
PHYSICAL REVIEW B 101, 214112 (2020)

Experimental validation of the theoretical prediction for the optical S matrix
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Scattering of waves is present in many areas of physics. Within all these areas, in a great number of systems,
the scattering can be separated in an averaged response that crosses rapidly the scattering region and a fluctuating
delayed response. This fact is the basis of the optical model; the averaged response, represented by the optical
matrix 〈S〉, is combined with the fluctuating part that can be taken as a random matrix. Although the optical
model was developed more than 60 years ago, a theoretical prediction for the optical matrix was obtained only
very recently. The validity of such a prediction is experimentally demonstrated here. This is done studying the
scattering of torsional waves in a quasi-1D elastic system in which a locally periodic system is built; the full
distribution of the scattering matrix is then calculated completely free of parameters. In contradistinction to all
previous works, in microwaves and in elasticity, in which the value of 〈S〉 is obtained from the experiment,
here the theoretical prediction is used to compare with the experiment. Numerical simulations show that the
theoretical value is still valid when strong disorder is present. Several applications of the theoretical expression
for the optical matrix in other areas of physics are proposed. Possible extensions of this work are also discussed.
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I. INTRODUCTION

Commonly, in wave scattering at a single frequency, wave
amplitudes are separated as reflection and transmission am-
plitudes. In contradistinction, when a wave packet with mul-
tiple frequencies is scattered by a more complex system, the
wave amplitudes are divided in a different way: in a prompt
response, proportional to the incoming wave packet, which
is reflected (or crosses) rapidly the scattering region plus
a delayed response that fluctuates in time due to multiple
reflections in the different parts of the scattering system. In
fact, in many experiments, the reflection and transmission
amplitudes are obtained from the prompt response whereas
the delayed response has a lot of information used mainly
for time reversed signal processing methods [1]. The delayed
fluctuating response averages to zero in the time domain,
equivalently in energy or frequency, whereas the prompt
response quantifies the remaining average that has very slow
or null variation in time, energy, or frequency.

This separation of the scattering amplitudes in a com-
ponent passing rapidly through the scattering region plus a
delayed response coming from multiple scattering is summa-
rized in the optical model: dispersion amplitudes are separated
into an averaged part and a fluctuating part. The averaged
response, on the one hand, is characterized by the optical
matrix 〈S〉, where the average is taken with respect to energy
(frequency). Fluctuations, on the other hand, are commonly
studied using statistical techniques from random matrix the-
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ory. The optical matrix has become therefore a fundamental
quantity in the description of multiple scattering of particles
and waves. It was introduced in the optical model of the
nucleus developed in the 1950’s by Feshbach, Porter, and
Weisskopf [2,3]. Since the scattering of a nucleon by an
atomic nucleus is equivalent to the theory of waveguides [4],
this model has been extended not only to chemical reactions
but also to electronic transport through ballistic quantum dots
and microwave cavities [5,6] and more recently to mechanical
waves [7,8].

The average 〈S〉 can be physically interpreted as the frac-
tion of the incident wave packet which comes out promptly
from the scattering region [2]. A concrete realization of 〈S〉
was proposed in Ref. [9] in the transport of electrons through
mesoscopic systems: when the incoming and outgoing chan-
nels are not coupled perfectly to the internal system, the opti-
cal matrix 〈S〉 quantifies the coupling between the internal and
external regions. This is very important because the imperfect
coupling has to be taken into account in almost all scattering
experiments [7,10–16].

On the one hand, there are several theoretical studies in
which 〈S〉 is used to obtain the distribution of the scattering
matrix known as Poisson’s kernel [17–20]. In the one channel
case it is univocally determined and reads

p〈S〉(S) = 1

2π

1 − |〈S〉|2
|S − 〈S〉|2 , (1)

where S = eiθ . The distribution of the S matrix, given by
Eq. (1), depends only on 〈S〉. It is obtained under the hypothe-
sis that, apart of S being unitary, S is an analytic function in the
upper half plane of energy from which it is obtained that the
kth power 〈Sk〉 = 〈S〉k which in turn yields into Eq. (1) [6,17].
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Furthermore, as a consequence of the analyticity of the
S matrix, even when absorption is present [21,22], wave
scattering systems are self-averaging [6], which means that
the full distribution can be calculated in terms of 〈S〉, the only
relevant parameter needed to obtain all scattering properties
in complex systems. This is because the fluctuations seem
to be universal only depending on very general symmetry
properties as presence/absence of time reversal invariance,
among others.

