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Quantum dynamics in strongly driven random dipolar magnets
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The random dipolar magnet LiHoxY1−xF4 enters a strongly frustrated regime for small Ho3+ concentrations
with x < 0.05. In this regime, the magnetic moments of the Ho3+ ions experience small quantum corrections to
the common Ising approximation of LiHoxY1−xF4, which lead to a Z2-symmetry breaking and small, degeneracy
breaking energy shifts between different eigenstates. Here we show that destructive interference between two
almost degenerate excitation pathways burns spectral holes in the magnetic susceptibility of strongly driven
magnetic moments in LiHoxY1−xF4. Such spectral holes in the susceptibility, microscopically described in terms
of Fano resonances, can already occur in setups of only two or three frustrated moments, for which the driven
level scheme has the paradigmatic � shape. For larger clusters of magnetic moments, the corresponding level
schemes separate into almost isolated many-body � schemes, in the sense that either the transition matrix
elements between them are negligibly small or the energy difference of the transitions is strongly off-resonant
to the drive. This enables the observation of Fano resonances, caused by many-body quantum corrections to the
common Ising approximation also in the thermodynamic limit. We discuss its dependence on the driving strength
and frequency as well as the crucial role that is played by lattice dissipation.

DOI: 10.1103/PhysRevB.101.214201

I. INTRODUCTION

Magnetic dipoles with Ising symmetry randomly dis-
tributed on a lattice provide the opportunity to explore the
effects of interactions [1–3], disorder [4], frustration [5], ran-
dom fields [6–8], entanglement [9], and quantum fluctuations
[10], with the ability to tune their interplay [11]. When driven
out of equilibrium, new many-body states emerge, with char-
acteristics that are the magnetic analogues to optically driven
atomic systems but involving numerous quantum degrees of
freedom [12]. When decoupled from the thermal environment,
the states are intrinsically nonlinear with very small linewidths
[13].

Investigating the magnetic phases and dynamics in the
disordered dipolar quantum magnet LiHoxY1−xF4 has been
the focus of this class of research activity for several decades
[4,5,14–19], yet explanations for several of its properties at
low temperatures remain elusive [2,5,9,20]. In LiHoxY1−xF4,
the magnetic Ho3+ cations mainly interact via dipole-dipole
interactions. At large concentrations x > 0.3 the magnetic
dipoles form a quantum Ising magnet, with the possibility of
applying an external transverse field to tune the quantum fluc-
tuations [1,10,21–23]. Diluting the Ho3+ concentration below
x < 0.3 gives rise to random frustration [2,6,24,25], which
leads to the formation of an Ising spin glass for 0.15 � x �
0.25 at sufficiently low temperature T � 0.5 K and transverse
field [4,26,27], while below concentrations of x < 0.15 the
nature of the low temperature state can be manifestly classical
or quantum depending upon the strength of the thermal link to
a heat bath [5,13,20,24,28].

Recently, attention has been drawn to the dilute limit x �
0.05 in which different experiments have observed aspects of

an Ising spin glass [11,18,19,29], a quantum disordered, so-
called “antiglass” with spin liquid characteristics [9,11,12,30]
and isolated quantum degrees of freedom [31]. The root of the
irreconcilability of these observations seems to be found in the
strength of the dissipation experienced by the magnet, i.e., by
the coupling of the sample to the environment, as evidenced
by recent experiments that tune a LiHoxY1−xF4 sample from
an Ising spin glass to an “antiglass” by reducing its thermal
coupling to the environment [13,31].

A key signature of the antiglass behavior is “spectral hole
burning,” i.e., the observation of a Fano resonance in the mag-
netic susceptibility χ (ω) in a LiHoxY1−xF4 sample, which is
strongly driven by a time-dependent magnetic field [12,31].
Fano resonances are commonly a signature of quantum in-
terference. In LiHoxY1−xF4 the resonances are observable at
arbitrary transverse fields and surprisingly small drive fre-
quencies ωd ≈ 2π × 200 Hz and probe frequency detunings
ωp − ωd ≈ 2π × 2–5 mHz. They occur if the LiHoxY1−xF4

sample is well isolated from its environment and vanish if the
coupling to the environment is increased.

The magnetic moments in LiHoxY1−xF4 form a com-
plicated, disordered, and strongly interacting many-body
problem, which is hard to address theoretically even in the
simplified Ising approximation [19,32]. What is especially
puzzling in the hole burning experiments [31] is the presence
of several, strongly separated energy scales and the apparent
sensitivity of hole burning to all of them. The dipole-dipole
interaction between two neighboring moments is of the order
of �V = 500 mK and falls off with a distance as ∼1/|�r|3.
The LiHoxY1−xF4 sample is held at a temperature of about
T = 100 mK. The sample is driven by an oscillating magnetic
field with Rabi frequency �d ≈ 2 μK, a drive frequency,
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which corresponds to ωd � 60 nK, and its response is probed
at a detuning ωp − ωd � 0.6 pK.

In this work, we start from a microscopic description of
LiHoxY1−xF4, incorporating the full magnetic dipole-dipole
interaction and the crystal field for the J = 8 angular mo-
mentum state of each Ho3+ ion. Using exact diagonalization,
we show that the observation of Fano resonances can be
explained on a qualitative level already for a single pair of
Ho3+ ions. The resonances appear as a consequence of in-
terference between two quasidegenerate excitation pathways,
corresponding to a pair of quasidegenerate quantum states,
which can be coupled by applying an external, oscillating
magnetic field.

In order to generalize this observation to more realistic
samples with n � 10 magnetic degrees of freedom, we devise
a toy model of effective spin- 1

2 degrees of freedom, which cap-
tures the main ingredients for the observation of hole burning
and reduces to the LiHoxY1−xF4 Hamiltonian at low energies
and for few magnetic moments. Exploring the dynamics of
small samples shows that an external, oscillating magnetic
field addresses only a small fraction of the many-body Hilbert
space, for a given set of driving parameters. The predicted
magnetic susceptibility χ (ω) displays several spectral holes,
which can be explained in terms of quasidegenerate many-
body excitation pathways and which match quantitatively very
well with the experimental findings and energy scales. Within
our simplified model, we can understand the origin and the
importance of the different energy scales and, in addition, can
find an explanation why the Fano resonance is only observed
in the limit of very small coupling between the sample and the
environment.

Based on these findings, we propose an experimental
scheme to manipulate the Fano signals by an external, acoustic
drive of the lattice vibrations. The idea behind this approach
is to engineer the dissipation rate of the magnetic moments
by controlling their interactions with the phonon continuum.
The latter is controlled by the number of phonons that are
accessible for scattering at a given energy. Driving phonon
modes explicitly generates a nonequilibrium phonon distri-
bution, which is peaked at the drive frequency and increases
the dissipation rate at matching energies. This reduces or even
destroys the interference pattern of the Fano resonances. Ob-
serving this reverse or “anti”-hole burning at the phonon drive
frequencies would confirm our present explanation of hole
burning and open a path to control the magnetic properties
of LiHoxY1−xF4 via both time-dependent magnetic fields and
sound.

II. MODEL

In this section we briefly review the microscopic model for
the magnetic degrees of freedom in LiHoxY1−xF4 compounds
and illustrate that several aspects of the long time dynamics
of the dilute material (x � 1) are not captured by an effective
Ising description. Instead, the strong dipole-dipole interaction
between magnetic Ho3+ atoms induces nontrivial entangle-
ment in the magnetic degrees of freedom and lifts the expected
Z2 symmetry of an Ising magnet. We show that the deviation
from a common, random Ising magnet becomes crucial at low
temperatures or when the system is driven by an external field.

For suitable driving frequencies, the latter resolves violations
of the Z2 symmetry and therefore the quantum nature of the
magnet, which manifests itself via the absence of degenerate
energy levels and the presence of nonvanishing moments
〈α|Jz|β〉 	= 0 for different eigenstates |α〉, |β〉.

A. Microscopic Hamiltonian

LiHoxY1−xF4 is a magnetic material because of the mag-
netic Ho3+ ions, in which the 4 f 10 electrons form an 5I8

electronic ground state manifold [1,5,23]. In this manifold,
each Ho3+ ion l is described by a J = 8 total angular mo-
mentum degree of freedom �Jl . The coupling of each Ho3+ ion
to its nonmagnetic neighbors via Coulomb interactions and
ion-lattice coupling is described by a crystal field Hamiltonian
Hcf( �Jl ) which aims to polarize �Jl along the magnetic c axis of
the crystal. Exchange interactions between neighboring Ho3+

are in general weak [15] and become negligible in the dilute
limit x � 1. The remaining interaction between two different
Ho3+ ions is the magnetic dipole-dipole interaction, which
can, however, become rather strong due to the large total
angular momentum J = 8 carried by each Ho3+.

In addition to the mentioned terms, Ho cations display a
significant hyperfine interaction between the nuclear magnetic
moment (I = 7/2) and the electronic moments with a cou-
pling constant AJ = 39 mK. At low temperatures T < 0.5 K,
the hyperfine coupling renormalizes the effective low energy
degrees of freedom and quantitatively modifies the phase
diagram both for the ferromagnetic and for the spin glass
transition [3,33]. Qualitatively, however, the localized nuclear
moments do not change the nature of the long-range coupled
low energy degrees of freedom of the magnetic dipoles �J away
from a phase transition (as discussed in Sec. IV C). As we
show below, hole burning in LiHoxY1−xF4 can be very well
explained without considering hyperfine interactions. We will
discuss potential modifications due to hyperfine interactions
at the end of Sec. IV.

We consider no static external magnetic field �B = 0, which
yields the microscopic Hamiltonian [1,23]

H =
∑

l

Hcf( �Jl ) + 1

2

μ0g2
Lμ2

B

4π

∑
l 	=m

Lαβ (�rlm)Jα
mJβ

l . (1)

Here, Lαβ (�r) = δαβ |�r|2−3rαrβ

|�r|5 is the dipole-dipole matrix ele-

ment between two Ho3+ ions l, m, which is evaluated at
their relative coordinate �r = �rlm = �rl − �rm. The interaction
strength depends on the Bohr magneton μB = 2

3
K
T , the vac-

uum magnetic permeability μ0 = 4π 10−7 N
A2 , and the Landé

g factor gL = 5
4 .

LiHoxY1−xF4 has a tetragonal structure with lattice con-
stants a = 5.175 Å and c = 10.75 Å and four possible
spots for Ho3+ or Y3+ ions per unit cell [5,15]. In terms
of the unit cell coordinates (a, a, c) their positions are at
(0, 1

2 , 3
4 ), (0, 0, 1

2 ), ( 1
2 , 0, 1

4 ), ( 1
2 , 1

2 , 0). This amounts to
a minimal distance of �rmin ≈ 3.73 Å between two Ho3+

ions. The corresponding magnetic interaction energy is Adip =
18.5 mK.

For each Ho3+ ion the crystal field Hamiltonian Hcf( �Jl )
features a twofold degenerate ground state doublet and an
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excited singlet state separated by an energy ≈10.5 K from
the ground states. The remaining 14 eigenstates are separated
more than 20 K from these three states. At low temperatures
T < 10 K and zero magnetic field, thermal activation of
excited states can be excluded and each magnetic moment
is commonly projected onto the ground state manifold, i.e.,
treated as an Ising degree of freedom [5].

