences.

At low scattering density (ρ/k3
0 = 0.001), allinvestigated

systems are in the diffusive regime. Their eigenvalue dis-
tributions, color coded according to the log10 values of the
modal spatial extent (MSE) [67], do not show any particular
features. The MSE, which quantifies the spatial extension of
a given scattering resonance �i of the system, is defined as
follows [67]:

MSE =
(

3N∑
i=1

|�i|2
)2/ 3N∑

i=1

|�i|4, (11)

where N indicates the total number of scattering particles.
While Figs. 2(a) and 2(b) display a very similar distribution
of complex scattering resonances delocalized across their 3D
geometrical supports (note their very high MSE values), the
eigenvalue distributions of the LH configurations resemble
the ones of the standard UR system [1,2]. These results are
corroborated by the behavior of the Thouless number g as a
function of the normalized frequency ω evaluated as [22]

g(ω) = δω

�ω
= (1/�[�n])−1

�[�n] − �[�n−1]
. (12)
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FIG. 2. Eigenvalues of the electric Green’s matrix Eq. (9) in the
low scattering regime (ρ/k3

0 = 0.001) of the Halton (a), Sobol (b),
and LH (c) subrandom sequences, respectively. Panels (d)–(f) show
the corresponding Thouless numbers as a function of the frequency
ω. Panel (f) compares the averaged Thouless number 〈g(ω)〉e (the
subscript e refers to ensemble average with respect to 100 different
realizations) of the LH sequence (square gray markers) with respect
to the traditional UR distribution (blue dots). The error bars are the
standard deviations. The dashed-black lines identify the threshold of
the diffusion-localization transition.

Specifically, we have subdivided the range of the resonance
frequencies in 500 equispaced intervals and we have calcu-
lated the ratio between the average value of the dimensionless
lifetimes and the average spacing of nearest dimensionless
resonant frequencies for each frequency subinterval. The sym-
bol {. . .} in Eq. (12) indicates this average operation, while
the normalized frequency ω is the central frequency of each
subinterval used to sample the �[�n] [22]. As expected, we
found that at low scattering density the Thouless number is
always larger than the one in Figs. 2(d)–2(f) for all analyzed
clouds. Moreover, the averaged Thouless number 〈g(ω)〉e of
the LH sequence (square gray markers) is very similar to
the averaged Thouless number of traditional UR systems
(blue dots), as shown in Fig. 2(f). The subscript e refers to
ensemble average with respect to 100 different Poisson and
LH realizations.

On the other hand, at large scattering density ρ/k3
0 = 0.5,

light interacts differently with the two deterministic and hy-
peruniform 3D subrandom arrays. As shown in Fig. 3, while
the stochastic LH subrandom configuration shows a delocal-
ized regime dominated by proximity resonances [dark-grey
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FIG. 3. Eigenvalues of the electric Green’s matrix Eq. (9) are
shown by points on the complex plane for 2000 electric dipoles ar-
ranged by following the Halton (a), Sobol (b), and LH (c) subrandom
sequences. These complex eigenvalue distributions are produced
when ρ/k3

0 is equal to 0.5. Panels (d)–(f) show the corresponding
Thouless conductances as a function of the frequency ω. Panel (f)
compares the averaged Thouless conductance 〈g(ω)〉e (the subscript
e refers to ensemble average with respect to 100 different realiza-
tions) of the LH sequence (square gray markers) with respect to
the traditional UR distribution (blue points). The error bars are the
standard deviations. The dashed-black lines identify the threshold of
the diffusion-localization transition.

markers in Fig. 3(c)], the Halton and the Sobol deterministic
configurations are characterized by (i) the formation of spec-
tral gaps, (ii) the absence of proximity resonances, and (iii) a
Thouless number lower than one. The absence of subradiant
dark resonances, attributed to the previously discussed corre-
lation properties of the Halton and Sobol arrays, is reflected
in the formation of clear spectral gaps in their distributions
of complex poles. These features reduce drastically the near-
field interaction term in Eq. (10), allowing 3D weak light
localization to appear in such systems. On the contrary, this
scenario does not occur in traditional UR systems nor in
the structures based on LH sequences. In these cases, weak
localization of vector waves is inhibited due to the strong
dipole-dipole interactions resulting from the close particles
encounters described by the Rayleigh first-neighbor distance
probability distribution, as shown in Fig. 1(f).