An analytical prediction for 〈S〉 was obtained only very
recently for a one-dimensional chain of delta potentials open
at one side only [23], and open at both sides [24]. On the
other hand, up to now, there are no experimental studies about
〈S〉. In all experiments performed in microwave cavities and
graphs, and in elastic systems, the value of 〈S〉 was obtained
afterwards from the measurements because an analytical ex-
pression for it was not available at that time. Then, to compare
with the experiment, the numerical value obtained from the
experiment is used in the theoretical expression of Poisson’s
kernel in a kind of self-consistent argument.

Because the experiment is the only mechanism to validate
a theoretical development, in this paper, using elastic waves,
the validity of the theoretical prediction for the optical matrix
〈S〉 given in Ref. [23] is experimentally demonstrated. To do
this the scattering of torsional waves in a beam through a
finite crystalline structure, machined in a beam, is studied. In
contradistinction with the methods of Refs. [25,26], here, to
obtain the optical matrix in this system, the scattering formal-
ism developed in Ref. [27] is applied to an elastic crystalline
structure. As we are going to see below the distribution of the
scattering matrix, with the theoretical value of 〈S〉, correctly
predicts the results measured with acoustic resonant spec-
troscopy completely free of parameters. Numerical results
when disorder is present, are also given.

II. SCATTERING BY A ONE-DIMENSIONAL LOCALLY
PERIODIC ROD

Lets consider the semi-infinite beam of Fig. 1(a) in which
a locally periodic structure of N notches is machined, such
that the unit cell is formed by two parts or bodies labeled
as 1 and 2. Plane waves are sent to the structure from the
uniform part and the response of the system is obtained using
the scattering matrix formalism. The stationary solution ψ j (x)
of the one-dimensional wave equation describing torsions, in
the jth body of the unit cell of Fig. 1, is a superposition of
waves traveling to the left and to the right ψ j (x) = a j e−ik j x +
b j eik j x, where j(= 1, 2) indicates the corresponding part of
the unit cell and k j is the wave number related to the frequency
by k j = 2π f /c j with c j = √

Gα j/ρI j the phase velocity of
the torsional waves. Here, ρ is the density of the rod, G its
shear modulus, I j the polar moment of inertia of part j, and
α j the Navier series,

α j =
∞∑

m=0

∞∑
p=0

256/π6

(2m + 1)2(2p + 1)2

h jw j(
2m+1

h j

)2 + ( 2p+1
w j

)2 , (2)

with w j and h j the width and height of body j.
The boundary conditions between bodies 1 and 2, which

are in contact at a point x = x′, are continuity of the wave

FIG. 1. (a) Aluminum beam (
√

G/ρ = 3104.7 m/s) that consists
of a region with a locally periodic structure, composed of N scatter-
ers, and a semi-infinite uniform region of squared cross-section. The
unit cell (inset) of length D consists of bodies 1 and 2 of lengths
D − d and d , with polar moments of inertia I1 and I2, respectively.
We use w1 = h1 = w2 = D = 2.54 cm, h2 = h = 0.9525 cm and
d = 1.5875 cm. (b) Setup: a beam consists of a structured zone, a
wedge zone with an absorber, and a free region where the exciter
and detector are located. (Inset) The coils of the EMAT exciter are
connected in series and their polarity is such that the EMAT excites
only torsional waves. The EMAT detector is composed of a magnet
and a small coil.