In the Ising approximation, each magnetic moment reduces
to an Ising spin Jα

l = δα,zCzzσ
z
l [2,23,33], whose orientation is

described by the Pauli matrix σ z. Under this transformation,
the Hamiltonian (1) reduces to H → HIsing with

HIsing = AdipC2
zz

2

∑
l 	=m

σ z
l σ z

mLzz(Rlm). (2)

Here Adip is the coupling introduced above, Czz ≈ 5.5 is the
effective magnetic moment in the z direction, and Rlm is the
dimensionless distance between spin l and m in units of �rmin.

In the dense limit x � 0.25, the Hamiltonian (2) describes
an Ising dipolar ferromagnet with ordering temperature Tc =
1.53 K at x = 1 [1,4,14,22]. For stronger dilution, x < 0.25,
the random positions of the Ho3+ ions induce frustration
between different magnetic moments and the system enters a
dipolar Ising spin glass phase at sufficiently low temperatures
T < Tc ≈ xT mf

c = x × 1.5 K [18,19,24,26,29].
There was a debate in the literature whether LiHoxY1−xF4

enters a glass state at very low concentrations x � 0.05 and
temperatures T � 100 mK. While some experiments showed
strong evidence of a dipolar spin glass in this regime [18,29],
which is supplemented by classical Monte Carlo simulations
[19] of the Ising Hamiltonian (2), another set of experi-
ments reported evidence for an antiglass state in which low
energy quantum fluctuations prevent the spin glass freezing
[9,11,12,30]. A most recent experimental study showed that
both glass and antiglass behavior can be realized in the
same setup by changing the systems interaction with the
environment from strong (glass state) to weak (antiglass state)
coupling [31].

Colloquially speaking, the Hamiltonian (1) can be well
approximated by the Ising Hamiltonian (2) for x � 0.05, if
the dissipation rates, corresponding to dephasing and inco-
herent flips of the magnetic moments, are larger than the
energy level splittings between quasidegenerate states. In
this case, dissipation dominates over coherent dynamics and
the dynamics looks effectively classical, i.e. Ising-like. This
statement will be made more quantitative below by showing
that the hole burning, associated to the antiglass dynamics,
can be explained on the basis of the Hamiltonian (1) without
performing the Ising approximation.

B. Dimer and trimer level schemes

In order to point out the importance of quantum effects
in the LiHoxY1−xF4 Hamiltonian in (1) for x � 0.05, we
compare the low energy physics of H with HIsing for small
spin ‘clusters’ of n = 2, 3 magnetic moments and refer to
n = 2, 3 as a dimer, trimer setup. Quantum corrections are
caused by the off-diagonal dipole-dipole interactions Jz

mJx,y
l

and Jx,y
m Jx,y

l , which induce virtual transitions out of the crystal
field’s ground state manifold. The large angular momentum

J = 8 yields significant transition matrix elements for states
far above the ≈10.5 K gap of the first excited state. Although
the corrections resulting from these transitions remain pertur-
bative, a large fraction of the excited states has to be taken into
account for a correct description of the quantum corrections.
In order to be free of approximations, we choose n positions
for the Ho3+ atoms and diagonalize the 17n × 17n Hamilto-
nian H with exact material parameters [34]. The precise form
of the crystal field Hamiltonian for LiHoxY1−xF4 is discussed
in Appendix A.

First, we consider a dimer setup of two Ho3+ ions with J =
8, which both experience the crystal field and mutual dipole-
dipole interactions. The Hamiltonian of the two ions l = 1, 2,
which are separated by a vector �R12 (in units of �rmin), is

H (2) = Hcf( �J1) + Hcf( �J2) + Adip

∑
α,β=x,y,z

Lαβ ( �R12)Jα
1 Jβ

2 . (3)

The corresponding Ising Hamiltonian is obtained by project-
ing onto the ground state doublets of Hcf( �J1,2) and is

H (2)
Ising = AdipC

2
zzL

zz( �R12)σ z
1σ z

2 . (4)

It has eigenenergies ±EIsing = ±|AdipC2
zzL

zz( �R12)|, each of
which are twofold degenerate.

In general, the dipole-dipole interaction in Eq. (3) does
not feature a compatible Z2 symmetry and thus breaks the
ground state degeneracy of the crystal field Hamiltonian. This
introduces splitting energies ε1,2 as illustrated in Fig. 1(b). We
introduce the projector P(n), which projects onto the 2n states
of lowest energy of H (n). For each dimer eigenbasis one finds

P(2)H (2)P(2) = 2 diag(� + ε2,�, ε1, 0), (5)

H (2)
Ising = 2 diag(EIsing, EIsing, 0, 0). (6)

Away from the special point Lzz( �R0) = 0, where the
‘classical Ising’ interaction vanishes, the modifications of
the eigenvalues of P(2)H (2)P(2) compared to H (2)

Ising seem

rather small, i.e., ε1,2

�
, |�−EIsing

EIsing
| ∼ 10−3–10−4 for | �R| = 1, see

Fig. 1(d). For | �R| > 1, one finds a very accurate scaling
estimate

ε1,2

�

∣∣∣
| �R|>1

≈ ε1,2

�

∣∣∣
| �R|=1

1

| �R|3 . (7)

This anticipates that corrections of P(2)H (2)P(2) compared to
H (2)

Ising can be understood in terms of second order perturbation

theory. The eigenvalues of the dipole matrix Jα
1 Jβ

2 can, how-
ever, become very large. Using second order Brillouin-Wigner
perturbation theory [35] in the eigenbasis of Hcf( �J1) + Hcf( �J2)
we find that convergence towards P(2)H (2)P(2) requires us to
include more than N = 100 of the 172 = 289 eigenstates. This
makes it difficult to express the eigenstates of P(2)H (2)P(2) in
the Ising basis analytically.

A second modification caused by using H (2) instead of
H (2)

Ising is that the total z-axis magnetization Jz
tot = Jz

1 + Jz
2 is

no longer diagonal in the basis of energy eigenstates. For the
Ising Hamiltonian, Jz

l ∝ σ z
l and [σ z

l , HIsing] = 0 and Jz
tot, HIsing

can be diagonal in the same basis. In contrast, all diagonal
matrix elements of Jz

tot vanish in the eigenbasis of H . We
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FIG. 1. A magnetic dimer is the most simple unit from which
hole burning in LiHoxY1−xF4 can be understood. (a) It is formed
by two J = 8 magnetic moments, which interact with the material’s
crystal field and experience a mutual dipole-dipole force. The crystal
field forces each magnetic moment to align along the z axis and
features an Ising-type ground state manifold associated with spin
up and down. This singles out the Ising contribution ∼Jz

1Jz
2 as the

dominant dipole-dipole interaction at low temperatures. Quantum
corrections, led by the terms ∼Jx

1 Jz
2, Jz

1Jx
2 , are strongly suppressed

by the crystal field but crucial for the understanding of hole burning
in driven LiHoxY1−xF4 samples. (b) The terms Jz

1Jx
2 + ... are not

compatible with the Ising symmetry. They lift the Ising degeneracy
and introduce small level splittings ε1,2 between two quasidegenerate
eigenstates in the LiHoxY1−xF4 dimer. (c) Breaking the Ising sym-
metry also introduces small but nonzero transition matrix elements
μαβ = 〈α|(Jz

1 + Jz
2 )|β〉 between different dimer eigenstates |α〉, |β〉.

(d),(e) Quantitative analysis of the level spacings (d) and transition
matrix elements (e) from exact diagonalization of a LiHoxY1−xF4

dimer described by H (2) in Eq. (3) with relative orientation, �r12 =
�rmin(sin θ, 0, cos θ ) [we set Lαβ (θ ) ≡ Lαβ (θ )(�r12)]. The energies
are compared to an equivalent Ising dimer, described by Eq. (4). The
colors in (e) match with the illustration in (c). At θ = arccos 1√

3
, 3π

16 ,
the states |3〉 and |2〉, |4〉 are degenerate. For some θ , there is one
“dark” state (dashed line) corresponding to an Ising singlet, which
does not couple to the other states via Jz. The quasidegenerate partner
of the dark state, however, weakly couples to both states of the
remaining quasidegenerate pair. We refer to the particular form of
μαβ in (c),(e), i.e., the coupling of a quasidegenerate pair of states to
an energetically well separated state, as “� scheme.” It is the basic
building block for hole burning in driven LiHoxY1−xF4.

define the matrix elements of the total magnetic moment in
the z direction between eigenstates |α〉, |β〉,

μαβ = 〈α|Jz
tot|β〉 =

∑
l

〈α|Jz
l |β〉. (8)

For Ising eigenstates, we find μαβ ∼ δαβ , while for
LiHoxY1−xF4 clusters we find μαβ ∼ (1 − δαβ ). The absolute
values |μαβ | for the dimer setup are shown in Fig. 1(e).

For noncommuting [Jz
tot, H] 	= 0, an oscillating magnetic

drive field h(t ) = hd cos(ωdt ) in the z direction, which is

described by the Hamiltonian

δH (t ) = hd cos(ωdt )μBμ0Jz
tot, (9)

induces transitions between different energy eigenstates
|α〉 ↔ |β〉. The transition rates are proportional to |μαβ |, see
Fig. 1(e), and the corresponding level schemes for the dimer
setup are illustrated in Fig. 1(c). The transition matrix μαβ ,
which couples a quasidegenerate pair of states to another, en-
ergetically well separated state, has the shape of a (inverse) �

and we refer to it as � scheme. As we will discuss, it features
a similar dynamics as driven three-level systems in quantum
optics, where � schemes of this shape are common. The �

scheme is the basic building block for the understanding of
hole burning in LiHoxY1−xF4 and we will analyze it in detail
in Sec. III.

Adding more magnetic moments to the cluster either en-
hances or suppresses corrections to the Ising approximation
and may lead to more involved coupling matrices μαβ . We
demonstrate this in the following by analyzing magnetic
trimer configurations with at least one frustrated moment. The
corresponding LiHoxY1−xF4 and Ising Hamiltonians are

H (3) =
3∑

l=1

Hcf( �Jl ) + Adip

∑
α,β=x,y,z

3∑
l=1,m>l

Lαβ ( �Rlm)Jα
l Jβ

m,

(10)

H (3)
Ising = AdipC

2
z

3∑
l=1,m>l

Lzz( �Rlm)σ z
l σ z

m. (11)

The level scheme for two specific trimer configurations is
shown in Fig. 2. The deviations of the exact level scheme
from the one predicted by the Ising approximation, i.e., the
degeneracy breaking energies ε, range from very small values
ε ∼ 10−7 K to relatively large ones ε ∼ 0.01 K, depending
on the spatial configuration of the magnetic moments. In any
case, one finds a complex matrix structure of μαβ , shown in
Fig. 2 (right column), as compared to the diagonal structure
predicted by the Ising approximation.

When the system is driven with an time-dependent mag-
netic field, i.e., when adding δH (t ) in Eq. (9), the transition
matrix μαβ corresponding to H (n) enables coherent, magne-
tization changing transitions between the states |α〉 ↔ |β〉
with Rabi frequency �αβ = hdμBμ0μαβ . This is in contrast
to the classical Ising Hamiltonian, which remains diagonal
in the presence of a magnetic field in the z direction, i.e.,
does not induce coherent transitions between different Ising
eigenstates. The consequences of the particular structure of
μαβ in LiHoxY1−xF4 for the response to external driving, in
particular, how it leads to hole burning, will be discussed in
the following section.