To get more insight on the discovered transition from the
diffusive to the weak localization regime, we have analyzed
the scaling of the minimum value of the Thouless number of
arrays with 2000 (pink markers), 4000 (orange markers), 6000
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FIG. 4. Panels (a)–(c) display the scaling of the minimum value
of the Thouless conductance as a function of ρ/k3

0 for Halton (a),
Sobol (b), and LH (c) subrandom sequences, respectively. The pastel
rose, orange, blue, and yellow markers refer to 2000, 4000, 6000,
and 8000 electric dipoles, respectively. The error bars in panel (c) are
the standard deviations related to the different disorder realizations.
The number of independent configurations were adjusted to ensure a
total of at least 2×105 eigenvalues for each N . (d) Minimum of the
Thouless conductance as a function of the scattering strength ρ/k3

0 of
Halton (green circle markers), Sobol (red diamond markers), and LH
(grey square markers) as compared to the uniform random configu-
ration ensemble averaged over 100 different disordered realizations
(blue-black pentagrams markers). One hundred different realizations
were also considered for the LH sequence. The error bars take into
account the different frequency resolutions (see text for more details)
used during the Thouless conductance calculations for the Halton and
Sobol configurations. In the LH and UR sequences, the error bars are
statistical errors related to the different disorder realizations. More-
over, the proximity resonances were removed during this analysis.

(blue markers), and 8000 (yellow markers) electric dipoles as
a function of the scattering density. The results of this analysis
are reported in Figs. 4(a)–4(c) for Halton, Sobol, and LH
clouds, respectively. Specifically, we have evaluated g = g(ω)
by employing Eq. (12) for each ρ/k3

0 value and we have re-
peated this procedure for different frequency resolutions used
in the computation of the Thouless number. Figure 4 reports
their averaged values min[g] and their standard deviations as
error bars. In the LH configuration, we also performed an
average with respect to different stochastic realizations. The
number of independent realizations were adjusted to ensure a
total of at least 2×105 eigenvalues for each N. The scaling
of min[g] as a function of the scattering density exhibits
a clear trend from min[g] > 1 to min[g] < 1, describing a
transition into the weak localization regime for the Halton
and Sobol structures. Localization begins to take place at
ρ/k3

0 approximately equal to 0.25 and 0.4 in the Halton and
Sobol configurations, respectively. In contrast, the averaged
value of the minimum value of the Thouless number is always
larger than one in dipole arrays generated by LH stochastic
sequences [see inset of Fig. 4(c)]. Finally, in Fig. 4(d), we
compare min[g] of the low-discrepancy sequences with the

10-1 100

10-2

100

0 1 2 3
0

0.5

1

100

10-2

100

0 1 2 3
0

0.5

1(a) (b)

(d)(c)

FIG. 5. Probability distribution functions of level spacing statis-
tic of 6000 Green’s matrix eigenvalues for two different scattering
regimes: ρ/k3

0 = 10−3 (a), (b) and ρ/k3
0 = 1 (c), (d) for Halton

(green) and Sobol (red), respectively. The nearest-neighbor distribu-
tion of the eigenvalues of the Gaussian unitary ensemble, described
by the Eq. (13), and the prediction from the Ginibre’s ensemble
of random matrices are displayed for comparison in panels (a) and
(b) with continuous and dotted black lines, respectively. Panels
(c) and (d) show that the PDFs of level-spacing statistics of the
Green’s matrix eigenvalues of Halton and Sobol 3D subrandom
point patterns does not follow the traditional Poisson distribution e−ŝ

(black-dotted lines) but a power-law statistic ŝ−β (black continuous
lines) in the large scattering regime. The values of the fitted β

are 1.7±0.1 and 1.8±0.1 in the Halton and Sobol configurations,
respectively.

case of traditional random media (pentagram markers) when
N = 2000. Consistently with the first-neighbor probability
distribution, the higher-order correlation analysis, the com-
plex eigenvalues distributions, and the study of the Thouless
number, we found that LH and UR display a very simi-
lar behavior. These findings underline a fundamental con-
nection between the structural/geometrical properties of the
arrays and their ability/inability to localize electromagnetic
waves.

