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The active harnessing of quantum resources in engineered quantum devices poses unprecedented require-
ments on device control. Besides the residual interaction with the environment, causing environment-induced
decoherence, uncontrolled parameters in the system itself—disorder—remain as a substantial factor limiting the
precision and thus the performance of devices. These perturbations may arise, for instance, due to imperfect
sample production, stray fields, or finite accuracy of control electronics. Disorder-dressed quantum evolution
means a unifying framework, based on quantum master equations, to analyze how these detrimental influences
cause deviations from the desired system dynamics. This description may thus contribute to unveiling and
mitigating disorder effects towards robust schemes. To demonstrate the broad scope of this framework, we
evaluate two distinct scenarios: a central spin immersed in an isotropic spin bath and a random mass Dirac
particle. In the former scenario, we demonstrate how the disorder average reflects purity oscillations, indicating
the time- and state-dependent severity of the disorder impact. In the latter scenario, we discuss disorder-induced
backscattering and disorder-induced Zitterbewegung as consequences of the breakup of spin-momentum locking.
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I. INTRODUCTION

The transformation of quantum science into an application-
oriented engineering discipline comes with the promise of
groundbreaking technologies, ranging from sensors with un-
precedented precision, to spintronics, to communication and
computing devices with quantum principles at their core.
A diverse family of highly controllable systems, leveraging
trapped ions [1–3], ultracold gases [4–6], superconducting
qubits [7–11], quantum dots [12–15], spin impurities in solids
[16–18], photonics [19–27], and polaritons [28–30], to name
a few, is being developed to deliver the basic building blocks
for the storage, processing, and transport of quantum states.

Achieving and upholding the desired functionality of these
devices pose enormous challenges for system preparation,
isolation, and control: Any accidental interaction with the
environment, i.e., decoherence, can rapidly deteriorate the
quantum resources, which is usually counteracted by cooling
and isolating the systems. Similarly, uncontrolled variations
of system parameters, disorder, while maintaining quantum
coherence, can have a significant detrimental impact on the
functionality of devices, in that they distort their intended
functionality. These variations may be caused, e.g., by impu-
rities in the sample, stray fields, or limitations in their external
control, for instance, accidental gate overrotations in quantum
computing devices. In many cases, such disorder constitutes
one of the dominant remaining sources of error [31–44].

The framework of disorder-dressed quantum evolution
aims to capture and characterize the disorder-induced devia-
tions of quantum systems from their intended dynamics. This
is accomplished in terms of quantum master equations. The

*clemens.gneiting@riken.jp

disorder impact on the evolution of the disorder-averaged state
can then be understood, in analogy to the effect of a quan-
tum environment, in terms of the—in general incoherent—
deviations from the desired system dynamics. Understanding
these deviations may then not only help to unveil fundamental
disorder effects, but also contribute to error analysis and miti-
gation in emerging quantum technologies [45–47]. Mitigation
of disorder-induced errors is, for instance, reflected in the
design of transmon qubits (charge noise suppression) [48],
topological insulators (backscattering-immune edge trans-
port) [49,50], and variational-Hamiltonian hybrid algorithms
(gate error mitigation) [51].

Disorder-dressed evolution is based on the disorder-
averaged quantum state. On the one hand, this is motivated
by the desire to identify statistically robust, generic disorder
effects, the peculiarities of individual disorder realizations
stripped off. On the other hand, this often corresponds to the
situation realized in experiments, where disorder configura-
tions, e.g., stray fields, fluctuate between runs. But even if
the disorder is “quenched,” disorder-dressed evolution allows
one to capture the disorder effect, i.e., the deviation from
the expected behavior, generically, independent of specific
disorder realizations.

While individual disorder realizations describe coherent
time evolution, i.e., pure states remain pure, ensemble aver-
aging in general gives rise to varying state coherence [52,53].
The latter then indicates how different disorder realizations
cause deviating state trajectories. In this sense, the coher-
ence/purity of the averaged state carries information about the
degree of the disorder-induced spread about the unperturbed
trajectory, i.e., the variance among the perturbed trajectories.
This feature, which has no correspondence in classical av-
eraged states, then allows one to assess the disorder impact
in terms of the purity of the averaged state. Ultimately,
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knowledge of the ensemble-averaged state ρ allows calcula-
tion of the disorder average of any observable Â, by virtue
of

∫
dε pεTr[ρεÂ] = Tr[ρÂ], where ρε denotes the states for

individual disorder realizations labeled by ε and occurring
with probability pε.

Our focus on static disorder, i.e., temporally unbounded
correlations within individual disorder realizations, stands in
contrast to the vanishing temporal correlations in the Marko-
vian noise limit. Such lasting temporal correlations give rise
to rich and possibly expedient non-Markovian dynamics (e.g.,
coherence/purity revivals [53]—in contrast to the strict purity
decrease in the Markovian case [54]—or bounded disorder-
induced dephasing [45]), which has recently also come under
intense scrutiny in the context of open quantum systems
[55–61]. Our approach aims at identifying dynamical effects
associated with such temporal correlations, as well as with any
other correlations within and among the disorder realizations.

A quantum master equation formulation for disorder dy-
namics was initially addressed in the limit of short times [52].
Subsequently, it was shown that it can be determined (and
solved) exactly for specific, symmetric disorder configura-
tions [53]. This is, however, not the case for most generic
scenarios, where the disorder interferes nontrivially with the
system dynamics, while the short-time limit is too restrictive
to capture many relevant disorder effects. On the other hand,
the disorder contribution, which usually is deliberatively sup-
pressed, can generically be considered to be small. We thus
embrace a perturbative-in-the-disorder approach. While this
excludes nonperturbative disorder effects, such as weak or
strong localization at asymptotic times in transport scenarios,
it comprises the disorder impact on the full quantum state, i.e.,
any (perturbative) disorder effect on observables is preserved
and can be retrieved, e.g., the localization length encoded in
the backscattering behavior or the disorder-induced dephas-
ing. From the perspective of quantum devices, with disorder
effects inherently required to be small, restriction to the va-
lidity range of a perturbative approach appears justified, and
a comprehensive description of the disorder impact, as deliv-
ered, desirable. In general, we can expect that the approxima-
tion remains valid beyond the point where the disorder impact
exceeds acceptable thresholds. A more technical advantage
arises from the fact that a perturbative expansion on the level
of the evolution equation, as pursued here, produces, when
solved, an improved approximation compared to an approxi-
mation on the level of the state/observable in a standard Born
approximation.