III. HOLE BURNING IN DRIVEN LiHoxY1−xF4

DIMERS AND TRIMERS

Including the quantum corrections to the Ising Hamil-
tonian, the phenomenon of spectral hole burning, i.e., the
emergence of a Fano resonance in the magnetic susceptibil-
ity χ (ω), can be explained theoretically even in the most
simple dimer and trimer level schemes for a LiHoxY1−xF4
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FIG. 2. Level scheme and transition matrix elements for the low
energy eigenstates of two generic LiHoxY1−xF4 trimer configura-
tions. Among the three Ising couplings in the top (bottom) row, 2
(0) are ferromagnetic and 1 (3) are antiferromagnetic. As for the
LiHoxY1−xF4 dimer, the trimer energy scheme (third column) shows
several quasidegenerate level splittings compared to the degener-
ate Ising scheme (second column). The ratio of quasidegeneracies
over its corresponding Ising energy ranges from |ε/E±

Ising| ≈ 0.2 −
10−6 and covers a wider range than a dimer with comparable dis-
tances between the magnetic moments. The transition matrix μαβ =
〈α| ∑3

l=1 Jz
l |β〉 (right column) for each trimer configurations can be

decomposed into two distinct � schemes corresponding to solid and
dashed arrows, each of which corresponds to a characteristic energy
difference � and quasidegeneracy ε. The quasidegeneracies in the
spectrum and the composition of the transition matrix μαβ from �

schemes are genuine features of magnetic clusters in LiHoxY1−xF4,
originating from the weak breaking of an effective Ising symmetry
in the crystal field’s ground state manifold.

Hamiltonian discussed above. The origin of the Fano reso-
nance in a dimer or trimer is quantum interference between
two almost degenerate excitation pathways. We will discuss
this phenomenon on the basis of the instructive dimer scheme
and highlight the role played by dissipation for the resonance
in this section, before we discuss its generalization to the case
of many moments in the following section.

A. Magnetic dissipation rates

In order to study the dynamics of a dimer under external
driving, we need some estimate on the environmental induced
dissipation, i.e., the dissipative transition rates γα→β between
two quantum states |α〉, |β〉. The major source of dissipation
for the magnetic moments in LiHoxY1−xF4 is the coupling of
the Ho3+ ions to lattice vibrations, i.e., phonons. In order to
estimate the associated dissipation rates, we consider acoustic,
Debye type low energy phonon modes, which are described by
a wave vector �k, dispersion ω�k = c|�k|, Debye frequency ωD,
and Debye temperature �D.

Each phonon mode has a linewidth �, which describes
the rate at which the mode exchanges energy with other
phonons and the environment. Due to weak phonon-phonon
interactions, the linewidth is dominated by the coupling of the
sample to the environment. In recent experiments [13,31] it

has been pointed out that having a weak sample-environment
coupling is crucial for the observation of hole burning and
antiglass dynamics in driven LiHoxY1−xF4. Here, we con-
sider the lattice-environment coupling in terms of an effective
phonon linewidth. Such a linewidth will set the lower bound
for the magnetic dissipation rates and enable or disable the
emergence of a Fano resonance. This yields a phenomenolog-
ical explanation for the presence or absence of hole burning in
several LiHoxY1−xF4 experiments.

Acoustic phonons in the Debye model are described by the
Hamiltonian

HD =
∑

�k,c|�k|<ωD

c|�k|b†
�kb�k, (12)

with bosonic ladder operators b†
�k, b�k at momentum �k. The

linear coupling between the phonons and the magnetic states
is typically of the form

Hmag-ph =
∑
α,β,�k

gαβ (�k)(b†
�k + b−�k )(|α〉〈β| + |β〉〈α|), (13)

with coupling matrix elements gαβ (�k) between different
eigenstates |α〉, |β〉 of the magnetic Hamiltonian (1).

The transition rate γα→β between two magnetic states
|α〉 → |β〉 with energy difference Eαβ ≡ Eα − Eβ can be
estimated by Fermi’s golden rule (see Appendix C). It yields
an energy-dependent decay rate γαβ = γ (Eαβ ) = γ (E )

γ (E )

= −i
∑

�k
|g(E , �k)|2

(
n�k

E + i0+ + c|�k| + n�k + 1

E + i0+ − c|�k|

)

= |g(|E |)|2(nB(|E |) + δsign(E ),1)ρph(|E |). (14)

Here nB(|E |) is the Bose-Einstein distribution at temperature
T and energy |E |, ρph(E ) is the phonon density of states, and
we used the shortcut g(|E |) ≡ gαβ (c|�k| = Eαβ ).

For energy differences E � kBT , the Bose function shows
the typical 1

E -divergence nB(|E |) ≈ kBT
|E | � 1. For acoustic

phonons at low energies, g(|E |) = g0
√|E |, which yields

γ (E ) ≈ g2
0kBT ρph(|E |) = γD

T ρph(|E |)
�Dρph(ωD ) , where γD is the decay

rate at the Debye frequency. For a linear dispersion with
linewidth � the density of states in d = 3 dimensions is
well approximated by ρph(|E |) = ρ0E2 for E � √

�ωD and
a constant ρph(|E |) = ρ0�ωD for E � �. This yields the
dissipation rate

γ (|E |) ≈ γD
T

�Dω2
D

×
{

E2 for
√

�ωD < E
�ωD
2π

for
√

�ωD > E
. (15)

One thus observes that for very small �, E , the dissipation
rates, which push the system back towards its equilibrium
state can become very small, leading to an out-of-equilibrium
state under driving. For LiHoxY1−xF4 the parameters in
Eq. (15) are hard to quantify due to the lack of knowledge on
the interaction between phonons and the magnetic moments
in the material. In order to obtain a qualitative estimate, one
might consider the dissipation rates of spin vacancies in dia-
mond, where the phonon-induced dissipation has been deter-
mined very precisely to be γD

�Dω2
D

= 10−15–10−14 1
Hz K [36–38].
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|3

|2

|1

γ2→3

γ1→3

γ3→1,2

Ωd cos(ωdt)Ωp cos(ωpt)

dimer μαβ

η = ωd − E23

η + ν = ωp − E13

FIG. 3. Illustration of an idealized, driven � scheme, which is
realized in an antiferromagnetic Ho3+ dimer or trimer subject to
time-dependent magnetic drive and probe fields in the z direction.
The inset shows a corresponding dimer transition matrix μαβ ex-
tracted from Fig. 1(c). The drive, probe fields here, oscillate with
frequency ωd , ωp and the strength of the couplings is described by the
Rabi frequency �d , �p, which is proportional to the corresponding
coupling matrix elements and the strength of the magnetic drive,
probe fields hp, hd , i.e., �p ∝ hpμ23, �d ∝ hdμ13. The drive scheme
also includes dissipative transitions with rates γα→β , corresponding
to Stokes (↑) and anti-Stokes (↓) transitions, which stem from the
coupling of the magnetic moments to a low temperature phonon
continuum. Adjusting the detuning η, ν + η of the drive and probe
field from the energy differences E13, E23 in the � scheme enables
a Fano resonance, i.e., hole burning, in the linear susceptibility χ .
Note: This illustration represents an idealization. In reality, both the
drive and probe fields contribute to μ13 and μ23 at the same time. In
linear response to the probe field hp, however, the measured signal is
very well approximated by � schemes linear in hd . In addition to this
figure, this is covered by a drive scheme with (ωd , hd ) ↔ (ωp, hp).

For the significantly small level spacings of E ∼ 1 kHz, which
are addressed by the driving field, the dissipation is dominated
by the phonon linewidth, yielding γ ≈ � T

100 K with the Debye
temperature of LiHoF4 being �D = 600 K. The linewidth �

sets a lower bound to the dissipation rate, indicating that
for strong coupling to the environment, the system is hardly
pushed away from its equilibrium.

B. Magnetic susceptibility and Fano signal for spin dimers

The � schemes found in magnetic dimers and trimers in
Figs. 1(c) and 2 are common candidates for the observation of
interference between different excitation pathways and Fano
resonances [39,40]. In this section, we discuss the mechanism
of destructive interference, which leads to a Fano resonance
in the magnetic susceptibility, for an idealized � scheme.
The � scheme is illustrated in Fig. 3. It consists of three
quantum states |1, 2, 3〉, which are driven by two external
fields. The |2〉 ↔ |3〉 transition is driven by a time-dependent
driving field and the |1〉 ↔ |3〉 transition is driven by a
time-dependent probe field. The measured time-dependent
magnetic susceptibility will be proportional to the coherences
|3〉〈2|, |3〉〈1|. Their dynamics does not depend on whether the
� scheme is regular or inverted and without loss of generality,
we discuss an inverted scheme. The generalization to the
situation of many magnetic moments follows in Sec. IV.

The ideal � scheme consists of three levels |l〉, l = 1, 2, 3
corresponding, e.g., to three different dimer eigenstates, as

shown in Fig. 3(c). An oscillating external magnetic field
with Rabi frequency �d and drive frequency ωd drives the
|2〉 ↔ |3〉 transition with a detuning η = ωd − E23 from reso-
nance. At the same time, an oscillating probe field with Rabi
frequency �p and drive frequency ωp probes the |1〉 ↔ |3〉
transition with detuning ν + η = ωp − E13 from resonance. In
addition, incoherent transitions are induced by the coupling of
the states to a phonon continuum. The corresponding rates for
the (anti-) Stokes γ3→1,2 (γ1,2→3) processes can be estimated
by Eq. (15).

The time-dependent Hamiltonian for this � scheme is

H�(t ) = E13|1〉〈1| + E23|2〉〈2| + �d cos(ωdt )(|2〉〈3|
+ H.c.) + �p cos(ωpt )(|1〉〈3| + H.c.) (16)

with E13, E23 > 0. Assuming small Rabi frequencies, �d,p �
ωd,p, one can perform a rotating wave approximation (RWA),
i.e., transform the HV (t ) into a frame rotating with the
drive and pump fields and discard all counterrotating terms
∼2ωp,d . The corresponding unitary transformation is U (t ) =
exp [it (ωp|1〉〈1| + ωd |2〉〈2|)] and the transformed Hamilto-
nian

H̃� = U †(t )H�(t )U (t ) − iU †(t )∂tU (t )RWA

= �d

2
(|3〉〈2| + |2〉〈3|) + �p

2
(|3〉〈1|

+ |1〉〈3|) + ν|2〉〈2| + (ν + η)|3〉〈3|. (17)

In the last step, we added a constant energy shift H̃� → H̃� +
(ν + η), which does not change the dynamics.

In order to account for the dissipation, we use a density
matrix description of the magnetic system. The density matrix

ρ̂ =
3∑

α,β=1

ραβ |α〉〈β| (18)

is hermitian ραβ = ρ∗
βα and has unit trace

∑
α ραα = 1. Its

time evolution is described by a quantum master equation in
Lindblad form [41]

∂t ρ̂ = i[ρ̂, H̃�] +
∑

α=1,2

(Lα→3 +L3→α )ρ̂. (19)

The second term describes the dissipative transitions via the
superoperators Lα→β , which act linearly on ρ̂,

Lα→βρ̂ = γα→β

(|β〉〈α|ρ̂|α〉〈β| − 1
2

{|α〉〈α|, ρ̂})
. (20)

The linear response to the probe field ∼�p is obtained from
the stationary state (∂t ρ̂ = 0) of Eq. (19). To simplify notation,
we assume one common rate γ ≡ γα→β for all dissipative
processes. This is justified for kBT > E13, E23. One finds

ρ11 ≈ ρ22 = 1 − ρ33

2
, (21)

ρ21 = �dρ31 − �pρ23

2(iγ − ν)
, (22)

ρ23 = �d (3ρ33 − 1)

4η + 6iγ
, (23)

ρ31 =
iγ − ν + �2

d
4η+6iγ

�2
d − (iγ − ν)(6iγ − 4(η + ν))

�p(3ρ22 − 1). (24)
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w

F

χ(ωp)

χ

χ

2

4

6

0 −0.1

[arb. units]

|3

|2

|1

γ2→3

γ1→3

γ3→1,2

Ω cos(ω t)Ω cos(ω t)

η = ωd − 23

η + ν = ωp − E13

νp

ωp 0−1−2

E

FIG. 4. Spectral hole (Fano resonance) in the susceptibility
χ (ωp) obtained in linear response in �p from the � scheme in
Fig. 3 (repeated in inset). Both the real (χ ′, red bold line) and the
imaginary part (χ ′′, gray dotted line) display an asymmetric line
shape, indicating a Fano resonance close to the resonance condi-
tion ωp − ωd =≈ E13 − E23. The dimensionless parameters for this
figure are γ = 0.1, �d = 4, ωd = 18, E23 = 20.4, E13 = 19.4. The
dependence of the strength F , spectral width w, and position νp of
the signal on the drive parameters can be found in Table I.