amplitude and continuity of the moment of torsion,

ψ1(x′) = ψ2(x′), MT1 (x′) = MT2 (x′), (3)

respectively. The latter is related to the derivative of the
wave amplitude through MTj (x) = Gα j∂ψ j (x)/∂x. Thus the
derivative of the wave amplitude, at the point x = x′, is discon-
tinuous by a factor η = α2/α1 when the same material is used
in bodies 1 and 2. Since the two parts of the unit cell oscillate
with the same frequency, the wave numbers of both bodies
are related through k1 = k2 c2/c1 = k2

√
ηI1/I2, where I1 =

1
6 D4 and I2 = 1

6 D4(2 h
D − 3 h2

D2 + 2 h3

D3 ) are the polar moments
of inertia of bodies 1 and 2, of the unit cell of length D,
respectively. To calculate I2, the parallel axes theorem was
used with a distance (D − h)/2.

The reflection and transmission amplitudes through a sin-
gle scatterer are

rn = 2iβ sin(k2d )

β2eik2d − e−ik2d
, and tn = β2 − 1

β2eik2d − e−ik2d
, (4)

where β = (k1 − ηk2)/(k1 + ηk2) and d is the scatterer
length. These were obtained using the boundary conditions at
both sides of the notch, solving the resulting system of equa-
tions. The response of the system of N scatterers is described
by the 1 × 1 scattering matrix SN , which is related to the
scattering matrix SN−1 that describes the system with N − 1
scatterers, through the following recurrence relation [27]:

SN = (rnz∗
n + znSN−1)(r∗

n zn + z∗
nS∗

N−1)−1S∗
N−1, (5)

where zn = tneik1(D−d ). The wave number k1 is the tunable
parameter, proportional to the frequency, since the uniform
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FIG. 2. (a) Phase of the scattering matrix, Eq. (5), as a function
of the frequency, for N = 100, is shown. The red line corresponds to
the phase of the optical matrix 〈S〉 given in Eq. (6). (b) Zoom of panel
(a) for low frequencies. (c) Histogram of the resonance highlighted
in blue in (b). The (red) curve is Poisson’s kernel (1) with the optical
matrix 〈S〉 taken from Eq. (6).

part of the beam has the same cross-sectional area as body
1 of the unit cell. The scattering matrix given in Eq. (5)
can be studied in two different ways: (a) at a fixed k for
an ensemble of systems with different values of N and (b)
varying k for a single system with a fixed value of N . For case
(a), Eq. (5) is interpreted as a nonlinear mapping that accepts
stable and unstable fixed point solutions when N → ∞, the
latter being a set of zero measure that is ignored. The fixed
point solution can be interpreted as the optical matrix, 〈S〉,
because it satisfies the analyticity condition 〈SN 〉 = 〈S〉N [23]
that implies Poisson’s kernel. The value of the optical matrix
in an allowed band is (the main interest is on the first band
only)

〈S〉 = i(r∗
n zn)−1[−

√
|tn|4 − (Re zn)2 + Im zn]. (6)

It is remarkable that the optical matrix 〈S〉 and Poisson’s
kernel, Eq. (1), are completely determined (and only depend)
on the values of the reflection and transmission amplitudes
of a single scatterer, no matter how they are obtained, by
numerical or experimental methods or by a theoretical model
as in Eq. (4). In what follows we will focus on case (b) while
case (a) is discussed further in Appendix A.

In Fig. 2(a), the phase θN is plotted, as a function of the
frequency, for N = 100. The allowed bands, on the one hand,
are observed as regions in which the phase varies rapidly with
the frequency. This is due to the fact that in wave systems
with one lossless port, i.e., only one incoming channel and
outgoing on the same channel, the scattering matrix reduces
to a complex number of modulus one S = eiθ . This means
that the reflection coefficient is always 1 and the resonances
can only be observed in the phase θ when it gives a fast
turn on the unit circle; θ is closely related to the phase
shift. The gaps, on the other hand, are regions in which the
phase presents a slow variation with the frequency. As can