The general form of the perturbative disorder-dressed
evolution equation was introduced in [62], where it was
worked out with the example of a particle propagating in a
disorder-perturbed waveguide, causing disorder-induced de-
phasing and backscattering. Subsequently, it has been applied
to the edge-mode propagation in topological insulators, for a
single [45] and two entangled [47] particles, and to a stability
analysis of flat-band states [46]. In the present paper, the
derivation of the general perturbative disorder-dressed evolu-
tion equation, based on the coupled-disorder-channel ansatz,
is elaborated in detail. To further demonstrate its broad appli-
cation range, we then evaluate it for two distinct scenarios:
a central spin, immersed in a cloud of environmental spins
(described by an isotropically randomized classical potential);

and the random mass Dirac model, i.e., a massless Dirac
particle, subject to spin-flipping perturbations. The former
example characterizes several of the fundamental building
blocks of quantum sensors or quantum computing devices,
e.g., quantum dots or spin impurities in solids; the latter is
a relevant model in many contexts of condensed matter, e.g.,
random spin chains, organic conductors, and quantum spin
Hall edges. The latter example also serves to demonstrate how
the emerging evolution equations can be solved efficiently
with the help of the quantum phase-space formalism.

Several highly sophisticated and successful theoretical
tools exist to address disorder physics, including Green’s
function methods, transfer matrix implementations, and
renormalization-group approaches, some of them, in partic-
ular, excelling in the asymptotic-time and/or nonperturba-
tive regime [63–65]. Disorder-dressed evolution equations are
meant to complement these, in the sense of capturing the onset
of disorder effects comprehensively and in the time domain
for arbitrary initial states, applicable to a wide range of
disorder configurations and correlations and tailored towards
applications which build upon the preservation of quantum
resources.

II. COUPLED DISORDER CHANNELS

We begin by deriving the coupled-disorder-channel
equations for general Hamiltonian ensembles. Disordered
quantum systems can be characterized in terms of
Hamiltonian ensembles, which characterize the lack of
knowledge about and/or control of the system Hamiltonian.
A general Hamiltonian ensemble {(Ĥε, pε )} is comprised of
a set of (in general arbitrary) Hamiltonians Ĥε, acting on the
same quantum system and occurring with probability pε. The
(multi-)index ε may label a continuous, discrete, or finite
set (or combinations thereof) of elements. Unless specified
otherwise, we assume a continuous probability distribution
and write integrals, e.g.,

∫
d pε pε = 1. As a basic example,

one may think of a single spin exposed to a magnetic field that
varies slightly from run to run, {(Ĥε = (B0 + ε�B)σz, pε )}
(cf. [53] and [66]). In the context of disordered quantum
systems, it is useful to rewrite the Hamiltonians as Ĥε =
Ĥ + V̂ε, where the averaged Hamiltonian Ĥ ≡ ∫

dε pε Ĥε

describes the intended system behavior, and the disorder
“potentials” V̂ε (for convenience, we use this terminology in
the general case), with

∫
dε pε V̂ε = 0, capture uncontrolled

perturbations, which cause deviations from the desired
behavior. Single realizations are conceived as closed quantum
systems following the von Neumann equation,

∂tρε = − i

h̄
[Ĥε, ρε], (1)

which is formally solved for an arbitrary initial state ρ0

(which we assume to be the same for all realizations) in
terms of the time evolution operator Ûε(t ) = exp[−(i/h̄)Ĥεt]:
ρε(t ) = Ûε(t )ρ0Û †

ε (t ).
To analyze the disorder impact in a statistically robust way,

devoid of nongeneric features present in single realizations,
we consider the disorder-averaged state

ρ(t ) ≡
∫

dε pε ρε(t ) =
∫

dε pε Ûε(t )ρ0Û
†
ε (t ). (2)
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If we decompose ρε = ρ + �ρε and take the ensemble aver-
age of the von Neumann equation, (1), we obtain the evolution
equation

∂tρ(t ) = − i

h̄
[Ĥ, ρ(t )] − i

h̄

∫
dε pε [V̂ε,�ρε(t )]. (3a)

We find that the dynamics of the averaged state ρ is not

described by the averaged Hamiltonian Ĥ alone, but modified
by the coupling to the individual offsets �ρε, caused by the
disorder potentials V̂ε. Indeed, the evolution of the disorder-
averaged state in general transcends the unitary dynamics
governing individual realizations.

The evolution equations for the offsets �ρε are obtained
by rewriting ∂t�ρε = ∂tρε − ∂tρ and applying (1) and (3a):

∂t�ρε(t ) + i

h̄
[Ĥε,�ρε(t )]

= − i

h̄
[V̂ε, ρ(t )] + i

h̄

∫
dε′ pε′ [V̂ε′ ,�ρε′ (t )]. (3b)

The source terms on the right-hand side describe the coupling
to the averaged state and to the other offsets, respectively.
Note that, in contrast to the realizations ρε, the offsets �ρε

are dynamically coupled, which is a consequence of their
common influence on the averaged state and motivates the ter-
minology of the “coupled-disorder-channel equations,” (3a)
and (3b). The corresponding initial conditions are ρ(t = 0) =
ρ0 and �ρε(t = 0) = 0, ∀ε. Note that the offsets �ρε, in
contrast to ρ, do not describe normalized quantum states:
Tr[�ρε] = 0.

We remark that the coupled-disorder-channel equations,
(3a) and (3b), which are derived without any approximation,
can be seen as a generalization of the Nakajima-Zwanzig
projection operator technique [67–69], with each disorder re-
alization giving rise to an independent irrelevant component.

In the short-time limit, i.e., in the vicinity of t = 0, where
�ρε(t ) ≈ 0, (3b) reduces to ∂t�ρε(t ) ≈ − i

h̄ [V̂ε, ρ(t )], which
is solved by �ρε(t ) ≈ − i

h̄ [V̂ε, ρ(t )]t . Inserting this into (3a)
recovers the short-time master equation derived, based on a
different reasoning, in [52].

With the initial condition �ρε(t = 0) = 0, the formal so-
lution of (3b) is determined, using the Green’s formalism, by
the inhomogeneous contribution alone, yielding

�ρε(t ) =
∫ t

0
dt ′Uε(t − t ′)

{
− i

h̄
[V̂ε, ρ(t ′)]

+ i

h̄

∫
dε′ pε′ [V̂ε′ ,�ρε′ (t ′)]

}
U †

ε (t − t ′). (4)

Iteratively inserting this solution into the second line of (4)
gives rise to a Neumann series, which can be truncated at a
desired order in the disorder potential V̂ε. If we insert the trun-
cated solution into (3a), we then obtain a closed, perturbative,
time-nonlocal evolution equation for the averaged state ρ.

For some disorder configurations, the Neumann series,
(4), can be evaluated to infinite order, which then yields an
exact evolution equation for the averaged state ρ. This is,
for instance, the case if all disorder realizations Ĥε commute,
[Ĥε, Ĥε′ ] = 0 ∀ε, ε′. This situation describes, e.g., an isolated
flat band with potential disorder.

Let us remark that, in cases where the averaged state
ρ(t ) = ∫

dε pε Ûε(t )ρ0Û †
ε (t ) can be evaluated directly, exact,

time-local master equations can be derived by direct inversion
of the corresponding dynamical map [53,70,71]. This was
demonstrated, e.g., for the case of an ensemble of commuting
Hamiltonians [53].