The time-dependent expectation of an arbitrary, time-
independent operator Ô in the rotating frame is

〈Ô〉(t ) = Tr(U †(t )ρ̂U (t )Ô) =
∑
αβ

(U †(t )ρ̂U (t ))αβOβα. (25)

If the response is evaluated at the probe frequency ωp, only
terms proportional to ρ13, ρ31 ∼ e±iωpt contribute to Eq. (25).
This yields the linear response of the generic operator Ô,

∂〈Ô〉ωp

∂�p

∣∣∣∣∣
�p=0

=
O13

(
iγ − ν + �2

d
4η+6iγ

)
�2

d − (iγ − ν)(6iγ − 4(η + ν))
(3ρ22 − 1).

(26)

For the specific choice of Ô = |1〉〈3| + H.c., i.e., measuring

the operator to which the probe field is coupled,
∂〈Ô〉ωp

∂�p
≡

χO(ωp) is the susceptibility.
The real and imaginary part χ ′(ωd ) = Reχ (ωd ) and

χ ′′(ωd ) ≡ Imχ (ωd ) of the susceptibility are shown in Fig. 4
for a suitable set of parameters. They display a pronounced
Fano resonance, i.e., a spectral hole, whose strength depends
on the dissipation rate γ and the Rabi frequency of the drive
�d . For weak driving �d → 0, the signal reduces to the
expected Lorentzian χ ′′(ωp) = 6γ

36γ 2+16(ωp−E13 )2 , with a peak

∼ 1
6γ

at ωp = E13.

TABLE I. Signal strength F , width w, and position νp of a
Fano resonance in the � scheme for weak and strong dissipation γ .
Compare with Fig. 4 for an illustration of the parameters.

Parameter Weak γ Strong γ

F 1
12γ

1

1+
(

2η
3�d

)2
1

4γ

(
�d
3γ

)2

w
2η

3

(
1 + 3�2

d
8η2

)
3γ 2

2η

νp 4η
(

�d
η

)2 3γ 2

2η

C. Occurrence and strength of the Fano resonance

The analytical form of the susceptibility χ (ωd ) in Eq. (26)
appears rather complicated. Especially when the contribution
of several �-type schemes to the susceptibility is expected,
the total signal is hard to estimate from the form of each
individual χ (ωd ) in Eq. (26). In order to make the Fano signal
more theoretically accessible, we perform a Taylor expansion
of the imaginary part χ ′′(ωd ) for strong and weak dissipation,
i.e., for γ � �d , η and γ � �d , η.

Experimentally and theoretically well accessible parame-
ters, which characterize a Fano resonance, are illustrated in
Fig. 4 and consist of the strength of the resonance F , its
spectral width w, and its spectral peak position νp. Their
corresponding values obtained from Eq. (26) can be found in
Table I. In general, the Fano resonance is most significant for
small dissipation rates γ and small ratios η

�d
� 1. The width

and position of the signal can be adjusted by tuning η.
Transferring the present analysis to the dimer and trimer

level schemes shows that hole burning, i.e., Fano reso-
nances in the magnetic susceptibility, can be observed in
LiHoxY1−xF4 already on the basis of magnetic dimers and
trimers. One crucial requirement for its observation, however,
is sufficiently small dissipation rates γ , which are of the order
of the detunings ν, η and the Rabi frequency �d . According to
Eq. (15) this can be achieved if the lattice degrees of freedom
have a vanishing linewidth � → 0, i.e., in the limit of strongly
isolated systems, which is in accordance with experimental
findings [29,31].

IV. HOLE BURNING FOR MANY MOMENTS

The mechanism which leads to the emergence of a Fano
resonance in driven LiHoxY1−xF4 can be understood in terms
of a � scheme in a Ho3+ dimer configuration. A single dimer
represents, however, an idealized setup, which completely
neglects the many-body aspect of the magnetic moments in
a LiHoxY1−xF4 sample. In this section, we aim to generalize
the previous findings to many interacting moments. Devising a
phenomenological, effective spin- 1

2 Hamiltonian, which mod-
els the low-energy Hilbert space of LiHoxY1−xF4 including
quantum corrections, we show that the driven system features
an extensive number of many-body � schemes, which can
display Fano resonances under the above outlined conditions.
Based on this finding, we argue that hole burning survives
also in the realistic, many-body setting and that many-body �

schemes are in fact required in order observe Fano resonances
at experimentally relevant conditions [31].

A. Effective spin- 1
2 quantum dipole Hamiltonian

At low energies, the dynamics of the magnetic degrees of
freedom in LiHoxY1−xF4 is dominated by collective magnetic
moments rather than by dimer or trimer configurations. In or-
der to investigate the driving schemes in the many-body setup,
we introduce an effective spin- 1

2 quantum dipole Hamiltonian,
which, on one hand, is consistent with the results from the
exact dimer and trimer analysis above and, on the other hand,
recovers the common Ising approximation at larger temper-
atures. The model and its effective parameters are chosen
in such a way that the characteristic features of the dimer,
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i.e., the small quasidegenerate level splittings compared to
a much larger Ising-type splitting and the �-type transition
matrix elements μα,β , are reproduced correctly for generic
dimer and trimer configurations in LiHoxY1−xF4 at x ≈ 0.04.
This approach is justified for sufficiently low temperatures
T � 10 K and as long as long range ferromagnetic order is
absent, i.e., for x � 0.15.

In accordance with Eqs. (3) and (4), we propose a spin- 1
2

Hamiltonian of the form

H 1
2

= AdipC
2
zz

∑
l,m

∑
α,β=x,y,z

σα
l σβ

m gα ( �Rlm)Lαβ ( �Rlm)gβ ( �Rlm).

(27)

Here σα
l is the Pauli matrix α = x, y, z describing the orien-

tation of spin l and Adip, Czz and Lαβ ( �Rlm) are the same as in
Sec. III. The position dependent and dimensionless g factors
gα ( �Rlm) are chosen such that gz( �Rlm) = 1 and gx,y( �Rlm) �
1,∀ �Rlm. In the limit gx,y( �Rlm) → 0, the Hamiltonian H re-
duces to the Ising Hamiltonian in Eq. (4).

We introduce nonzero gx,y( �Rlm) to describe deviations of
the true LiHoxY1−xF4 system from the Ising approximation.
For the dimer configuration, this deviation vanishes at large
distances with ∼| �Rlm|−3, as discussed in Eq. (7). This suggests
gx,y( �Rlm) ∼ | �Rlm|−3 in a similar fashion. For more than two
magnetic moments (e.g., in trimer configurations) we find,
however, that non-Ising corrections decay much slower in the
distance | �Rlm|. We attribute this behavior to strong contri-
butions to the dipole-dipole interactions from highly excited
crystal field eigenstates, which were observed in perturbation
theory for the dimer setup. We expect the non-Ising correc-
tions therefore to become more pronounced for larger spin
clusters and thus chose gx,y( �Rlm) ≡ gx,y independent of the
distance. A similar effective model has also been proposed
to explain temperature dependence of the specific heat of
LiHoxY1−xF4 [9].

For the choice gx = 0.1, gy = 0.07, the eigenvalues of H 1
2

match well with the behavior of the lowest order eigenvalues
of the full Hamiltonian H for n = 2, 3 spins according to the
requirements outlined above. This choice of parameters is not
unique. The results for the many-body spectrum, however, do
not change qualitatively as long as the characteristic features
of the dimers and trimers are preserved. Compared to previous
approaches [9], the g factors here are not isotropic. This is a
necessary requirement in order to obtain the observed level
splittings and a �-type driving scheme. This is consistent with
the anisotropy of the crystal field Hamiltonian [34].

In order to simulate a realistic subsystem of
LiHoxY1−xF4with x � 0.05, we consider a three-dimensional
volume of N = 5 × 5 × 3 unit cells and we randomly
distribute n = 12 spins over the 4 × N = 300 potential
Ho3+ positions. This corresponds to a dilution of x = 0.04.
The spins experience dipole-dipole interactions, which are
described by the Hamiltonian H 1

2
in Eq. (27). The eigenvalues

and eigenstates of the many-body spin Hamiltonian are
obtained via exact diagonalization.

The sequence of eigenvalues can be understood in a similar
way as for the trimer scheme. Consider the eigenvalues λl

of H 1
2

with l = 1, ..., 212 and sorted in ascending order, i.e.,

λl+1 > λl for all l . We define the ‘Ising’ level spacings � j

and the ‘quantum’ level spacings ε j according to

ε j = λ2 j − λ2 j−1, for j = 1, ...212, (28)

� j = λ2 j+1 − λ2 j, for j = 1, ...212 − 1. (29)

The level spacings � j, ε j are both positive for all j and
the values of the ε j’s are a measure for the deviation of
H 1

2
from HIsing. For gx,y → 0, ε j → 0 continuously as H 1

2

approaches HIsing. A characteristic distribution of {λ2 j,� j, ε j}
for a system of n = 12 spins is shown in Fig. 5(d).

The importance of the level spacings ε j becomes apparent
when the many-spin system is driven with a time dependent
magnetic field in the z direction. As in the previous section,
this is formally described by adding a Hamiltonian H →
H (t ) = H 1

2
+ δH (t ) with δH (t ) = hd cos(ωdt )CzzgLμBμ0Sz

tot

and Sz
tot = ∑12

l=1 σ z
l . The transition matrix elements between

two eigenstates |l〉, |m〉 of the Hamiltonian H 1
2

are

μl,m = 〈l|Sz
tot|m〉. (30)

As in the previous dimer and trimer configurations,
[Sz

tot, HIsing] = 0 but [Sz
tot, H 1

2
] 	= 0, and thus the transition

matrix can be chosen diagonal in the Ising basis but will be
nondiagonal in the basis of H 1

2
.

Figure 5(a) shows the matrix elements μm,l for fixed
m = 199 (red line) and m = 200 (gray line). One observes a
generalization of the dimer and trimer drive schemes to the
many-spin system. Both states m = 199 and 200 act as the
base state of a whole set of inverse � schemes, which couple
to pairs of states l = 2 j − 1, 2 j. The levels of each pair are
separated by a ‘quantum’ level spacing ε j [see Fig. 5(b) for
an illustration]. Each � scheme consists of one strong and
one weak transition matrix element, i.e., one generally finds
either |μ199,l | � |μ199,l+1| or |μ199,l | � |μ199,l+1|. This order
is exchanged when going from m to m + 1, as can be seen
from the inset of Fig. 5(a) and the arrows in Fig. 5(b). The
pairs, in turn, are separated from the base state m = 199 200
by one or several Ising level spacings �m.