be observed in the same figure, the first band starts at 0 Hz
and finishes at approximately 20 kHz; the second band starts
around 39.735 kHz. Then the gap is roughly located in the
interval (20 kHz, 39.735 kHz). A zoom of the highlighted
resonance shown in Fig. 2(a) is given in Fig. 2(b). As it
can be seen in this figure, the phase has a variable speed
dθ/dk in the unit circle; the largest slope is associated to
the resonances. The fast turn of the phase in each resonance
can be quantified by the histograms that measure the number
of points that the phase θ falls in the interval (θ, θ + dθ ).
In Fig. 2(c), the histogram of the phase for the resonance
centered at f = 2395 Hz, (blue) highlighted in Fig. 2(b),
is given; the maximum of the distribution corresponds to
the lowest slope of the phase of the resonance. Also, in
Fig. 2(c), the distribution of Poisson’s kernel, given by Eq. (1)
with the average of the scattering matrix 〈S〉 of Eq. (6) for
f = 2395 Hz, is plotted. An excellent agreement between
the numerical histograms and the theoretical distribution is
obtained.

III. EXPERIMENTAL VALIDATION
OF THE OPTICAL MATRIX

In what follows we show that Poisson’s kernel, with the
average taken from Eq. (6), correctly predicts the experimen-
tal distribution of the scattering matrix in elastic waves. This
will be done for a system with a large, but fixed, number of
scatterers within a small frequency range in the first allowed
band. The experimental setup is shown in Fig. 1(b). A sig-
nal of frequency f , produced by a vector network analyzer
(VNA, Anritsu MS-4630B) and intensified by a Cerwin-Vega
(CV-900) high-fidelity audio amplifier, is sent to an electro-
magnetic acoustic transducer (EMAT) designed ad hoc for
this experiment because high power and selectivity is needed.
This transducer, composed by two coils and two permanent
magnets, shown in the inset, produces torsional vibrations
that propagate through the system [28,29]. The response,
measured by another EMAT, is directly sent to the VNA.
The measurements, amplitude and phase, as a function of the
frequency f , are taken from the VNA to the computer through
a GPIB port.

The system under study consists of an aluminum beam
of squared cross-section of width D = 2.54 cm and length
3.6 m divided in three regions. From a free boundary, a
locally periodic structure, composed of 100 equal notches
as in Fig. 1(b), is machined. The middle part of the beam,
of 56 cm length, remains uniform. In this part the waves
are excited and the scattering matrix is measured. The other
end simulates a semi-infinite beam by means of a passive
vibration isolation (PVI) system that absorbs the incoming
waves [7,8,30,31]. The PVI system, is composed of a wedge
and polymeric foams and has a length of 50 cm, covering
completely the wedge and part of the uniform section of the
beam. This system allows the measurement of the mechanical
scattering matrix, in the frequency domain, since the normal
modes of the complete beam cannot be established.

In Fig. 3, the measured amplitude (a) and phase (b) of the
scattering matrix, as a function of the frequency, for a part of
the first band, is shown. As expected, several resonances of
the allowed band, for which the phase takes values between
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FIG. 3. Amplitude (a) and phase (b) of the S matrix as a function
of the frequency. Shifted and normalized S matrix in the Argand
plane (c), in a part of the allowed band. The histogram of the
highlighted resonance (blue) at f = 2570 Hz and its comparison
to Poisson’s kernel, Eq. (1) with 〈S〉 given by Eq. (6), is shown in
(d). The dimensions of the unit cell are the same as in Fig. 1 but
h replaced by an effective value, 0.746h, due to the punching of
body 2 [28].