III. DISORDER-PERTURBED DYNAMICS

Generically, the uncontrolled component of the Hamil-
tonian, i.e., the disorder, is weak compared to the target
Hamiltonian, motivating a treatment perturbative in V̂ε. In
order to obtain an evolution equation for ρ which is second
order in the disorder potential V̂ε, we approximate (4) to first

order in V̂ε. With ρ(t − �t ) = Û (�t )†ρ(t )Û (�t ) + O(V̂ε ),
this yields �ρε(t ) = − i

h̄

∫ t
0 dt ′ [ ˆ̃Vε(t ′), ρ(t )], where ˆ̃Vε(t ) =

Û (t )V̂εÛ (t )† and Û (t ) = exp(−iĤt/h̄). Inserting this into
(3a) then results in

∂tρ(t ) = − i

h̄
[Ĥ , ρ(t )]

− 1

h̄2

∫
dε pε

∫ t

0
dt ′ [V̂ε, [ ˆ̃Vε(t ′), ρ(t )]], (5)

which provides us with a closed dynamical equation for the
disorder-averaged state ρ. Note that this master equation
is reminiscent of the Redfield equation, which captures the
influence of a quantum environment on a quantum system
after tracing out the environment [69,72]. Here, the tracing
operation is replaced by the disorder average. We stress that,
despite this resemblance, we derived Eq. (5) without reference
to an actual or auxiliary environment, but by virtue of the
coupled disorder channels, (3). In contrast to the Redfield
equation, which can, due to rapidly decaying bath correla-
tions, often be simplified by taking the limit t → ∞, this
is not possible here. This reflects the non-Markovian nature
of the disorder-averaged evolution, where individual disor-
der realizations display unconstrained temporal correlations.
We remark that, due to its perturbative nature, the master
equation, (5), in general exhibits a finite temporal validity
range. Moreover, in the limit ˆ̃Vε(t ) ≈ V̂ε, it reduces to the
short-time master equation. Finally, we note that a related
master equation can be obtained, under the assumption of
classical stochastic, Gaussian noise, for noise-averaged states
[73].

Using the identity

[Â, [B̂, X̂ ]] = 1
2 [[Â, B̂], X̂ ] − 1

4 [Â + B̂, [X̂ , Â + B̂]]

+ 1
4 [Â − B̂, [X̂ , Â − B̂]], (6)

we can recast the master equation, (5), in a Lindblad structure;
the latter reflects general quantum evolution beyond the von
Neumann equation, consistent with the postulates of quantum
mechanics. Moreover, this allows us to discuss coherent and
incoherent contributions to the dynamics, to assess the posi-
tivity of the evolution, and, possibly, to interpret the dynamics
in terms of the physical processes captured by the Lindblad
operators, which may, e.g., be familiar from open systems. For
instance, the Lindblad representation can render it manifest
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if symmetries that may be lost in single disorder realizations
resurface in the collective behavior. We obtain

∂tρ(t ) = − i

h̄
[Ĥeff (t ), ρ(t )]

+
∑

α∈{±1}

2α

h̄2

∫
dε pε

∫ t

0
dt ′L

(
L̂(α)

ε,t ′ , ρ(t )
)
, (7a)

with L(L̂, ρ) ≡ L̂ρL̂† − 1
2 L̂†L̂ρ − 1

2ρL̂†L̂. The corresponding
(in general time-dependent) effective Hamiltonian Heff (t ) =
H†

eff (t ) and Lindblad operators L̂(α)
ε,t read

Ĥeff (t ) = Ĥ − i

2h̄

∫
dε pε

∫ t

0
dt ′ [V̂ε,

ˆ̃Vε(t ′)],

L̂(α)
ε,t = 1

2
[V̂ε + α ˆ̃Vε(t )]. (7b)

Note that, according to this representation, each disorder
realization gives rise to an independent decoherence term.
Alternative, more compact, representations are often available
by reexpressing the disorder integral in terms of the disorder
correlation function; demonstrations of this appear below.

The α = −1 contributions in (7) describe negative deco-
herence “rates,” indicating the feedback of coherence into
the system, which, in turn, reflects the non-Markovian nature
of the evolution. The corresponding Lindblad operators L̂(−)

ε,t

only build up slowly with time, L̂(−)
ε,t=0 = 0, consistent with

the positivity of the evolution and in agreement with the
short-time master equation [52]. Growth of the L̂(−)

ε,t , on the
other hand, is required to reproduce the resurgence of, e.g.,
the state purity, a characteristic aspect of disorder-averaged
quantum evolution.

It is instructive to determine the next-to-leading-order
short-time master equation. Approximating ˆ̃Vε(t ) = V̂ε +
i
h̄ t[V̂ε, Ĥ ] + O(t2), we obtain the simplified expression

∂tρ(t ) = − i

h̄
[Ĥeff (t ), ρ(t )] + 2t

h̄2

∫
dε pεL(L̂ε(t ), ρ(t )),

(8)

where Ĥeff (t ) = Ĥ + t2

4h̄2

∫
dε pε[V̂ε, [V̂ε, Ĥ ]] and L̂ε(t ) =

exp(−iĤt/4h̄)V̂ε exp(iĤt/4h̄). We find that, while the Lind-
blad operators remain time dependent, in this limit, no neg-
ative decoherence rates occur, rendering the positivity of the
evolution manifest.

Evaluating (8) for a particle in a parabolic band
and a statistically homogeneous disorder potential, i.e.,

average Hamiltonian Ĥ = p̂2/2m and disorder correlations∫
dε pεV̂ε(x)V̂ε(x′) ≡ C(x − x′) = ∫

dq eiq(x−x′ )/h̄G(q) (cf.
[62]), we obtain the translation-covariant master equation
[G(−q) = G(q)]

∂tρ(t ) = − i

h̄

[ p̂2

2m
, ρ(t )

]
+

∫ ∞

−∞
dq

2G(q)t

h̄2

× {
e

i
h̄ qx̂e− i

h̄
q
m

t
4 p̂ρ(t )e

i
h̄

q
m

t
4 p̂e− i

h̄ qx̂ − ρ(t )
}
. (9)

The occurring incoherent processes have a clear physical
interpretation, relating to, and consistently complementing,
the corresponding short-time master equation [52]: The mo-

FIG. 1. Central spin immersed in a bath of classical, isotropically
disordered spins. The central spin (blue arrow) is equipped with
a control Hamiltonian, Ĥ0 = ωσ̂z, aligned in the z direction. A
surrounding cloud of spins (red arrows) generates, while mostly
averaging out, a residual, randomly oriented effective field, acting
on the central spin as a disorder potential.

mentum kicks exp[ i
h̄ qx̂] displayed by the latter are here

complemented by (growing with time) spatial displacements
exp[− i

h̄
q
m

t
4 p̂], reflecting the time evolution induced by pre-

ceding momentum kicks. The solution of the full disorder-
dressed evolution, (7), for this case is discussed in [62].