The complete set of transition matrix elements μm,l for a
selection of fixed m is plotted in Fig. 5(c) in descending order.
One observes a small number of about 10 matrix elements
for each m, which are ∼O(1). For l � 10 one observes a
significant drop in the magnitude of |μm,l |, which is followed
by a decay ∼l−3. While for each m the states corresponding
to a given l are different (due to individual ordering) the
magnitude and decay of the matrix elements is very similar.

Large matrix elements |μm,l | = O(1) result from overlaps
of nearly Ising or Z2-reversed partners. Consider therefore
a state α of the particular form | ⇑α〉 ≡ | ↑↑↓↑ ...〉 and its
Z2-reversed partner | ⇓α〉 ≡ | ↓↓↑↓ ...〉, where α is the label
that indicates which spins are pointing up and which ones are
pointing down. Due to the smallness of gx,y, many eigenstates
will be of the form |ψα±〉 = |⇑α〉±|⇓α〉√

2
+ ..., where ... indicates

perturbative corrections due to nonzero gx,y. The largest transi-
tion matrix elements result from overlaps 〈ψα + |Sz

tot|ψα−〉 =
n↑ − n↓ + ..., which is the difference in the number of up-
spins and down-spins and is O(1). All the remaining matrix
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FIG. 5. The energy spectrum and the eigenstates of the effective
Hamiltonian H 1

2
in Eq. (27) confirm the observation from the dimer

and trimer configurations [42]: Due to the weakly broken Ising
symmetry in H 1

2
its eigenstates come in pairs, each consisting of two

quasidegenerate states with relative level splitting ε, and separated
from other pairs by an “Ising” energy �. For eigenvalues λl of H 1

2
in

ascending order, we define the quasidegeneracies εl ≡ λ2l − λ2l−1

and the “Ising” energies �l = λ2l+1 − λ2l . These are shown in panel
(d). For a cluster of n = 12 random magnetic moments, correspond-
ing to a small LiHoxY1−xF4crystal with x = 0.04, one finds two
well separated energy bands of quasidegeneracies and Ising energies.
The energies of the Ising band and the quasidegenerate band of
the cluster correspond well with the drive, probe frequency ωp,d ≈
2π × 200 Hz, and their relative detuning δω = ωp − ωd ∼ 2 mHz
used in previous hole burning experiments [31]. (a),(b) The transi-
tion matrix elements μm,l = 〈m|Jz

tot|l〉 between different eigenstates
|l〉, |m〉 establish a set of � schemes, similar to the dimer and trimer
configurations. In (a) this is shown for the absolute values of μm,l

for the quasidegenerate pair m = 199 200 and for 500 < l < 700.
The pairwise �-scheme structure is illustrated in (b) for the states in
the inset. Thick arrows correspond to large matrix elements and thin
arrows to small matrix elements. The whole set of coupling matrix
elements for a given eigenstate m = 200, 500, 1000 from the n = 12
spin cluster is shown in (c), where the |μm,l | are sorted in descending
order. Matrix elements |μl,m| < 10−3 correspond to Rabi frequencies
�d = O(kHz) in the presence of a hd = 0.5 Oe drive field [31]. For
drive and probe frequencies ωd,p ≈ 2π × 200 Hz, this corresponds
to weak driving �d,p � ωd,p and allows us to treat the response of
the system in the rotating wave approximation (RWA). The minority
of strongly coupled transitions has no observable influence on the
dynamics. In this framework, hole burning, i.e., a Fano resonance in
the linear magnetic susceptibility, is observable when the detuning
δω equals the energy εl of one (or several) quasidegeneracies. This
leads to destructive interference between two different pathways in
the � scheme and to a Fano resonance as in Fig. 4.

elements with |μm,l | � 1 are due to the corrections ... and, as
we will see, dominate the dynamics under driving.

The characteristic structure of the spectrum, consisting of
an Ising-type band and a band of quasidegenerate states, as
discussed in Fig. 5, and the �-type structure in the transition
matrix elements μm,l are insensitive to the precise parameter

choice in Eq. (27). Both features can be observed for a wide
range of parameters gx,y and also for more elaborate models
with an extended set of g factors, each for an individual dipole-
dipole term, as long as the dimer and trimer configurations are
correctly reproduced. The key mechanism behind the features
discussed in Fig. 5 is the strong anisotropy in H 1

2
, which

establishes a weakly broken Ising symmetry and slightly lifts
Z2 degeneracies. For a driving field Sz

tot, which commutes
with H 1

2
up to the symmetry breaking terms, the transition

matrix elements perturbatively connect the quasidegenerate
eigenstates via a set of intermediate states, leading to the
�-type transition matrix elements. For the values gx =
0.1, gy = 0.07, and x = 0.04 the experimentally observed
energy scales and transition matrix elements are recovered by
a spin cluster of n ≈ 12 spins. Modifying these numbers will
result in larger or smaller required cluster sizes in order to
match the experimental scales. Since a dilute LiHoxY1−xF4

sample will consist of many clusters of different sizes, no fine
tuning of the model parameters is required.

B. Driving the many-spin system

In this section, we discuss the response of the many-
spin system with its multiple � schemes to external driv-
ing. The driving regime of interest is the one discussed in
Refs. [12,31,43], where a clear Fano resonance has been
observed. The setup consists of a LiHoxY1−xF4sample, which
is driven by two different, time-dependent magnetic fields,
a driving field ∼hd cos(ωdt ) and a probe field ∼hp cos(ωpt )
with small amplitude hp � hd . Typical experimental val-
ues for the drive and the probe frequency are ωd,p ≈ 2π ×
200 Hz ≈ 1.2 kHz and for their difference δω = |ωp − ωd | �
2π × 10 mHz. The strength of both the pump and the probe
field is hd ≈ 0.5 Oe and hp = 0.02 Oe. For this choice, the
corresponding Rabi frequencies �l,m for transitions between
spin eigenstates |l〉 ↔ |m〉 are

�
d,p
l,m = hd,pgLCzzμBμ0︸ ︷︷ ︸

≡Hd,p

μl,m, (31)

which amounts to �d
l,m ≈ μl,m × 9.5 MHz and �

p
l,m = �d

l,m

20 .
We defined the effective driving, probing field Hd,p for brevity.

We distinguish two different regimes for the Rabi frequen-
cies �

d,p
l,m and the matrix elements μl,m: (i) a regime of strong

driving with �
d,p
l,m > ωd,p and (ii) a rotating wave regime

(RWA) for �
d,p
l,m < ωd,p. By definition, the conditions for the

strong coupling regime deny the application of the rotating
wave approximation and the corresponding transitions have
to be treated in the Floquet formalism [44,45]. In the RWA
regime, however, the rotating wave approximation is applica-
ble and the discussion of Sec. III can be generalized to the
multispin setup.

For the above mentioned parameters [12,31,43], the two
regimes are illustrated in Fig. 5(c). It shows that this particular
choice of driving parameters leads to a clear separation be-
tween the strong driving regime and the RWA regime, which
is indicated by a jump of μl,m over at least one order of
magnitude after escaping the RWA regime and only a few
matrix elements that exceed slightly the RWA condition. This
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is further justification why we can treat the strong coupling
and RWA regime separately. In Appendix B we show that very
strongly driven transitions �d � ωd will effectively freeze
out and need not be considered. We will thus focus on the
RWA regime.

In the RWA regime, the analysis of Sec. III can be general-
ized almost straightforwardly to the case of many � schemes.
One difference between the idealized scheme and the real
driving scheme is, however, that both the drive and the probe
field couple to the same transition matrix elements. This yields
the time-dependent Hamiltonian

H (t ) = H 1
2
+ (Hd cos(ωdt ) + Hp cos(ωpt ))

∑
l

σ z
l . (32)

Considering a single � scheme |l〉 ↔ |m〉 ↔ |l + 1〉, both
transitions couple to the combined magnetic field, which gives
rise to two meaningful ways of going to a rotating frame. One
is obtained by performing the rotating transformation as in Eq.
(21) and yields

HRWA =
(

Hd + Hpeiδωt

2
μl,m|l〉〈m| + H.c.

)

+
(

Hp + Hd e−iδωt

2
μl+1,m|l + 1〉〈m| + H.c.

)
+ ν|l〉〈l| + (ν + η)|m〉〈m|. (33)

It still contains slowly varying terms with frequency δω =
ωp − ωd . A similar transformation is obtained by exchanging
l ↔ l + 1 in the transformation matrix which yields HRWA

but with Hd ↔ Hp and ν → 2δω − ν, η → η + ν − δω. Both
Hamiltonians yield the equivalent time evolution since in both
transformations only the fast contributions ∼2ωp, 2ωd and
ωp + ωd have been neglected. The ambiguity in choosing
the transformation reflects the fact that, when measuring at
the frequency ωp, one can either probe the l ↔ m transition
[corresponding to Eq. (33)] or the l + 1 ↔ m transition cor-
responding to the second transformation. Per the � scheme,
one can thus probe two different transitions, which we take
into account individually.

For the many-body scheme in Fig. 5(b), the magnetic
susceptibility at the probe frequency χ (ωp) is given by the
sum of all possible transitions, i.e., by the sum over all
� schemes with two different contributions per scheme.
At extremely long measurement times ∼ 2

δω
the experiment

[13,31] singles out contributions at ωp and discards all other
parts. In linear response, the dimensionless susceptibility is

χ (ωp) = ∂〈Sz
tot〉ωp

∂Hp
|
Hp=0

. For a single � scheme from Fig. 5(b)

of the form |l〉 ↔ |m〉 ↔ |l + 1〉 it acquires two contributions,
one probing the |l〉 ↔ |m〉 transition and one probing the
|l + 1〉 ↔ |m〉 transition, which yields

χ̃l,m(ωp)

=
|μl,m|2(iγ − ν + H2

d |μl+1,m|2
4η+6iγ

)
H2

d |μl+1,m|2 − (iγ − ν)(6iγ − 4(η + ν))

+
|μl+1,m|2(iγ + ν − 2δω + H2

d |μl,m|2
4(η+ν+δω)+6iγ

)
H2

d |μl,m|2 − (iγ + ν − 2δω)(6iγ − 4(η + δω))
. (34)

Here, according to the definitions in Sec. III B, ν = λl+1 −
λl + ωd − ωp and η = λl − λm − ωd . The signal correspond-
ing to the smaller transition matrix element is strongly sup-
pressed compared to the one corresponding to the larger
matrix element due to the |μ|2 prefactor and rarely contributes
to the susceptibility. As a consequence, the total susceptibility
χ (ωp) = ∑

l,m χ̃2l−1,m(ωp) is very well approximated as the
sum of independent � schemes.

In order to contribute a Fano resonance to the magnetic
response, a given � scheme has to produce a significant
signal strength F at a small signal width w, as shown in
Table I. For a transition |l〉 ↔ |m〉 ↔ |l + 1〉 to contribute this
requires a near resonant detuning from the drive frequency
η = ωd − |λl − λm| = O(mHz) and in addition a transition
matrix element μl,m in the RWA regime and a detuning of
the probe frequency δ = εl/2 − |ωd − ωp| = O(mHz).