0 and 2π , are observed. All of these resonances describe, in
the Argand plane, nonconcentric circles of different radii. This
is due to the impedance of the detector [7,8]. We analyze
the phase of the resonance lying between the dotted lines,
from 2530.0 to 2638.8 Hz, using the method of Ref. [7] to
subtract the shift due to the impedance. As seen in Fig. 3(c),
this corrected S matrix describes a circle centered at the origin
(the radius was set to 1 for convenience). The distribution
of the phase along the circle is shown in Fig. 3(d) as a
histogram. In the same figure the analytical distribution ex-
pressed by Poisson’s kernel, Eq. (1), continuous line, is also
given. The value of the optical matrix was taken from Eq. (6)
and evaluated at f = 2570 Hz, the center of the resonance
and corrected as described below. One can notice that the
maximum of the histogram is located at a different position
that in the theoretical result. This shift comes from a global
phase that appears in the experiments. The location of the peak
depends on which face of the beam the detector is located:
measurements in adjacent faces produce a global phase of π/2
and the histogram will be shifted by this quantity. Also, the
maximum of the experimental distribution is larger than the
maximum of the numerical distribution of Fig. 2(c). This is
due to the fact that a better approximation, using a punching
parameter ζ , to calculate rn and tn, was used [28]. As it can be
seen in Eqs. (2) to (4) the model used for the scattering matrix
is 1D while the machined beam is 3D. The punching occurs
when two elastic bodies of different cross-sectional area are
in contact and subject to a torque (force or bend); in this case
Eqs. (3) are meaningless. However, these equations can be
corrected: for small torsions the body with smaller area twists
nonuniformly the area of the larger body. This extra twist is
called “punching” and the coefficient ζ takes into account
the punching of body 1 by body 2. This coefficient has been
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FIG. 4. (a) Measured amplitude (in arbitrary units) as a function
of the frequency. The analyzed resonances (b), (c), (d), and (e), and
their respective histograms (f), (g), (h), and (i), are taken in the
intervals (3244.0, 3399.0) Hz, (4859.8, 5019.8) Hz, (5792.0, 5998.0)
Hz, and (9560.0, 9760.0) Hz, respectively. The continuous line in the
lower panels is Poisson’s kernel, Eq. (1), with 〈S〉 given by Eq. (6).

measured in several cases and, for torsional waves, gives a
corrected or effective value of heff = h/(1 + ζ/d )1/4, that can
be used in Eqs. (2) and (3) with ζ = 0.54 mm. More details of
the punching can be found in the Appendix of Ref. [28]. Then,
taking into account the global phase and the punching, a very
good agreement between theory and experiment is observed.

IV. ROBUSTNESS AGAINST DISORDER, LOSSES,
AND SIGNAL-TO-NOISE RATIO

Now the robustness of the expression of the optical ma-
trix, with respect to losses and noise will be addressed; the
effects of the disorder are studied numerically in Appendix B
and validate the robustness of the optical matrix prediction
against disorder. The effect of the losses in the optical matrix
prediction can be obtained directly from the experiment since
absorption is always present. Contrary to the case in chaotic
systems [12,32], in which a generalization of Poisson’s kernel
appears, in the beam worked here the absorption only gives
a shift that can be taken into account in the normalization
as in Refs. [7,8,22]. In Fig. 4(a), the measured amplitude,
within the first passband, as a function of the frequency, is
given. As it can be seen in panels (f) and (g) of the same
figure, regardless of the location of the resonance within
the allowed band, the agreement between Poisson’s kernel,
Eq. (1), and the experimental results is excellent. As it can be
seen roughly in panel (a) of this figure, as frequency increases
the signal becomes smaller. This is evidenced in panels (b),
(c), (d), and (e), in which the measured S is plotted for the
resonances highlighted in panel (a), with the same order.
When approaching the forbidden band the signal becomes
weak and noisy, panels (d) and (e). Then S does not lie in
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a circle anymore but it lies in a ring. This effect produces a
diminishing of the optical matrix, 〈S〉, that tend to flatten the
distribution, panels (h) and (i), in a similar way that in the
disordered case shown in Appendix B.