IV. CENTRAL SPIN

We now evaluate the disorder-dressed evolution equation,
(7), for a central spin exposed to a classical, isotropically dis-
ordered environment (cf. Fig. 1). This may, e.g., describe the
detrimental impact of randomly oriented environmental nu-
clear spins on solid-state qubits [37,38,74,75] (possibly in ad-
dition to applied noise mitigation strategies [76,77]), affecting
the fidelity of quantum information processing protocols or
the deployment of these spins as quantum sensors [43,78,79].
A similar situation is treated in [53], there, however, restricted
to a degenerate (i.e., vanishing) system Hamiltonian, which
may, e.g., correspond to an idling qubit and which gives rise
to isotropic depolarization dynamics. Here, we consider the
more general case of a nondegenerate central spin equipped
with a nonvanishing control Hamiltonian, lifting the isotropy
of the environmental influence.

Without loss of generality, we assume that the spin Hamil-
tonian is aligned in the z direction. Disordered Hamiltonians
are then described by (σ̂z = |↑〉〈↑| − |↓〉〈↓|)

ĤW,� = h̄ωσ̂z + �

2
Ŵ σ̂zŴ

†, (10)

where a single disorder configuration ε is characterized by a
random (unitary) rotation/orientation Ŵ of the environmental
influence, drawn according to the Haar measure dμ(W ), along
with a disordered level spacing �, drawn from the proba-

bility distribution p�. It follows that Ĥ = h̄ωσ̂z and V̂W,� =
�
2 Ŵ σ̂zŴ †, which then gives ˆ̃VW,�(t ) = �

2 e−iωt σ̂zŴ σ̂zŴ †eiωt σ̂z .
The corresponding master equation, (7), can be signifi-

cantly simplified if we conduct the occurring Haar measure
integrals, employing results from the Weingarten calculus for
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unitary groups [53,80]. Using∫
dμ(W )Ŵ X̂1Ŵ

†X̂2Ŵ X̂3Ŵ
†

= dTr[X̂1X̂3] − Tr[X̂1]Tr[X̂3]

d (d2 − 1)
Tr[X̂2]1

+ dTr[X̂1]Tr[X̂3] − Tr[X̂1X̂3]

d (d2 − 1)
X̂2, (11)

with d = 2, X̂1 = X̂3 = σ̂z, and X̂2 = e−iωt σ̂z , we

evaluate the effective Hamiltonian Ĥeff (t ) = Ĥ −
i

2h̄

∫
dμ(W )

∫
d� p�

∫ t
0 dt ′ [V̂W,�, ˆ̃VW,�(t ′)] as

Ĥeff (t ) = h̄ωσ̂z

(
1 − �2t2

12h̄2 sinc2[ωt]

)
, (12)

where �2 ≡ ∫
d� p��2 (assuming that the distribution p�

exhibits a well-defined variance). We thus find that the dis-
order average induces a periodic modulation of the angular
velocity of the spin rotation about the z axis. Similarly, we
obtain for the incoherent part of (7)∑

α∈{±1}
α

∫
dμ(W )

∫
d� p�L

(
L̂(α)

W,�,t ′ , ρ(t )
)

= �2

6
{cos2(ωt ′)[12 − 2ρ(t )] + sin2(ωt ′)Tr[ρ(t )σ̂z]σ̂z}.

(13)

Note how here, as in the effective Hamiltonian, (12), the z axis
persists as a symmetry axis of the dynamics.

The compactified master equation can again be recast
in Lindblad form, using Tr[ρσ̂z]σ̂z = L(P̂↑, ρ) − L(σ̂+, ρ) +
L(P̂↓, ρ) − L(σ̂−, ρ) and 12 − 2ρ = L(P̂↑, ρ) + L(P̂↓, ρ) +
L(σ̂+, ρ) + L(σ̂−, ρ), which yields the disorder-dressed evo-
lution equation

∂tρ(t ) = − i

h̄
[Ĥeff (t ), ρ(t )]

+ �2t

3h̄2 {L(P̂↑, ρ(t )) + L(P̂↓, ρ(t ))

+ sinc(2ωt )[L(σ̂+, ρ(t )) + L(σ̂−, ρ(t ))]}. (14)

The Lindblad operators are given by the level projectors P̂↑ =
|↑〉〈↑| and P̂↓ = |↓〉〈↓|, the ladder operators σ̂+ = |↑〉〈↓|
and σ̂− = |↓〉〈↑|, and Ĥeff (t ) as in (12). We thus find that
the nonvanishing system Hamiltonian lifts the isotropy in the
incoherent part of the dynamics too. On the other hand, the
rotational symmetry of the combination of the system Hamil-
tonian and isotropic disorder is restored. In the limit ω → 0,
we recover the isotropic depolarization dynamics induced by
the, then remaining, isotropically disordered environment,

∂tρ(t ) = 2�2t
3h̄2 ( 1

212 − ρ(t )), which corresponds to the short-
time limit of the exact evolution equation discussed in [53].

The (non-Markovian) master equation, (14), can be solved
exactly. We obtain for the diagonal and off-diagonal matrix
elements (ρ↑↑ ≡ 〈↑|ρ|↑〉)

ρ↑↑(t ) = 1

2
+ (ρ↑↑,0 − 1/2) exp

(
−�2t2

3h̄2 sinc2[ωt]

)
(15a)

FIG. 2. Disorder-dressed evolution of a central spin immersed
in a bath of classical, isotropically disordered spins. (a) A generic
initial state, |ψ0〉 = cos(π/12)|↓〉 + sin(π/12)|↑〉 [case (ii) in (b)],
displays temporally modulated Rabi oscillations in the x-y plane
of the Bloch sphere (Bloch vector a), complemented by additional
oscillations in the z component (inset). The latter are of a purely
incoherent nature and arise as a consequence of the interplay between
the disorder and the control Hamiltonian. Shown are the predictions
of the disorder-dressed evolution equation, (14) (solid lines), and
the directly ensemble-averaged evolution (K = 1000 realizations)
(dashed lines). (b) The purity evolution, which reflects the amount
of disorder-induced mixing, displays qualitatively and quantitatively
different behavior for different initial states: Initial states (i) at the
equator of the Bloch sphere display a strong, overall exponential
decay of purity, with a temporally modulated decay rate. Initial states
(iii) at the poles of the Bloch sphere exhibit (comparatively) weak,
purely disorder-induced oscillations towards the center/maximally
mixed state. Intermediate initial states (ii) display weighted combi-
nations of these behavorial traits.

and (ρ↑↓ ≡ 〈↑|ρ|↓〉)

ρ↑↓(t ) = ρ↑↓,0e−2iωt exp

(
i

�2t

12h̄2ω
(1 − sinc[2ωt])

)

× exp

(
−�2t2

6h̄2 (1 + sinc2[ωt])

)
, (15b)

respectively. We thus find that, within the limits of our approx-
imation, the diagonal elements display ongoing oscillations,
modulated by the spin frequency ω, while the off-diagonal
elements describe exponentially decaying Rabi oscillations,
again modulated by oscillating correction terms.