In Fig. 6, we show the magnetic susceptibility χ of a
system of n = 12 magnetic moments, which is described by
H 1

2
with realistic parameters for LiHoxY1−xF4. It is strongly

driven by an external drive field Hd = 1.5–3 MHz, which
corresponds to hd ≈ 0.1–0.2 Oe. We clearly observe pro-
nounced individual Fano resonances as a function of the probe
field detuning δω = ωp − ωd whose emergence and visibility
depend on the dissipation rate γ , the drive field strength Hd ,
and the drive frequency ωd , as predicted by the �-scheme
analysis in Sec. III. The observed resonances correspond to �

schemes for which the detuning η, the Rabi frequency Hdμl,m,
and the dissipation are roughly of the same order of magnitude
[mHz for Figs. 6(b)–6(e) and Hz for Fig. 6(a)].

C. The effect of hyperfine interactions

The spin- 1
2 toy model in Eq. (27) predicts the observation

of hole burning at quantitatively correct energy scales in
LiHoxY1−xF4 under experimentally realistic conditions. The
shape of H 1

2
in Eq. (27) is motivated by the microscopic

Hamiltonian in Eq. (1), which predicted hole burning by the
same mechanism as for H 1

2
but only for very different energy

scales, which correspond to the flipping of a single magnetic
moment. Throughout this discussion, we have completely
neglected the hyperfine interaction of the electron magnetic
moment �J with the nuclear moments �I of the Ho atoms.
The effect of hyperfine interactions in LiHoxY1−xF4 has been
addressed by several papers [3,10,33,46] and, in accordance
with their findings, we argue that the hyperfine interactions do
not modify our hole burning phenomenology for sufficiently
small transverse magnetic fields.

The microscopic hyperfine interaction is described by the
Hamiltonian

Hhf = AJ

∑
l

[
Iz
l Jz

l + 1

2
(I+

l J−
l + I−

l J+
l )

]
(35)

with AJ = 39 mK and a nuclear spin I = 7
2 . The longitudi-

nal part ∼AJJz
l Iz

l splits each electronic angular momentum
state into a multiplet with eight nuclear spin states mJ =
− 7

2 , ... 7
2 . In the Ising approximation, the hyperfine interaction

reduces to

Hhf-Ising = AJCzz

∑
l

σ z
l Jz

l (36)
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FIG. 6. For suitable driving conditions, the combination of
quasidegenerate and Ising energy levels with the � schemes in μl,m

cause observable Fano resonances in the linear magnetic suscep-
tibility χ (ω). The plots (a)–(e) show Fano resonances in the real
part χ ′ and the imaginary part χ ′′ of the susceptibility for different
dissipation rates γ . The signal is obtained from n = 12 magnetic
moments, which are described by H 1

2
and driven by a magnetic

field with frequency ωd = 2π × 202 Hz and variable strength Hd .
χ is probed at frequency ωp = δω + ωd . The drive strength Hd =
3 MHz corresponds to a magnetic field of hd ≈ 0.2 Oe. In order
to obtain an observable signal, the width of the resonance, i.e., the
quasidegeneracy, has to match approximately with both the phonon
induced dissipation rate γ and the detuning δω and, in addition,
the Rabi frequency �d for the transition needs to be sufficiently
large, |�d | � δω, to cause interference. If γ or Hd are changed
considerably a given resonance vanishes and the signal becomes flat
until another resonance becomes accessible.

and each state is separated from its adjacent states mJ ± 1 by
the energy ∼AJCzz = 215 mK.

Both Hhf and Hhf-Ising are invariant under (Jz
l , Iz

l ) →
(−Jz

l ,−Iz
l ) or (σ z

l , Iz
l ) → (−σ z

l ,−Iz
l ), respectively, and thus

respect the Ising symmetry of the ground state manifold of the
crystal field Hamiltonian. The leading order corrections to the
Ising approximation are thus again arising from the dipole-
dipole interactions between electronic magnetic moments of
the form ∼Jx

l Jz
m (or ∼σ x

l σ z
m in H 1

2
). Compared to the situation

without nuclear moments one, however, expects the hyperfine
interactions to further suppress the corresponding quantum
corrections. Qualitatively, this is due to the energy cost

associated with changing the orientation of the electronic spin
by applying Jx

l to the electronic magnetic moment while at the
same time leaving the nuclear spin orientation unchanged.

At low temperatures T = O(0.1 K), the excited states
of the crystal field Hamiltonian remain inaccessible (apart
from virtual excitations) due to their large energy separation
∼10.5 K. This remains true in the presence of hyperfine in-
teractions. The symmetry breaking terms ∼Jx

l Jz
m again induce

transitions only inside the ground state manifold of the crys-
tal field Hamiltonian |↑〉l ↔ |↓〉, which now experiences an
additional energetic suppression given by the difference in the
hyperfine interaction energy �Ehf. According to Eq. (36) it is
approximately �Ehf ≈ 2AJCzz|mJ | and for a given electronic
magnetic moment l the additional suppression of quantum
corrections may be expected to be proportional to its nuclear
spin orientation.

As a consequence, the phenomenology of hole burning
arising from Ising symmetry breaking dipole-dipole inter-
actions, which lift the degeneracy between Ising-reversed
partners and introduce small but finite transition matrix el-
ements μαβ = 〈α| ∑l Jz

l |β〉 would survive, with quantitative
corrections, also in the presence of hyperfine interactions.
In order to test this assumption, we determine the eigenen-
ergies and eigenstates of a microscopic dimer configuration
in LiHoxY1−xF4including hyperfine interactions. Each elec-
tronic magnetic moment �J1,2 then experiences the crystal field,
the nuclear spin of the Ho3+ ion and the mutual magnetic
dipole-dipole interaction. This extends the dimer Hamiltonian
H (2) in Eq. (3) to

H (2)
full = H (2) + AJ

2∑
l=1

�Jl · �Il . (37)

We diagonalize this Hamiltonian numerically in the (17 ×
8)2-dimensional Hilbert space and then inspect the (2 × 8)2-
dimensional subspace of low energy eigenstates.

The results obtained from the diagonalization confirm
the above picture and support our phenomenology of hole
burning. As for the dimer and trimer schemes without hy-
perfine interactions, each eigenstate of H (2)

full comes with a
quasidegenerate partner. In Fig. 7 this is demonstrated for
a dimer with relative orientation �R12 = (a/2, 0, c/4) where
a, c are the LiHoxY1−xF4 lattice constants. Figure 7(a) shows
the level differences λl+1 − λl for the m = 32 lowest energy
states in the dimer, whose alternating pattern reveals the
quasidegeneracies. This represents an extension of the dimer
energy levels without nuclear spins shown in Figs. 1(b) and
1(d).

Grouping the differences of adjacent energies in the dimer
spectrum into quasidegenerate level splittings εl ≡ λ2l −
λ2l−1 and “Ising” splittings �l = λ2l+1 − λ2l , each dimer con-
figuration now gives rise to a whole band of splittings, shown
in Fig. 7(b) for different configurations �R12. Compared with
Fig. 1, the hyperfine interactions generally suppress both εl

and �l . A trend towards stronger suppression for an increas-
ing polarization of the nuclear moments, P(2)

z = |〈Iz
1〉| + |〈Iz

2〉|,
in a given set of quasidegenerate states is observed.

As for the dimer setup without nuclear spins, the de-
generacy breaking dipole-dipole interactions induce nonzero
transition matrix elements μα,β ≡ 〈α| ∑l Jz

l |β〉 between
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FIG. 7. The hole burning phenomenology persists after including
hyperfine interactions between the magnetic moments and the Ho
nuclear spins. Including the nuclear spin degrees of freedom in a
magnetic LiHoxY1−xF4 dimer configuration with relative orientation
�R12 confirms the established picture of quasidegenerate pairs of
eigenstates of the Hamiltonian H (2)

full in Eq. (37) and � schemes
in their transition matrix elements. The alternating level structure
of Ising-type level differences � (even l) and quasidegeneracies ε

(odd l) can be found throughout the entire spectrum of H (2)
full and is

illustrated in (a) for the 30 lowest energy eigenstates. This leads to
energetically well separated bands of level differences �l = λ2l+1 −
λ2l and quasidegeneracies εl = λ2l − λ2l−1, shown in (b) for different
dimer orientations �R12, as it was observed for magnetic clusters
without hyperfine interactions. The transition matrix elements μm,l =
〈m|Jz

1 + Jz
2 |l〉 between different dimer eigenstates |m, l〉 reveal mul-

tiple � schemes. For the quasidegenerate pair m = 9, 10 and 15 <

l < 30, this is demonstrated in (c), where the |9〉 ↔ |24〉 ↔ |10〉
transition is highlighted in the inset. This combination of level spac-
ings and transition matrix elements again enables Fano resonances
in the linear susceptibility, which is demonstrated in (d) for a driven
LiHoxY1−xF4 dimer for a specific set of drive parameters.

different eigenstates |α, β〉 of H (2)
full . In Fig. 7(c), these are

shown for fixed α = 9, 10 (two quasidegenerate partners from
the spectrum) and β = 15, ..., 30 for the same configuration
as in (a). It implies that in the presence of a time dependent
external magnetic field ∼ ∑

l Jz
l two quasidegenerate partners

build out several �-schemes with alternating strong and weak
transitions, very similar to the scheme observed in Fig. 5(b)

for clusters of magnetic moments without hyperfine interac-
tions.

In the presence of hyperfine interactions, a single dimer
scheme thus already contributes a whole set of many-body
� schemes, which can support Fano resonances over a much
larger frequency range than a dimer scheme without hyperfine
interactions. For example, the magnetic susceptibility χ (ω)
for the dimer configuration with �R12 = (a/2, 0, c/4) is shown
in Fig. 7(d) for a dissipation rate γ = 4 Hz, a drive field
amplitude hd = 10 mOe, and frequencies ωd = 120 kHz,
ωp = ωd + δω, with the use of Eq. (34) and by summing over
the m = 256 low energy eigenstates.

In conclusion, the consideration of hyperfine interactions
extends the � scheme of a dimer configuration of Ho3+

magnetic moments to several, many-body � schemes, each
of which has the potential to establish a Fano resonance in
the magnetic susceptibility when driving the system with a
strong external magnetic field. Although the hyperfine in-
teractions suppress the quasidegenerate splittings εα and the
corresponding transition matrix elements μα,β in the dimer,
their numerical values are still larger than what is observed
in experimental measurements [13,31]. This indicates that the
true, experimentally observed hole burning actually results
from an interplay of dipole-dipole interactions between many
electronic magnetic moments on one hand and hyperfine
interactions on the other hand. The basic phenomenology
remains the same in the presence of hyperfine interactions, but
they suppress quantum effects, which effectively decreases the
necessary size of magnetic clusters in order to observe Fano
resonances at the millihertz scale.

D. Inferring dissipation scales from experimental data

The analysis of the effective Hamiltonian H 1
2

motivated
the assumption of isolated, many-body � schemes, for which
Eq. (34) is applicable and shows low-energy Fano resonances
in the magnetic susceptibility comparable with the experimen-
tally observed amplitude and frequency scales. In order to
observe resonances, we had, however, to guess a suitable value
for the magnetic dissipation rates ad hoc. In this section, we
will fit the prediction for χ (ω) from Eq. (34) to experimentally
measured susceptibilities at varying temperatures. The good
agreement between experimental data and the theoretical fit
is in support of our phenomenological theory for hole burning
and confirms a linear-in-T growth of the magnetic dissipation,
as it is predicted from a phonon bath [cf. Eq. (15)]. In addition,
the resulting fitting parameters confirm that the resonances are
caused by small quantum corrections to the Ising approxima-
tion of the order of a few microhertz.