V. CONCLUDING REMARKS AND OUTLOOK

The good agreement observed between the theory and
the experiment represents the validation of the analytical
expression of the optical matrix 〈S〉 through the invariant
density of the phase of the S-matrix, Poisson’s kernel, that
results from a non trivial relation between coherent transport
and deterministic maps [33]. The detected torsional waves
outside the locally periodic system, a square cross-section
beam with 100 notches, correspond to the 1 × 1 scattering
matrix S once they are excited outside of the cavity. The
measured distribution of the phase of S of a single resonance
agrees with Poisson’s kernel using the theoretical prediction
given in Eq. (6); the optical matrix given in that equation
depends only on (i) the S-matrix composition rule and (ii) the
reflection and transmission coefficients of a single unit cell.
Thus the prediction for the optical matrix is quite general,
with details depending on the constituents of the particular
system, and Eq. (6) can be applied to a plethora of wave
systems of different nature just having the reflection and
transmission of a single scatterer. Several applications are
expected in different areas since there are many realizations
of a semi-infinite one-dimensional periodic system composed
by two media, i.e., a photonic crystal, a superlattice, a layered
media in geology, etc. In fact data of the microwave ring,
used to measure the transmission through a locally periodic
system are available [26]. The results are also valid for
compressional waves [28]. Applications in the terahertz [34]
and in the optical [35–37] regimes seem also possible since
frequency duplicators/dividers can be used to measure the
phase. Another system in which the formalism can be applied
is a 1D tight-binding chain [38]. This model is ubiquitous in
condensed matter [39], material science and chemistry and
has several applications since the transmission and reflection
coefficients can also be obtained [40]. In fact this model
has realizations in chains of dielectric scatterers [41,42],
in the evolution of excitations in molecular chains and in
molecular rings (using nuclear magnetic resonance) [43,44].
Microwave billiards [10–12,45] and graphs [13] are also well
suited to perform different tests since the applicability of

the equation to cells with more complex scatterers, as in a
chain of cavities [46,47] is also possible. These kind of chains
have been constructed with microwave billiards [48] and can
also be constructed with thin plates [30,49]. The Heidelberg
approach [50], a methodology in which the scattering ma-
trix is built in terms of a Hamiltonian and the couplings to
the exterior, is optimal for applications of Eq. (6). In fact,
results of the prompt response could be possible for nuclear
systems, in particular for neutron scattering, which only see
the nuclei but not the electrons, would see –and identify–
the periodic structure. Elastic scattering is part of nuclear
reactions, and lots of data are available for (differential) cross
sections and scattering of protons, electrons, or neutrons of
individual nuclei. Although phase shifts are not observables,
unlike cross sections, it is possible to get non univocal phase
shifts from cross sections having a model (potential). Apart
of other effects (as absorption, decoherence, PT-symmetric,
more dimensions or a higher number of channels) that have
to be included, there are many applications that could be
worked out. A simple example can be thought in astrophysics:
Although in supercooled neutron stars the more recent models
are in favor of degenerate baryon models forming stellar su-
perfluids [51], within the Bardeen-Cooper-Schrieffer theory,
there are other models that consider crystallization in one
dimension and pairing in the perpendicular planes [52].
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APPENDIX A: THE NONLINEAR MAP

According to Refs. [23,27,33,53], the recurrence relation
given in Eq. (5) can be interpreted as a nonlinear map for
the phase of the scattering matrix. Instead of having a map
for a physical variable of a single system, Eq. (5) maps the
scattering matrix of a beam with N − 1 scatterers into the
scattering matrix of a beam with N scatterers. For the phase θ

of the scattering matrix the map can be written as

θN = −θN−1 + 2 arctan
2A + (β − β−1) cos(k2d )B − (β + β−1) sin(k2d )D

2C + (β − β−1) cos(k2d )D + (β + β−1) sin(k2d )B
, (A1)

where

A = sin(k2 d ) cos(k2(D − d )),

B = cos(k2(D − d )) sin(θN−1) + sin(k2(D − d )) cos(θN−1),

C = sin(k2 d ) sin(k2(D − d )),

D = cos(k2(D − d )) cos(θN−1) − sin(k2(D − d )) sin(θN−1), (A2)

and β = (k1 − α2k2/α1)/(k1 + α2k2/α1) with α1 and α2 de-
fined in Eq. (2). Examples of the dynamics of this map for