Figure 2 shows, in terms of the Bloch vector a, ρ =
(12 + a · ̂σ )/

√
2, the time evolution for three cases: (i)
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√
�2 = 0.05ω and |ψ0〉 = (|↓〉 + |↑〉)/

√
2 (initial state on the

equator of the Bloch sphere), (ii)
√

�2 = 0.1ω and |ψ0〉 =
cos(π/12)|↓〉 + sin(π/12)|↑〉 (initial state near the south pole

of the Bloch sphere), and (iii)
√

�2 = 0.2ω and |ψ0〉 =
|↓〉 (initial state at the south pole of the Bloch sphere).
We compare the prediction of the disorder-dressed evolution
equation, (14) or (15), respectively (solid lines), with the di-
rect, numerically exact, ensemble-averaged evolution (dashed
lines), averaged over K = 1000 realizations of the disordered
Hamiltonian, (10) (with the realizations of the disorder po-
tential V̂W,� = �

2 Ŵ σ̂zŴ † sampled from a Gaussian unitary
ensemble). Shown are the time evolution of the Bloch vector
components in case (ii) and the purity evolution for all three
cases. The purity r(t ) = Tr[ρ(t )2] serves as a useful quantifier
for the disorder impact, measuring the averaging-induced state
mixing [52]. Purity revivals (full or partial), on the other hand,
indicate the convergence of different disorder realizations in
state space and can thus serve to identify and exploit disorder
robustness.

We find that the disorder-dressed evolution equation de-
scribes the dynamics well in the short to intermediate time do-
main. All disorder-induced dynamical features are recovered
by the direct averaging: In case (i), the Rabi oscillating state
displays a strong, overall exponential decay of coherences,
with a temporally modulated decoherence rate. In case (ii), the
modulated Rabi oscillations are complemented by an oscilla-
tion of the z component of the Bloch vector. The latter, which
is of a purely incoherent nature, is disorder induced and arises
as a consequence of the interplay between the control Hamil-
tonian potential. If the initial state is located at one of the poles
(which are fixed points of the disorder-free evolution), case
(iii), these state-dependent incoherent oscillations remain as
the sole dynamical trait. In this case, the purity coincides with
the z component of the Bloch vector az(t ). These oscillations
are present neither in the absence of disorder nor in the
absence of the control Hamiltonian. Note that, in case (iii),
the numerically exact ensemble-averaged evolution exhibits
damped purity oscillations, while this damping is not reflected
by the evolution equation, (14). This is a consequence of the
perturbative nature of (14), where higher-order contributions
of the disorder potential are neglected (for demonstrational
purposes, we choose comparatively strong disorder poten-
tials). This also limits the temporal validity of the described
evolution.

As emphasized above, this analysis of the purity evolu-
tion of the disorder-averaged state, reflected here by state-
dependent purity oscillations, may help, e.g., to identify op-
timal readout times in quantum sensing or gate applications
(assuming noise to be static over the sensing or gate duration),
contributing to minimizing the disorder impact. In the present
case, these readout times would be chosen at local purity max-
ima. We remark that, while the displayed disorder-induced
purity losses of the order of (for strong disorder) a few percent
may appear small, present-day quantum devices are often
concerned with fidelity/purity control in the deep subpercent
regime.

FIG. 3. Backscattering of relativistic Dirac/Weyl particles in the
presence of disordered spin-flipping potentials. Small frame: A right-
moving initial state ψ0(x) (red shape) propagates along a spin-
flipping potential (blue shape), formally captured by a spatially
disordered mass term. Large frame: If the initial state is centered
around p0 in momentum space (solid red shape), then a fluctuating
mass term (yellow area) gives rise to backscattering into the left-
moving band branch at −p0 (dashed red shape). A scalar disorder
potential, in contrast, would cause no backscattering.

V. MASSLESS DIRAC PARTICLE

As the second example, we now discuss a massless Dirac
particle, confined to one dimension and subject to a disor-
dered mass term (see Fig. 3). Besides its fundamental interest
[81–83], this random mass Dirac model approximates generic
situations in condensed matter physics and spintronics, e.g.,
random spin chains or organic conductors [84–86] or helical
edge states of topological insulators [49,50]. Apart from its
natural occurrence in condensed matter systems, emulations
of the random mass Dirac model are also available with,
e.g., integrated optics [87] or ultracold atoms [88]. If there
is on-site/potential disorder only, i.e., in the absence of mass
perturbations, propagation is backscattering-free [89,90], and
disorder-induced dephasing remains as a disorder effect, as
discussed, e.g., in [45]. In contrast, as we derive now, pertur-
bations in the mass term can give rise to backscattering (see
also [91] and [92] and references therein) and Zitterbewegung.

The starting point of our analysis is the one-dimensional
Dirac Hamiltonian with mass perturbations (in the case of
lattice systems we assume the continuum limit),

Ĥε = v p̂ σ̂z + mε(x̂) v2 σ̂x, (16)

with drift velocity v, σ̂z = |↑〉〈↑| − |↓〉〈↓|, and σ̂x =
|↑〉〈↓| + |↓〉〈↑|. In the case of helical edge electrons in
topological insulators, one may think of the mass per-
turbations, e.g., as (pseudo-)spin-flipping magnetic impu-
rities. If we assume on average vanishing mass fluctua-

tions,
∫

dε pε mε(x̂) = 0, the average Hamiltonian reads Ĥ =
v p̂ σ̂z. We further assume translation-invariant disorder corre-
lations,

C(x − x′) ≡
∫

dε pεmε(x)v2mε(x′)v2

=
∫

dq eiq(x−x′ )/h̄G(q), (17)
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such that the disorder impact is summarized by the momentum
transfer distribution G(q) = G(−q). With V̂ε = mε(x̂)v2 ⊗
σx = ∫

dx mε(x)v2|x〉〈x| ⊗ σx and using (17), we can rewrite
(5) as

∂tρ(t ) = − i

h̄
[Ĥ, ρ(t )]

− 1

h̄2

∫
dq G(q)

∫ t

0
dt ′ [V̂q, [ ˆ̃V †

q (t ′), ρ(t )]], (18)

where V̂q = ∫
dx e

i
h̄ qx|x〉〈x| ⊗ σ̂x = e

i
h̄ qx̂ ⊗ σ̂x (describing

momentum kicks accompanied by simultaneous band

swapping) and ˆ̃Vq(t ) = e− i
h̄ ĤtV̂qe

i
h̄ Ĥt . We remark that (18) can

be brought into Lindblad form similarly to (7) (cf. [45–47]).
For evaluations, it is often convenient to work with (18). In
either case, the equation reflects the translational invariance
that is restored on the collective level of the disorder average.

The time evolution operator can be rewritten as e− i
h̄ Ĥt =

e
i
h̄ vt p̂ ⊗ P̂↓ + e− i

h̄ vt p̂ ⊗ P̂↑, which yields

ˆ̃Vq(t ) = e− i
h̄ vtq

(
e

i
h̄ qx̂e2 i

h̄ vt p̂ ⊗ σ̂− + e−2 i
h̄ vt p̂e

i
h̄ qx̂ ⊗ σ̂+

)
, (19)

with P̂↑, P̂↓, σ̂+, and σ̂− as in the previous section. For the
band projection ρ↑↑ ≡ 〈↑|ρ|↑〉, we then obtain the evolution
equation

∂tρ↑↑(t ) = − i

h̄
[v p̂, ρ↑↑(t )]

−
∫

dq
G(q)

h̄2

∫ t

0
dt ′{e

i
h̄ vt ′qe2 i

h̄ vt ′ p̂ρ↑↑(t )

− e
i
h̄ vt ′qe

i
h̄ qx̂ρ↓↓(t )e− i

h̄ qx̂e2 i
h̄ vt ′ p̂ + H.c.