The experimental data was taken from hole burning ex-
periments on a LiHoxY1−xF4 crystal with x = 0.045. The
sample was prepared such that the contact to the environment
and thus the phonon linewidth was minimized [13,31]. The
measurements were taken at different temperatures increasing
from T = 150 mK to T = 350 mK in steps of 50 mK. The
drive field was constantly held at an amplitude of hd = 0.3 Oe
and frequency ωd = 2π × 202 Hz. The probe field was locked
at an amplitude of hp = 20 mOe and detuned from the drive
field by a few millihertz, δω = ωp − ωd ∈ [−5, 5] mHz.
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In order to keep the fitting procedure as simple as possible
and to minimize the number of free parameters, we assume
that the Fano resonance is caused by a single � scheme, which
reduces Eq. (34) to three states. Without loss of generality we
set l = 1, m = 3 and use the fitting function

χ (δω)

= −β + α

⎛
⎝ |μ1,3|2

(
iγ − ν + H2

d |μ2,3|2
4η+6iγ

)
H2

d |μ2,3|2 − (iγ − ν)(6iγ − 4(η + ν))

+
|μ2,3|2

(
iγ + ν − 2δω + H2

d |μ1,3|2
4(η+ν+δω)+6iγ

)
H2

d |μ1,3|2 − (iγ + ν − 2δω)(6iγ − 4(η + δω))

⎞
⎠. (38)

The parameters α and β are added in order to take into
account the experimental measurement procedure, in which
the asymptotic behavior (at large detunings δω) of the Fano
signal is normalized and isolated from a temperature depen-
dent background signal. We model the dissipation rates to
increase linearly with temperature γ = γ0T and insert ν =
δω − ε, η = ωd − �. The energies ε,� again correspond to
the quasidegenerate, quantum energy splitting and the Ising
level splitting, respectively. The drive field amplitude Hd =
5.7 MHz corresponds to hd = 0.3 Oe.

The comparison between the theoretical fit and the ex-
perimental data is shown in Fig. 8. It shows very good
agreement between experiment and the prediction from a
single � scheme. All curves share the same transition ma-
trix elements μ1,3 = 2.3 × 10−5, μ2,3 = 7.1 × 10−6, energy
levels ε = 22 mHz, ωp − � = 21.4 mHz, and a linearly in-
creasing decay rate γ = 0.48 mHz× T

150 mK . The parameters
α, β display a nonlinear temperature dependence and we find
α = (247, 244, 212, 168, 116) and β = (5, 3.8, 2.7, 1.8, 1.1)
for the temperatures T = (150, 200, 250, 300, 350) mK. The
monotonic decrease of these values with temperature is likely
to be caused by the general decrease in the measured signal
for the susceptibility for increasing temperatures.

V. ANTI-HOLE BURNING VIA DRIVEN
LATTICE VIBRATIONS

The dissipation experienced by the magnetic moments
in the LiHoxY1−xF4 samples is not easy to control experi-
mentally [13,31]. The dissipation rate depends not only on
the density of states and the (thermal) occupation of the
phonon modes but is also strongly affected by the system-
environment coupling, see Eq. (14). Here we suggest a mech-
anism to manipulate dissipation, which is experienced by
the magnetic degrees of freedom, in a more controllable
and purposeful way by energy resolved heating. The basic
idea behind this approach is to drive the lattice vibrations,
i.e., the phonon modes, in a LiHoxY1−xF4 crystal monochro-
matically with frequency νd . In the low frequency regime
νd � 0.1–10 kHz, where phonon-phonon scattering is weak,
only phonon modes, which are resonant with the drive, are
heated up. The corresponding nonequilibrium steady state of
the lattice is well described by an energy dependent effective
temperature Teff(E ) = T + �T δ(E − νd ), which is peaked at
the drive frequency but otherwise flat and given by the initial
temperature of the sample T .
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FIG. 8. Comparing experimental data for the imaginary part of
the magnetic susceptibility from a LiHoxY1−xF4 sample with x =
0.045 and theoretical predictions from a single � scheme in Eq. (34)
yields very good agreement. The experimental data is represented
by markers (circles, diamonds, and squares) and was taken for vary-
ing probe field detuning δω = ωp − ωd ∈ 2π × [−5, 5] mHz. The
temperature of the sample varies from curve to curve, ranging from
T = 150 mK to T = 350 mK. The lines are predictions from Eq. (34)
for a single � scheme (without loss of generality l = 1, m = 3 with
transition matrix elements μ1,3 = 2.3 × 10−5, μ2,3 = 7.1 × 10−6,
quasidegeneracy ε = E12 = 22 mHz, Ising detuning η = ωd − � =
21.4 mHz, and T -linear dissipation rate γ = 0.48 mHz× T

150mK ). The
comparison demonstrates that the experimentally observed signal is
very well explained already on the basis of a single � scheme, and
with energy levels and transition matrix elements, which agree well
with our predictions for small magnetic clusters in LiHoxY1−xF4. The
linear temperature dependence of the dissipation rate is in agreement
with acoustic phonons at very small energy differences ∼ωd .

For the magnetic degrees of freedom, this nonequilibrium
state of the lattice translates towards energy dependent dissi-
pation rates γ (E ), which are as well peaked at νd . Magnetic
transitions at energy E = νd will therefore experience much
stronger dissipation that other transitions at higher or lower
energies. In our LiHoxY1−xF4 level scheme, this allows one
to target the explicit suppression or elimination of those �

schemes, which display transitions at νd . For sufficiently
strong phonon driving, the spectral holes at the correspond-
ing frequency will disappear completely. The observation of
this “anti-hole burning” would be strongly supportive of our
theory and yields a further knob to manipulate the low energy
physics in LiHoxY1−xF4 samples.

The dependence of the Fano signal on the phonon de-
grees of freedom has been observed in previous experiments
[31]. As we pointed out, reducing the phonon linewidth via
decoupling the lattice from the environment is crucial for
observing Fano resonances. The coupling to the environment,
however, is not an easily tunable parameter. Similarly, the
dependence of the magnetic susceptibility on the temperature
of the sample, which is a measure of the total phonon occu-
pation, has been studied and a strong reduction of the Fano
resonances has been observed for increasing temperature (see
Fig. 8). Temperature, however, increases the dissipation rate
uniformly without frequency resolution.
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In order to estimate the effect of acoustic driving on the
lattice degrees of freedom, we consider a simple toy model
for phonon modes subject to external driving, which is given
by the Hamiltonian

Hph =
∑

�k
c|�k|b†

�kb�k + A cos(νdt )(b�k + b†
�k ). (39)

Assuming linear sound absorption with amplitude A, the
coherent drive couples linearly to the bosonic phonon creation
and annihilation operators b†

�k, b�k and for weak driving A � νd

one can apply the rotating wave approximation, which yields

H̃ph =
∑

�k
ω̃�kb†

�kb�k + A

2
(b�k + b†

�k ), (40)

with ω̃�k = c|�k| − νd and A = Fu. The force of the drive F =
ma is the product of acceleration of the atoms by the sound
waves a and their mass m. Realistic values are between a =
0.5–10g [47]. Together with the phonon matrix element u =

1√
2mω

and the mass of Ho atoms, one reaches Rabi frequencies
of A = 4–80 kHz.

Relaxation of the lattice degrees of freedom, either via
coupling to the environment or via phonon-phonon scattering
is typically very weak and we approximate it via a Markovian
master equation in Lindblad form, which evolves the density
matrix ρph of the phonons according to

∂tρph = i[ρph, H̃ph] +
∑

�k
γ↓,�k

(
b�kρphb†

�k − 1

2
{b†

�kb�k, ρph}
)

+
∑

�k
γ↑,�k

(
b†

�kρphb�k − 1

2
{b�kb†

�k, ρph}
)

. (41)

The rates γ↓,�k, γ↑,�k describe the incoherent annihilation, gen-

eration of a phonon at wave vector �k and will not be specified

here. Their ratio
γ↓,�k
γ↑,�k

= exp ( c|�k|
T ), however, fulfills detailed

balance.
Solving the Heisenberg equations of motion ∂t n�k ≡

∂t Tr(b†
�kb�kρph) for the stationary state, ∂t n�k

!= 0 yields

n�k = γ↑,�k
γ↓,�k − γ↑,�k

+ A2

ω̃2
�k + (γ↓,�k − γ↑,�k )2

(42)

⇒ n(E ) = nB(E ) + A2

(E − νd )2 + δγ (E )2
, (43)

where we assumed in the second step that the dissipation rates
are isotropic and depend only on energy, i.e., δγ (E ) = γ↓,�k −
γ↑,�k with E = c|�k|, and we inserted the Bose-Einstein distri-
bution nB(E ). An illustration of the nonequilibrium phonon
distribution function in the presence of phonon driving is
displayed in Fig. 9(b).

Replacing the Bose distribution in Eq. (14) with the
nonequilibrium phonon distribution from Eq. (43) and pulling
out one factor of nB(E ) from the second part of the equation
yields the nonequilibrium magnetic dissipation rate

γnoneq(E ) = γ (E )

(
1 + νd

T

A2

(E − νd )2 + δγ (νd )2

)
. (44)
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FIG. 9. Manipulating the magnetic dissipation rates in a
LiHoxY1−xF4 crystal yields experimental control over the degree to
which hole burning (or in general quantum effects) can be observed.
Changing the temperature populates or depopulates all low energy
lattice degrees of freedom at once. In contrast, monochromatic
driving of the lattice, illustrated in (a), can be used to populate
only phonon modes in a narrow frequency regime. This is shown
in the nonequilibrium phonon distribution n(E ) in (b), resulting
from a monochromatic drive at frequency νd = 2π × 260 Hz and
with variable drive amplitude A. The drive populates phonon modes
around energy E ∼ νd , placing a Lorentzian with width δγ (νd )
(inverse phonon lifetime) and height A2

δγ (νd ) on top of the common
Bose-Einstein distribution, cf. Eq. (43). The additional weight in
the phonon distribution increases the dissipative magnetic transition
rates γ (E ) at energies E ∼ νd close to the drive frequency and
leads to dissipation rates described by Eq. (44). � schemes with
energy differences matching νd will thus experience much stronger
dissipation and their contribution to hole burning is suppressed. We
term this phenomenon anti-hole burning. Its manifestation in the
magnetic susceptibility for a LiHoxY1−xF4 sample of n = 12 mag-
netic moments is shown in (c). The parameters in (c) are taken from
Fig. 6(a) and the system is subject to an additional phonon drive at
frequency νd = 2π × 262 Hz. The phonon drive suppresses the Fano
resonance at δω ∼ 60 Hz but has only little effect on the resonance
at δω ≈ 10 Hz. The resonance at δω ∼ 60 Hz corresponds to a probe
frequency ωp = ωd + δω = νd and is thus strongly influenced by the
phonon drive. The controlled manipulation of magnetic dissipation
rates via a monochromatic lattice modulations yields an additional
playground for nonequilibrium phenomena in LiHoxY1−xF4 and pro-
vides a verification mechanism of the hole burning phenomenology
via anti-hole burning.