different frequencies, in the gap, within the band, and at the
borders of the band, are given in Fig. 5. As it can be seen
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in panel (c) of this figure, within the gap there are two fixed
points, one stable and one unstable. The mapping shows a
transition to chaos of the tangent type, see (b) and (d) in the
same figure at the borders of the band. Two different values
of the initial condition, i.e. the phase of the initial reflection at
the border of the beam, yield similar results. The bifurcation
diagram, in which the last 15 of 1000 iterations are plotted,
is given in Fig. 6(a). This figure can be interpreted as the
phase of the scattering matrix of 15 different beams with
N = 986, . . . , N = 1000. The initial condition was taken to
be θ0 = π ; other initial conditions yield similar results. As
it can be seen in the bifurcation diagram, the phase shows
chaotic intervals followed by intervals of stable cycles of
period one. The chaotic intervals correspond to the passbands
whereas the cycles of period one to the gaps. The first band
starts at f = 0 since the beam has Neumann conditions at the
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FIG. 6. (a) Bifurcation diagram of the map given in Eq. (A1).
The red and green lines correspond to w+ and θ+. (b) Lyapunov
exponent � calculated numerically; a very low convergence is seen
at f = 0.
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FIG. 7. (Left) The last 15 iterations, of 1000, of Eq. (5), are
plotted as a function of the frequency with an initial condition θ0 = π

for different degrees of disorder: (a) 0%, (b) 10%, (c) 25%, (d) 50%,
(e) 75%, and (f) 90%. The red line corresponds to the phase of
〈S〉 in Eq. (6); it is valid for all panels at the left because only
indistinguishable changes appear. The respective histograms of the
phase are given in the right panels. The continuous curve is Poisson’s
kernel, Eq. (1), with 〈S〉 given by Eq. (6) averaged over the disorder
realizations.

boundary. In the allowed bands, the iterations of the phase
cover the full interval between 0 and 2π following Poisson’s
kernel with 〈S〉 taken from Eq. (6), as is shown in Appendix B.
The stable and unstable fixed-point solutions Sfp are given
by [23]

Sfp =
{

eiθ± ( f ), f in the gap,

w±( f ), f in the band,
(A3)

where

eiθ± ( f ) = ±
√

[Rezn( f )]2 − |tn( f )|4 + iImzn( f )

r∗
n ( f )zn( f )

,

w±( f ) = i
±

√
|tn( f )|4 − [Rezn( f )]2 + Imzn( f )

r∗
n ( f )zn( f )

,

and rn and tn are given in Eq. (4); zn is given below Eq. (5).
In Eq. (A3), w±( f ) corresponds to the fixed-point solution
of Eq. (5) extended from the unit circle to the complex
plane. The phase of Eq. (A3) is also plotted in Fig. 6(a) for
w+ and θ+.

To characterize the chaotic regions the Lyapunov exponent
was calculated numerically; it is given in Fig. 6(b). As it
can be seen, the Lyapunov exponent is negative in the stable
cycles whereas it almost vanishes (it vanishes in the N → ∞
limit [27]) in the chaotic regions.
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APPENDIX B: ROBUSTNESS AGAINST DISORDER

The effect of the disorder in Eq. (6) is studied numerically
varying randomly the depth of the notch with a uniform
distribution of width δ. That is, the height h2 of body 2 is
varied according to h2 = h + ε(D − h), where ε is uniformly
distributed in the interval [0, δ]. Thus δ quantifies the disorder
strength and δ = 0 corresponds to the crystalline structure.
Following the analysis of Appendix A, in Fig. 7, the last 15
iterations of 1000 are plotted for different values of the disor-
der between 0% and 90%. As it can be seen there, the band
structure is preserved for low values of the disorder strength

whereas for high disorder the band structure disappears. The
prediction of the optical matrix agree with the maximum of
the distribution for values of the wave number in the middle
of the first band whereas in the gap and in the second band
high deviations are visible. The resulting distributions, for
different values of the disorder strength, at a fixed frequency
f = 2395 Hz, are shown also in Fig. 7. The distributions of the
phase agree with Poisson’s kernel, even for very high values of
the disorder strength. This result is relevant because it shows
the universality of the fluctuations against disorder. The used
〈S〉 was obtained averaging the values of rn and tn from the
disorder.
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