}
. (20)

The corresponding equation for the opposite band component
ρ↓↓ ≡ 〈↓|ρ|↓〉 takes the same form, with v replaced by −v.

To proceed towards a solution of the master equation, it is
useful to transform the coupled evolution equations for the
two bands into phase-space language. Indeed, it turns out
that the phase-space formalism, while often unfavorable for
dynamical treatments, allows for comparatively simple and
elegant solutions with the Lindblad terms arising in transla-
tionally invariant disordered quantum systems [cf. Eq. (20)].

We briefly recapitulate the phase-space representation,
which provides us with a self-consistent reformulation of
quantum mechanics, equivalent to the standard operator-based
formalism [93–97]. The transformation from operators to
phase-space functions is accomplished with the help of the
Stratonovich-Weyl operator kernel [98], which is defined as

�̂(x, p) = D̂(x, p)�̂(0, 0)D̂†(x, p), (21)

with the displacement operators

D̂(x, p) = exp

(
− i

h̄
x p̂

)
exp

(
i

h̄
px̂

)
(22)

and the undisplaced operator kernel

�̂(0, 0) =
∫

dx′ |x′/2〉〈−x′/2|. (23)

The latter is related to the parity operator P̂ = ∫
dx |x〉〈−x|,

�̂(0, 0) = 2P̂. This is why the Stratonovich-Weyl operator
kernel is sometimes referred to as displaced parity.

Based on the kernel, (21), the Weyl symbol (i.e., phase-
space representation) WÂ(x, p) of a general operator Â is
obtained according to

WÂ(x, p) = Tr[Â�̂(x, p)]

=
∫

dx′ e
i
h̄ px′ 〈x − x′/2|Â|x + x′/2〉. (24)

For the sake of normalization, a rescaled Weyl symbol,
the Wigner function W (x, p), is introduced for the den-
sity operator ρ, W (x, p) = 1

2π h̄Wρ (x, p), which then satis-
fies

∫
dxd pW (x, p) = 1. In addition, the marginals of the

Wigner function evaluate as
∫

d pW (x, p) = 〈x|ρ|x〉 and∫
dx W (x, p) = 〈p|ρ|p〉, which motivates its interpretation as

a quasiprobability distribution. However, the Wigner function
can take negative values, which can be considered as a signa-
ture for quantumness.

Using (24), we can reexpress the evolution equation, (20)
(and its opposite-band counterpart), in terms of the Wigner
function,

(∂t ± v ∂x )W ±
t (x, p)

= −
∫

dq′ 2G(q′)
h̄2

∫ t

0
dt ′ cos

[
vt ′(q′ + 2p)

h̄

]

× {W ±
t (x ± vt ′, p) − W ∓

t (x ∓ vt ′, p − q′)}, (25)

where W +
t (x, p) [W −

t (x, p)] denotes the Wigner function of
the right-moving [left-moving] state component ρ↑↑ (ρ↓↓),
and now

∫
dxd p (W +

t (x, p) + W −
t (x, p)) = 1. Here, we ex-

ploit the fact that the spatial and momentum translation
operators in (20) can be rearranged towards shifting the
Stratonovich-Weyl operator kernel, with the help of the iden-
tity

e−i�x p̂/h̄�̂(x, p) = �̂(x, p)ei�x p̂/h̄e−2i�xp/h̄. (26)

To turn (25) into a local differential equation, we further
transform the Wigner function into its characteristic function,
χ (s, q) = ∫

dxd p e− i
h̄ (qx−ps)W (x, p). Moreover, we assume

that the initial state is centered around a momentum p0

(without loss of generality, p0 > 0), in line with a large wave-
packet approximation. This implies that the Wigner function,
too, is focused around p0, such that we can approximate
p ≈ p0 in the cosine in (25). With this, we obtain the coupled
evolution equations[

∂t ± i

h̄
vq

]
χ±

t (s, q)

=
∫

dq′ 2G(q′)
h̄2

∫ t

0
dt ′ cos

[
vt ′(q′ + 2p0)

h̄

]

× {
e∓ i

h̄ qvt ′
e

i
h̄ q′sχ∓

t (s, q) − e± i
h̄ qvt ′

χ±
t (s, q)

}
. (27)

Rewriting these coupled equations in terms of a single matrix
equation, [

12∂t + i

h̄
vqσz

]
χt (s, q)

=
(−Ft (0,−q) Ft (s, q)

Ft (s,−q) −Ft (0, q)

)
χt (s, q), (28)
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where χt (s, q) = (χ+
t (s, q), χ−

t (s, q))T and

Ft (s, q) =
∫

dq′ 2G(q′)
h̄2

∫ t

0
dt ′ cos

[
vt ′(q′ + 2p0)

h̄

]

× e− i
h̄ qvt ′

e
i
h̄ q′s, (29)

the resulting solution reads

χt (s, q) = exp

[
− F

(g)
t (0, q)12 + F

(g)
t (s, q)σx − F

(u)
t (s, q)σy

− i

(
vtq

h̄
− F

(u)
t (0, q)

)
σz

]
χ0(s, q). (30)

Here, we have decomposed the disorder influence Ft (s, q) ≡∫ t
0 dt ′Ft ′ (s, q) into an even function, F

(g)
t (s,−q) = F

(g)
t (s, q),

and an odd function, F
(u)
t (s,−q) = −F

(u)
t (s, q), Ft (s, q) =

F
(g)
t (s, q) + iF

(u)
t (s, q). In particular, one then obtains

F
(g)
t (s, q) =

∫
dq′ t

2G(q′)
2h̄2 e

i
h̄ q′s

{
sinc2

[
vt (2p0 + q + q′)

2h̄

]

+ sinc2

[
vt (2p0 − q + q′)

2h̄

]}
. (31)

If we further assume a finite correlation length � in the
disordered mass fluctuations and a finite position uncertainty
σ of the initial state, we can, in the time limit vt � �, σ ,
approximate

F
(g)
t (s, q) = πt

h̄v

{
G(2p0 + q) exp

[
− i

h̄
(2p0 + q)s

]

+ G(2p0 − q) exp

[
− i

h̄
(2p0 − q)s

]}
. (32)

Solution (30) is the main result in this section. It comprises
the full (perturbative) effect of mass fluctuations on a massless
Dirac particle propagating at initial momentum p0, including
disorder-induced state distortion, disorder-induced dephasing,
disorder-induced backscattering, and disorder-induced Zit-
terbewegung. While the corresponding density matrix ρ(t )
can be recovered by reversing the respective Fourier trans-
forms, observables can in general also be determined from
the characteristic function directly. We stress that the initial
state χ0(s, q) is not further specified beyond the consistency
requirement of being centered around p0 in momentum space.
Moreover, as one can easily check, the state is normalized at
all times: χ+

t (0, 0) + χ−
t (0, 0) = 1.