Here we have used the notation γ (E ) for the equilibrium
dissipation rates without phonon driving and approximated
nB(E ) ≈ T

νd
for T � νd in the vicinity of the Lorentzian

peak. Within this simple model, one finds that driving lattice
vibrations with a frequency νd and strength A modifies the
magnetic dissipation rate by an additional Lorentzian, peaked
at E = νd and with maximum ∼A2νd γ (νd )

T δγ (νd )2 and width δγ (νd ).
In order to account for the modified dissipation rates in

the magnetic susceptibility, one has to replace γ in Eq. (34)
by γ → γnoneq(E ), where E = Elm is the energy of the
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corresponding transition |l〉 ↔ |m〉. While the complete eval-
uation of χ (ω) becomes complicated with this substitution
and can only be performed numerically, we can devise a
simple rule of thumb for the modifications due to the phonon
drive: Since a Fano signal appears only for near resonant
transitions Elm = ωp,d , anti-hole burning will be most pro-
nounced at ωp = νd , i.e., when the phonons are driven close
to the probe frequency of the oscillating magnetic field. This
behavior is demonstrated via the numerical evaluation of
χ ′(δω) in the presence of phonon driving in Fig. 9(c).

Probing anti-hole burning via acoustically driving lattice
vibrations should be accessible for most state of the art
experiments on LiHoxY1−xF4 and should be able to either
confirm or invalidate our present toy model approach. In the
case that our predictions survive the experimental reality,
the addition of acoustic driving represents a rather simple
additional control mechanism for the low energy physics in
disordered LiHoxY1−xF4 magnets.

VI. CONCLUSIONS

In this work, we present a numerical analysis of the
level structure and magnetic susceptibility of strongly driven
LiHoxY1−xF4 samples. It is inspired by experiments that
observed spectral hole burning in the susceptibility as the
defining characteristic of the antiglass state [12,30,31].

We demonstrate that this spectral hole burning, i.e., Fano
resonances in the magnetic susceptibility in LiHoxY1−xF4 can
be explained on the basis of small spin clusters (n = 2, 3) and
that it can be seen as a consequence of quantum corrections
to the common Ising approximation. The Fano resonances
persist also when extending the system to the many-body
regime, in our numerical study represented by LiHoxY1−xF4

samples of n = 12 spins and a dilution of x = 0.04. In the
presence of more and more spins, hole burning is caused
by interference between many-body quantum spin levels and
can be observed at surprisingly low energies and driving
frequencies. The crucial requirement for its observation at
low frequencies is, however, dissipation rates, i.e., phonon
lifetimes, which are of the order of the driving frequencies or
even smaller. The strength of the quantum corrections thereby
depends on the amount of frustration in the system. It is
suppressed, once the concentration of Ho3+ atoms is increased
and the magnetic clusters tend to align ferromagnetically. In
order to unlock the dynamical signal of quantum interference,
e.g., the Fano resonances, sufficiently small relaxation rates
are needed, which requires strong isolation of the system from
its environment as also reported in experiments [13,31]. Hole
burning is thus unlocked by tuning the boundary conditions,
i.e., relaxation rates.

The explanation of the Fano resonances, originating from
almost isolated, many-body � schemes, which are in turn
caused by quantum corrections to the classical Ising approx-
imation in LiHoxY1−xF4 without transverse field paves the
way for further studies on the emergence of quantum effects
in strongly diluted and strongly frustrated LiHoxY1−xF4 sam-
ples and the role these corrections play for the low energy
phase diagram, i.e., for a glass or antiglass phase. We also
propose an experiment that would test our hypothesis through
the excitation of the phonon degrees of freedom crucial for the

observation of hole burning. Indeed, we expect that exciting
phonons at the appropriate frequency provides an accessible
means of control of hole burning. Possible further directions
include the effect of a transverse field, whose common effect
on LiHoxY1−xF4 samples is to introduce or increase quantum
effects [4,17,23] and to investigate refinements to the model
from hyperfine effects in the presence of large transverse
fields [33].
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APPENDIX A: CRYSTAL FIELD HAMILTONIAN

The actual form of the crystal field Hamiltonian Hcf for
a given electron configuration depends on the symmetries
of the crystal (space group C6

4h-I41/a for LiHoxY1−xF4) and
the ground state manifold of the ion (5I8). It is commonly
expressed in terms of the so-called Stevens operators [48,49]
Oα

n . The crystal field Hamiltonian is

Hcf =
∑
n,α

Bα
n Oα

n (A1)

and for LiHoxY1−xF4 only n = 0, 2, 4, 6 have nonzero coeffi-
cients Bα

n [23]. In terms of the angular momentum operators
J±, Jz and the total angular momentum J2, the list of relevant
Stevens operators is [1,23]

O0
2 = 3J2

z − J2, (A2)

O0
4 = 3J4 − 6J2

(
1 + 5J2

z

) + 5J2
z

(
5 + 7J2

z

)
, (A3)

O4C
4 = 1

2
(J4

+ + J4
−), (A4)

O4S
4 = 1

2i
(J4

+ − J4
−), (A5)

O0
6 = −5J6 + 5J4

(
21J2

z + 8
) − 15J2

(
21J4

z + 35J2
z + 4

)
+ 21J2

z

(
11J4

z + 35J2
z + 14

)
, (A6)

O4C
6 = 1

4

{
(J4

+ + J4
−),

(
11J2

z − J2 − 38
)}

, (A7)

O4S
6 = 1

4i

{
(J4

+ − J4
−),

(
11J2

z − J2 − 38
)}

. (A8)

The numerical values for the parameters Bα
n are taken from

inelastic neutron scattering experiments on LiHoF4 [34]. The
exact eigenstates of Hcf for this data indeed show up to
numerical precision a degenerate ground state doublet and a
single excited state at �E1 = 10.849 K with the next excited
state at �E2 = 32.136 K above the ground state manifold.
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APPENDIX B: STRONGLY TWO-MODE
DRIVEN TWO-LEVEL SYSTEMS

In this section we consider a two-mode driven two level
system and show that in the limit of strong drive amplitudes
the system performs Rabi oscillations with a strongly sup-
pressed, effective Rabi frequency. The two-level system is
described by the Hamiltonian

H (t ) = 1

2
(�1 cos(ωt ) + �2 cos((ω + δ)t ))σz + �

2
σx, (B1)

with a hierarchy of scales �1 > �2 � ω � �, δ. The com-
mon rotating wave approximation is not applicable since both
Rabi frequencies are much larger than any other energy scale.

We follow the approach outlined in Refs. [44,45]
and transform the Hamiltonian into a rotating frame
H̃ (t ) = U †(t )H (t )U (t ) − iU †(t )∂tU (t ) with U (t ) =
exp (−iσz[

�1
2ω

sin(ωt ) + �2
2(ω+δ) sin((ω + δ)t )]). This yields

H̃ (t ) = �

[
exp

(
i�1 sin(ωt )

ω
+ i�2 sin((ω + δ)t )

ω + δ

)
σ+

+ H.c.

]
. (B2)

The Jacobi-Anger expansion eiz sin θ = ∑∞
n=−∞ Jn(z)einθ , with

the Bessel functions of the first kind Jn(z), of this term yields

H̃ (t ) = �

2

(
σ+∑

n,m

Jn−m

(
�1

ω

)
Jm

(
�2

ω + δ

)
ei(nω+mδ)t + H.c.

)

=
∑
n,m

(
�m,n

2
ei(nω+mδ)tσ+ + H.c.

)
. (B3)

For strong driving, the effective ‘Rabi frequencies’ �m,n

are much smaller than the original frequency |�m,n| � |�|
since |Jn(x)| ∼ √

π
2x . This enables a rotating wave type ap-

proximation in the Floquet frame. The two-dimensional Flo-
quet Hamiltonian corresponding to Eq. (B3) is

Hm,n,m′,n′ = δm,m′δn,n′ (ωn + δm)

+ �m−m′,n−n′

2
(σ+ + (−1)n−n′

σ−). (B4)

Changes in n are strongly suppressed by the large frequency ω

compared to the Rabi frequencies. We therefore only consider
n = n′ = 0. Multiplication with the unitary Ux = 1√

2
(σ z +

σ x ) yields a long-range hopping model in Floquet space

Hm,0,m′,0 = δm,m′δm + �m−m′,0

2
σ z. (B5)

Translating this model back to our original spin model,
the detuning δ ∼mHz and the Rabi frequency �m−m′,0 ∼

εωd

2π
√

�d �p
∼ 10−2ε where ε ∼mHz is a quantum level split-

ting. This yields incredibly slow Rabi oscillations which do
not interfere with the susceptibility at the probe frequency.

APPENDIX C: LATTICE INDUCED DISSIPATION IN THE
BORN-MARKOV APPROXIMATION

This section provides a short review over the derivation
of phonon induced dissipation rates as shown in Eq. (14),

which were obtained from tracing out the phonon bath in
the so-called Born-Markov approximation. We consider a
general Hamiltonian of the form Htot = Hmag + HD + Hmag-ph.
Here, Hmag = ∑

α Eα|α〉〈α| is the Hamiltonian for the mag-
netic degrees of freedom, e.g., from Eq. (3), expressed in its
eigenbasis and HD is the Debye-phonon Hamiltonian (12).
The phonon and magnetic degrees of freedom are coupled
via Hmag-ph as shown in Eq. (13). The time evolution of the
total density matrix ρtot, which describes the coupled system
of magnetic and phonon modes, is given by the von Neumann
equation

∂tρtot(t ) = i[ρtot(t ), Htot]. (C1)

It is common to switch to a Dirac representation of the
density matrix, ρ̃tot(t ) ≡ e−it (HD+Hmag )ρtot(t )eit (HD+Hmag )

and the phonon-magnet coupling H̃mag-ph(t ) ≡
eit (HD+Hmag )Hmag-phe−it (HD+Hmag ). This yields the equation
of motion

∂t ρ̃tot(t ) = i[ρ̃tot(t ), H̃mag-ph(t )]. (C2)

It is formally solved by

ρ̃tot(t ) − ρ(0) =
∫ t

0
i[ρ̃tot(t

′), H̃mag-ph(t ′)]dt ′, (C3)

which we insert into (C2) and find

∂t ρ̃tot(t ) = i[ρtot(0), H̃mag-ph(t )]

−
∫ t

0
[[ρ̃tot(t

′), H̃mag-ph(t ′)], Hmag-ph(t )]dt ′.

(C4)

The density matrix of the magnetic degrees of freedom
is obtained from ρ̃tot by taking the partial trace over the
phonon degrees of freedom, i.e., ρ̃mag(t ) = Trph(ρ̃tot(t ) ). As-
suming that the initial density matrix is a direct product of
the magnetic and phonon Hilbert spaces and that it commutes
with the HD and Hmag, one finds the formally exact expression

∂t ρ̃mag(t )

= −Trph

(∫ t

0
[[ρ̃tot(t

′), H̃mag-ph(t ′)], Hmag-ph(t )]dt ′
)

.

(C5)

Within the Born-Markov approximation only terms up to
second order in the magnetic-phonon coupling g are taken
into account and one assumes that the phonon system relaxes
towards its equilibrium on time scales much faster than g−1,
i.e., the phonon system always remains in its thermal equi-
librium state. As a consequence of both approximations the
density matrix can be written as an instantaneous product,
ρ̃tot(t ′) → ρ̃mag(t ) ⊗ ρph(0). The trace over the phonon states
may now be performed in the eigenbasis of HD, which are
product states of the form

∏
�k |n�k〉, in bosonic Fock space.

Approximating the integral via sending the integral bounds to
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±∞, which is a good approximation for a rapidly oscillating kernel and going back to the Schrödinger picture for the density
matrix ρmag, one finds

∂tρmag = i[ρmag, Hmag] +
∑
α,β

γ (Eαβ )

[
|α〉〈β|ρmag|β〉〈α| − 1

2

{|β〉〈β|, ρmag
}]

, (C6)

where γ (Eαβ ) is given by Eq. (14).
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