To further understand the nature of the discovered tran-
sition, we have studied the probability density function of
the first-neighbor level spacing statistics of the complex
Green’s matrix eigenvalues P(ŝ), where ŝ=|��|/〈|��|〉 is
the nearest-neighbor eigenvalue spacing |��|=|�n+1 − �n|
normalized to the average spacing. This analysis is sum-
marized in Fig. 5. It is well-established that the suppres-
sion of the level repulsion phenomenon, i.e., P(ŝ) → 0
when ŝ → 0, indicates the transition to localized states in
both uniform [13,68] and nonuniform open-scattering sys-
tems [22,55]. The distributions of level spacing of Fig. 5 show
a clear crossover from level repulsion at low optical density
[see Figs. 5(a) and 5(b)] to the absence of level repulsion at
large optical density [see Figs. 5(c) and 5(d)], which is akin
to the situation observed in UR media under a strong mag-
netic field [13]. However, despite this similarity, the observed
transition from level repulsion to level clustering presents
substantial differences with respect to the UR scenario,

214204-7



F. SGRIGNUOLI AND L. DAL NEGRO PHYSICAL REVIEW B 101, 214204 (2020)

indicating that a different localization mechanism governs
light interaction in the Halton and Sobol subrandom struc-
tures. In fact, we found that at low ρ/k3

0 , the distribution of the
level spacing predicted by the Ginibre’s ensemble of random
matrices, which describes open UR systems [13,69], does not
well reproduce our spectral statistics, as shown in Figs. 5(a)
and 5(b) in dotted black lines. Instead, an excellent agreement
was found using the GUE formula [38,69]:

P(ŝ) = 32 ŝ2

π2
e−4ŝ2/π . (13)

We emphasize that the black curves (continuous and dotted)
in Figs. 5(a) and 5(b) are not the results of a numerical fitting
procedure but are simply obtained using Eq. (13) and the
expression of the probability density for the normalized com-
plex eigenvalue spacing of the Ginibre’s ensemble of random
matrices [13,69]. The GUE distribution falls off quadrati-
cally for ŝ → 0 [38,69], demonstrating that the eigenvalues
of the Halton and Sobol exhibit quadratic level repulsion
in the low scattering density regime. Interestingly, the GUE
distribution Eq. (13) has also been discovered in the spacing
of the nontrivial zeros of the Riemann’s zeta function [70],
whose properties are intimately related to the distribution of
prime numbers [71]. Such a discovery motivated the Mont-
gomery’s conjecture [72] that the pair-correlation function
of the nontrivial Riemann’s zeros is essentially determined
by the properties of random Hermitian matrices. The fun-
damental connection between the Riemann’s zeros and ran-
dom unitary matrices may provide a fruitful approach to
a proof of the Riemann hypothesis [73]. Interestingly, our
findings provide an unexpected connection between the GUE
distribution, associated to the distinctive distribution of the
Riemann’s zeros, and wave transport (in the low scattering
regime) through Sobol and Halton deterministic subrandom
structures.