For example, we now recover the disorder-induced
backscattering, which, in the case of a Dirac particle, amounts
to scattering among the two spin components. To this end, we
evaluate the momentum distribution

Pt (p) ≡
(〈p|ρ↑↑|p〉

〈p|ρ↓↓|p〉
)

=
∫

dx

(
W +

t (x, p)

W −
t (x, p)

)

= 1

2π h̄

∫
ds e− i

h̄ ps χt (s, 0). (33)

Note that, in the absence of disorder, χt (s, q) =
exp(− i

h̄vtqσz ) χ0(s, q), i.e., the momentum distribution is
time independent. In the presence of disorder, assuming
a right-moving initial state, χ0(s, 0) = χ0(s, 0)(1, 0)T ,

and since χt (s, 0) = e−F
(g)
t (0,0)12{12 cosh[F

(g)
t (s, 0)] +

σx sinh[F
(g)
t (s, 0)]} χ0(s, 0), we obtain

Pt (p) =
({

1 − 2πt
h̄v

G(2p0)
}
P0(p)

2πt
h̄v

G(2p0)P0(p + 2p0)

)
, (34)

with P0(p) = 1
2π h̄

∫
ds e− i

h̄ psχ0(s, 0) the momentum distribu-
tion of the initial state, centered around p0. For instance,
a Gaussian initial state of width σ (h̄/σ � p0), ψ0(x) =
exp [− 1

4 ( x
σ

)2 + i p0x
h̄ ]/

√√
2πσ , comes with the characteris-

tic function χ0(s, q) = exp [− 1
8 ( s

σ
)2 − 1

2 ( qσ

h̄ )2 + i p0s
h̄ ] and the

momentum distribution P0(p) =
√

2
π

σ
h̄ exp [− 2σ 2

h̄2 (p − p0)2].

To obtain (34), we used (32) and assumed that 2πt
h̄v

G(2p0) �
1; the latter reflects our earlier assumption of weak disorder,
i.e., within the temporal validity the disorder causes only a
weak deviation from the unperturbed evolution.

Equation (34) describes, within our approximation, the
linear-in-time redistribution of the particle’s state from right-
moving centered around p0 to left-moving centered around
−p0 (cf. Fig. 3). We thus find that the disorder-dressed evolu-
tion recovers the backscattering of massless Dirac particles in-
duced by mass fluctuations. Similarly to the case of a particle
in a parabolic band and subject to potential/diagonal disorder,
backscattering is controlled by the interplay between the
disorder correlation length � and the incident momentum p0,
mediated by the momentum transfer distribution G(p) [62].
For instance, in the case of Gaussian correlations, C(x) =
C0 exp[−(x/�)2], we obtain G(q) = C0�

2
√

π h̄
exp [−(q�/2h̄)2],

which gives rise to exponentially suppressed backscattering
if p0 � h̄/�.

In the backscattering-suppressed regime p0 �
h̄/�, the evolution of the purity r(t ) = Tr[ρ(t )2] =

1
2π h̄

∫
dsdq [χ+

t (s, q)χ+
t (−s,−q) + χ−

t (s, q)χ−
t (−s,−q)]

is then, in the limit vt � �, σ , approximated by
r(t ) = 1 − C0

v2p2
0
(1 − �/

√
�2 + 4σ 2), where we have assumed

an initial Gaussian state with p0 � h̄/σ and a small purity
reduction. We thus find that the purity loss reaches a plateau,
similarly to the purity loss induced by potential disorder [45]
and, hence, with similar implications for the transport of
quantum information.

Finally, we derive the disorder-induced Zitterbewegung,
i.e., disorder-induced oscillations of the position expecta-
tion value in the backscattering-suppressed regime p0 � h̄/�.
Recall that unperturbed massless Dirac particles propagate
linearly, with no exchange between right- and left-moving
state components.

In principle, we could use solution (30) to evaluate the
expectation value of the position operator. Here, we choose an
alternative route, directly based on the right- and left-moving
state components. As the right-moving [left-moving] state
fraction is captured by χ+

t (0, 0) [χ−
t (0, 0)], where χ+

t (0, 0) +
χ−

t (0, 0) = 1, the position expectation value can be written as
〈x〉(t ) = 〈x〉0 + ∫ t

0 dt ′{χ+
t ′ (0, 0)v − χ−

t ′ (0, 0)v}. On the other
hand, for a right-moving initial state χ+

0 (0, 0) = 1, we can

infer from (30) that χ+
t (0, 0) = 1

2 (1 + exp[−2F
(g)
t (0, 0)]). If

we then use (31) to approximate F
(g)
t (0, 0) in the limit p0 �
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h̄/� as F
(g)
t (0, 0) = C0

p2
0v

2 sin2 [ p0vt
h̄ ], with C0 = ∫

dq G(q), we

obtain, for weak disorder, C0/p2
0v

2 � 1,

〈x〉(t ) = 〈x〉0 +
(

v − C0

p2
0v

)
t + C0h̄

2v2 p3
0

sin

[
2p0vt

h̄

]
. (35)

We thus find that mass perturbations induce a reduction of
the average velocity, along with the signature oscillations of
Zitterbewegung. This constitutes yet another example of how
a time-resolved treatment of the disorder-averaged state re-
veals structural insights into the generic disorder impact. Let
us note that, due to the disorder-independent frequency, these
oscillations can be observed for individual disorder realiza-
tions (“quenched” disorder), albeit with fluctuating amplitude.
This disorder-induced Zitterbewegung may be directly ob-
servable in engineered platforms [87,88,99,100]. If and how
the effect can be probed, possibly indirectly, e.g., in electronic
systems, could be the subject of more targeted research.

VI. CONCLUSIONS

Based on the coupled-disorder-channel ansatz, we derived
the general disorder-dressed evolution equation, (7), for the
disorder-averaged state and demonstrated its application range
with the two examples of a central spin in a spin bath and a
random mass Dirac particle. In the first example, we described
how the isotropic environment gives rise to state-dependent
purity oscillations of a purely incoherent nature. Such analysis
may be instructive, e.g., to determine optimal readout times in
quantum sensing or gate applications, minimizing the disorder
impact. In the second example, featuring quantum transport,
we recovered the backscattering induced by mass fluctua-
tions, in a scenario where otherwise Klein tunneling reigns.
Similarly, the disorder-induced Zitterbewegung is absent in

unperturbed massless (one-dimensional) Dirac particles. Both
examples demonstrated how the disorder-averaged evolution
reflects the symmetries that are restored on the level of the
collective behavior, i.e., rotational symmetry in the case of
the central spin and translational symmetry in the case of the
Dirac particle.

Besides providing a comprehensive description of the per-
turbative disorder effect in a quantum optics and information
language, this approach allows one to assess and quantify
the disorder impact in terms of the coherence properties of
the disorder-averaged state, a feature which is not reflected
by averaged states in classical physics and which may help
to identify disorder-robust system features and, ultimately, to
design robust device architectures. On the other hand, engi-
neered, highly controlled quantum systems are now used to
experimentally explore disorder physics with unprecedented
precision [38,42,99–101], rendering it possible to experimen-
tally test refined predictions on the level of the disorder-
averaged quantum state.

To extend its scope of application, generalizing the frame-
work, e.g., to time-dependent system Hamiltonians and/or
open systems appears desirable. This would not only make
it possible to treat also more involved quantum control prob-
lems, but also give rise to a unified description of the two noise
sources, disorder and environment coupling. The coupled
disorder channels, (3), appear to be a suitable starting point
for such generalizations.
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[80] B. Collins and P. Śniady, Integration with respect to the
Haar measure on unitary, orthogonal and symplectic group,
Commun. Math. Phys. 264, 773 (2006).

[81] B. Thaller, The Dirac Equation (Springer Science & Business
Media, Berlin, 2013).

[82] L. Lamata, J. León, T. Schätz, and E. Solano, Dirac Equation
and Quantum Relativistic Effects in a Single Trapped Ion,
Phys. Rev. Lett. 98, 253005 (2007).

[83] R. Cabrera, A. G. Campos, D. I. Bondar, and H. A. Rabitz,
Dirac open-quantum-system dynamics: Formulations and sim-
ulations, Phys. Rev. A 94, 052111 (2016).

[84] H. Takayama, Y. R. Lin-Liu, and K. Maki, Continuum model
for solitons in polyacetylene, Phys. Rev. B 21, 2388 (1980).

[85] D. S. Fisher, Random antiferromagnetic quantum spin chains,
Phys. Rev. B 50, 3799 (1994).

[86] M. Steiner, M. Fabrizio, and A. O. Gogolin, Random-mass
Dirac fermions in doped spin-Peierls and spin-ladder systems:
One-particle properties and boundary effects, Phys. Rev. B 57,
8290 (1998).

[87] R. Keil, J. M. Zeuner, F. Dreisow, M. Heinrich, A.
Tünnermann, S. Nolte, and A. Szameit, The random mass

214203-11

https://doi.org/10.1103/PhysRevLett.122.066601
https://doi.org/10.1103/PhysRevB.77.180502
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevX.8.011021
https://doi.org/10.1103/PhysRevA.93.032139
https://doi.org/10.1103/PhysRevX.6.031023
https://doi.org/10.1016/j.chemphys.2005.06.038
https://doi.org/10.1103/PhysRevLett.104.070406
https://doi.org/10.1038/nphys2085
https://doi.org/10.1103/PhysRevLett.109.170402
https://doi.org/10.1103/PhysRevA.85.032318
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/PhysRevA.94.052117
https://doi.org/10.1103/PhysRevA.96.022135
https://doi.org/10.1103/RevModPhys.63.781
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/PhysRevLett.120.030403
https://doi.org/10.1143/PTP.20.948
https://doi.org/10.1063/1.1731409
https://doi.org/10.1080/09500340701352581
https://doi.org/10.1103/PhysRevA.89.042120
https://doi.org/10.1103/PhysRevLett.118.140403
https://doi.org/10.1103/PhysRevLett.88.186802
https://doi.org/10.1088/0034-4885/80/1/016001
https://doi.org/10.1103/PhysRevB.88.045306
https://doi.org/10.1038/ncomms7348
https://doi.org/10.1088/1367-2630/aadd5e
https://doi.org/10.1007/s00220-006-1554-3
https://doi.org/10.1103/PhysRevLett.98.253005
https://doi.org/10.1103/PhysRevA.94.052111
https://doi.org/10.1103/PhysRevB.21.2388
https://doi.org/10.1103/PhysRevB.50.3799
https://doi.org/10.1103/PhysRevB.57.8290


CLEMENS GNEITING PHYSICAL REVIEW B 101, 214203 (2020)

Dirac model and long-range correlations on an integrated
optical platform, Nat. Commun. 4, 1368 (2013).

[88] M. J. Edmonds, J. Otterbach, R. G. Unanyan, M. Fleischhauer,
M. Titov, and P. Öhberg, From Anderson to anomalous local-
ization in cold atomic gases with effective spin–orbit coupling,
New J. Phys. 14, 073056 (2012).

[89] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral
tunneling and the Klein paradox in graphene, Nat. Phys. 2,
620 (2006).

[90] C. W. J. Beenakker, Colloquium: Andreev reflection and
Klein tunneling in graphene, Rev. Mod. Phys. 80, 1337
(2008).

[91] C.-H. Hsu, P. Stano, J. Klinovaja, and D. Loss, Nuclear-
spin-induced localization of edge states in two-dimensional
topological insulators, Phys. Rev. B 96, 081405(R) (2017).

[92] J. I. Väyrynen, D. I. Pikulin, and J. Alicea, Noise-Induced
Backscattering in a Quantum Spin Hall Edge, Phys. Rev. Lett.
121, 106601 (2018).

[93] E. Wigner, On the quantum correction for thermodynamic
equilibrium, Phys. Rev. 40, 749 (1932).

[94] J. E. Moyal, Quantum mechanics as a statistical theory, Proc.
Cambridge Philos. Soc. 45, 99 (1949).

[95] H. Weyl, Gruppentheorie und Quantenmechanik (Hirzel,
Leipzig, 1928).

[96] W. P. Schleich, Quantum Optics in Phase Space (John Wiley
& Sons, New York, 2011).

[97] C. Gneiting, T. Fischer, and K. Hornberger, Quantum phase-
space representation for curved configuration spaces, Phys.
Rev. A 88, 062117 (2013).

[98] R. L. Stratonovich, On distributions in representation space,
Sov. Phys. JETP 4, 891 (1957).

[99] C. Maier, T. Brydges, P. Jurcevic, N. Trautmann, C. Hempel,
B. P. Lanyon, P. Hauke, R. Blatt, and C. F. Roos, Environment-
Assisted Quantum Transport in a 10-Qubit Network, Phys.
Rev. Lett. 122, 050501 (2019).

[100] F. Arute, K. Arya, R. Babbush, D. Bacon, J. Bardin, R.
Barends, R. Biswas, S. Boixo, F. Brandao, D. Buell et al.,
Quantum supremacy using a programmable superconducting
processor, Nature 574, 505 (2019).

[101] T. Nakajima, M. R. Delbecq, T. Otsuka, S. Amaha, J. Yoneda,
A. Noiri, K. Takeda, G. Allison, A. Ludwig, A. D. Wieck,
X. Hu, F. Nori, and S. Tarucha, Coherent transfer of electron
spin correlations assisted by dephasing noise, Nat. Commun.
9, 2133 (2018).

214203-12

https://doi.org/10.1038/ncomms2384
https://doi.org/10.1088/1367-2630/14/7/073056
https://doi.org/10.1038/nphys384
https://doi.org/10.1103/RevModPhys.80.1337
https://doi.org/10.1103/PhysRevB.96.081405
https://doi.org/10.1103/PhysRevLett.121.106601
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1017/S0305004100000487
https://doi.org/10.1103/PhysRevA.88.062117
https://doi.org/10.1103/PhysRevLett.122.050501
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41467-018-04544-7