Additionally, at large optical density we observed a sub-
stantial deviation [black-dotted lines in Figs. 5(c) and 5(d)]
from the Poisson statistics that typically describes noninter-
acting exponentially localized energy levels [38,69] in UR
systems. In contrast, the level spacing distributions for Halton
and Sobol configurations, shown by the green circle and red
diamond markers in Figs. 5(c) and 5(d), are well reproduced
by the inverse power-law scaling curves P(ŝ) ∼ ŝ−β shown
by the continuous black lines, with the exponent β equal to
1.7±0.1 and 1.8±0.1, respectively. In the context of random
matrix theory, it has been demonstrated that this particular
distribution is a characteristic of complex systems with mul-
tifractal spectra (uncountable sets of hierarchical level clus-
tering) [74,75]. Moreover, this power-law scaling appears to
universally describe the transport physics, with values of the
exponent β in the range 0.5 < β < 2, of systems exhibiting
anomalous diffusion, i.e., systems in which the width of a
wave packet σ 2 increases upon propagation like t2ν with
ν ∈ [0, 1] [74,76]. Specifically, such a behavior was observed
in 1D scattering systems characterized by incommensurate
sinusoidal modulations, in quasiperiodic Fibonacci structures,
and in a family of tight-binding Hamiltonians defined on
2D octagonal quasiperiodic tilings [75,77,78]. The expo-
nents β and ν can be related to the average (box-counting)
fractal dimension D0 of the diffusing system through the

relation [74,75,79]

σ 2(t ) ∼ t2ν = t2D0/d = t2(β−1)/d , (14)

where d is the system dimensionality. By substituting the
numbers obtained from the numerical fits of the data in
Figs. 5(c) and 5(d) into Eq. (14), we find that the exponent
ν is equal to 0.23 ± 0.03 and 0.27 ± 0.07 for the Halton and
Sobol configurations, respectively. The fact that ν is lower
than 0.5 in both configurations indicates that the propagation
of wave packets throughout such structures is subdiffusive,
potentially enabling subdiffusive laser structures that lever-
age deterministic subrandomness as an effective approach
to achieve reduced amplification thresholds and footprints
compared to traditional random lasers [80]. Interestingly,
the behavior that we observed in deterministic subrandom
structures closely resembles the electronic transport in 3D
weakly disordered systems at the metal-insulator-transition
where multifractality has been demonstrated [81] with the
subdiffusive exponent ν = 0.2 [8,81–83]. This result rede-
fined the standard picture of localization demonstrating that
subdiffusion, which is produced by weak localization ef-
fects [7], is an intermediate step between the diffusive and the
fully localized regime [8]. By following this interpretation, the
reported crossover between level repulsion and level cluster-
ing in Fig. 5 can be explained as a transition from a diffusive
to a weak localization regime in which the scattering reso-
nances are multifractal and the transport dynamics becomes
subdiffusive.

Our findings clearly establish that deterministic subrandom
structures strongly reduce dipole-dipole interactions, resulting
in the reported transition to weak localization of light in 3D
complex environments.

IV. CONCLUSIONS

In conclusion, we have systematically investigated the
structural and spectral properties of electromagnetic wave
scattering systems consisting of 3D arrays of electric dipoles
with subrandom aperiodic order. We demonstrated determin-
istic aperiodic scattering systems that exhibit in a wide range
of parameters the multifractal behavior typical for the critical
point of DLT in random media. Specifically, by performing a
scaling analysis of the Thouless number and by studying the
first-neighbor level-spacing statistics of the complex Green’s
matrix eigenvalues, we have established a clear transition
from a diffusive to a weak localization regime in the Halton
and Sobol structures, which are characterized by a power-law
level spacing at large optical density and by GUE statistics in
the diffusive regime. Moreover, we have also shown that sub-
random structures generated by the stochastic LH sequence do
not show any signatures of light localization. By comparing
both the structural, up to the fourth-level correlation order,
and the scattering properties of subrandom structures with the
ones of UR media, we established two properties of primary
importance to achieve weak localization of electromagnetic
waves: (i) a marked deviation from a Rayleigh probability
distribution for the first-neighbor spacing statistics of UR sys-
tems and (ii) the suppression of the long-wavelength density
fluctuations. These structural features lead to the absence of
proximity resonances and a reduction of the dipole-dipole
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interactions that should not surpass a critical strength to
achieve light localization in 3D systems. Our analysis clearly
shows that the strength of the dipole-dipole coupling between
vector dipoles is drastically reduced in the Halton and Sobol
configurations due to their structural correlation properties.
Recent developments in quantum-gas microscopes have al-
lowed the creation of 3D resonant optical traps of arbitrary
shapes while keeping single-atom control. These techniques
may offer a reliable platform to experimentally demonstrate
the results of our paper.
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