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Phonon thermodynamics and elastic behavior of GaAs at high temperatures and pressures
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The phonons of wurtzite and zinc blende GaAs were calculated at simultaneously elevated temperature and
pressure, and elastic constants were calculated as functions of pressure. Pressure caused instabilities of shorter-
wavelength transverse acoustic modes in both wurtzite and zinc blende GaAs, causing them to fall to zero at 18
and 20 GPa, respectively. The Born stability criteria, which depend on elastic constants and only long wavelength
phonons, therefore overestimated the pressure needed to induce instability at 0 K. At elevated temperatures,
explicit anharmonicity pushes the onset of instability to higher pressures in both wurtzite and zinc blende GaAs.
Phonon linewidth and densities of states data showed that the quasiharmonic approximation failed to account
for temperature-induced phonon frequency shifts, and the quasiharmonic approximation became less reliable at
elevated pressure. In general, the number of three-phonon processes increased with pressure, thereby increasing
the temperature-driven broadening of phonon spectral lineshapes.
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I. INTRODUCTION

Gallium arsenide, GaAs, is a well-studied semiconductor
with important technological applications in transistors [2–4],
photovoltaic devices [5], and photon detectors [6]. Although
less earth-abundant and more expensive than silicon, GaAs
offers several advantages. It has a higher electron mobil-
ity than silicon, allowing for devices with higher operating
frequencies. Today, GaAs dominates the circuitry in critical
mobile phone components, such as power amplifiers [7].
Unlike Si, GaAs has a direct band gap that suppresses phonon
creation during photon emission, enabling its use in light
emitting diodes (LEDs) [8], laser diodes [9], and optical
communications [10]. The band gap of GaAs is wider than
that of Si, making it more resistant to radiation damage, and
a more attractive material for satellites [5] and deep space
electronics [3].

Like many III-V materials, GaAs is polytypic [11,12]. It
has the zinc blende crystal structure under ambient conditions,
but the wurtzite phase is metastable and has been observed
experimentally [12]. Both zinc blende and wurtzite crystal
structures consist of two interpenetrating face-centered cubic
(fcc) or hexagonal close-packed (hcp) sublattices, separately
populated by Ga and As atoms (Fig. 1). High pressure in-
duces a structural phase transition in zinc blende GaAs to
an orthorhombic structure between 12 GPa [13] and 17 GPa
[14].

Modeling thermophysical properties of materials is an
important and active part of materials physics and materials
engineering. Modeling can enable explorations of extreme
conditions, including extreme pressures and temperatures, and
quick transversals of parameter spaces. The temperature and
pressure evolution of phonon spectra and elastic properties
are of interest because they are closely related to the Gibbs
free energy and crystal stability. Phonon spectra also offer a

microscopic probe into thermal conductivity, thermal expan-
sion, and the temperature dependence of elastic constants. The
widely used quasiharmonic approximation (QHA) extends the
harmonic approximation by including effects of volume on
phonon frequencies. The QHA ignores explicit anharmonic
effects from the anharmonic potentials in which atoms vibrate,
where displacements from their equilibrium positions cause
forces that do not obey Hooke’s law. These anharmonic effects
increase with temperature, and can prevent the QHA from
correctly modeling thermal expansion [15] or phase stability
[16].

Here we report elastic and phonon properties of wurtzite
and zinc blende GaAs at simultaneously elevated temperature
and pressure. From the elastic constants, we predict changes
with pressure of the elastic stability, elastic anisotropy (see
Supplemental Material [17]), and anharmonic effects on
phonon frequencies and linewidths. Our methods are de-
scribed in Sec. II, results in Sec. III, and the context for,
and implications of, these results are given in Sec. IV. Most
notably, we report that the lattice stabilities of both wurtzite
and zinc blende GaAs are not predicted by the Born stability
criteria because the early onset of shorter wavelength phonon
instabilities precede elastic collapse. These instabilities are
shown to change with temperature owing to effects of phonon
anharmonicity. We also report a large effect of pressure on
phonon anharmonicity.

II. COMPUTATIONAL

Projector augmented wave (PAW) potentials and the local
density approximation (LDA) were used in the Vienna Ab
initio Simulation Package (VASP) [18,19], an implementation
of density functional theory (DFT) [20], to perform first-
principles calculations on GaAs. All calculations used an
energy cutoff of 600 eV and a minimum of 13,824 k-points ×
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FIG. 1. Unit cells of wurtzite (left) and zinc blende (right) GaAs
[1]. This wurtzite unit cell is primitive; the larger, nonprimitive unit
cell for zinc blende more clearly shows its cubicity.

atoms. The work required calculations for both unit cells and
supercells. In wurtzite GaAs, four atom unit (primitive) cells
were used with a 20 × 20 × 12 k-point mesh, and supercells
of 192 atoms used a 5 × 5 × 4 k-point mesh. In zinc blende
GaAs, unit cells with two atoms unit (primitive) cells were
used with a 22 × 22 × 22 k-point mesh and supercells with
216 atoms used a 4 × 4 × 4 k-point mesh. The supercells had
approximately the same lengths across all three dimensions.
k-point meshes were generated with a Monkhorst-Pack [21]
scheme.

For each material, the total energies of static unit cells were
calculated with relaxed shapes and ionic positions of vary-
ing size, with volumes scaled between approximately 69%
and 108% of the equilibrium volume. The resulting energy-
volume relationships were used with a Birch-Murnaghan
equation of state, allowing the determination of pressure for
any volume within this range. The elastic constants for unit
cells held at pressures between about −5 and 65 GPa in
0.5 GPa steps were calculated, using stress-strain calculations
in VASP.

With supercells, the phonon properties (phonon dispersion
relations, densities of states, and linewidths) of each material
were calculated at 0, 600, and 1200 K for pressures of 0.0, 5.0,
7.5, 10.0, and 15.0 GPa, accounting for both quasiharmonic
effects of volume and anharmonic effects of temperature.
Separately, phonon properties for these temperatures and
pressures were calculated quasiharmonically by ignoring the
effects of finite temperature except for thermal expansion,
and such calculations are labeled “QHA.” (Quasiharmonic
volumes at each pressure and temperature of interest were
equal to those used for corresponding calculations including
anharmonic phonon effects.) At each temperature, pressure-
volume relationships and selected volumes corresponding to
each pressure of interest were determined by fitting a Birch-
Murnaghan equation of state to Helmholtz free energy versus
volume trends of that isotherm.

Helmholtz free energies, F (V, T ), were calculated by
summing the ground-state total energy surface, E0(V ) (de-
rived from the energy-volume relationships from static unit
cells), and the temperature-dependent phonon free energies,

calculated at several volumes for a given temperature

F (V, T ) = E0(V ) + Fph(V, T ) . (1)

We calculated finite temperature phonon properties using
the temperature-dependent effective potential (TDEP) method
[22–24]. For an ensemble of supercells with thermal displace-
ment patterns and their interatomic forces as calculated by
VASP, TDEP generates a model potential energy as

U = U0 + 1

2!

∑
i jαβ

φ
αβ
i j uα

i uβ
j + 1

3!

∑
i jkαβγ

φ
αβγ

i jk uα
i uβ

j uγ

k . (2)

The TDEP method optimizes U0 and φ
αβ
i j and φ

αβγ

i jk , which
are interatomic force constants for two- and three-body inter-
actions. These model parameters are chosen to minimize the
difference between the set of interatomic forces determined
by VASP and those predicted by the model potential of Eq. (2).
The TDEP calculations used Born effective charge tensors
from VASP with the correction scheme of Gonze and Lee
[25,26] to account for long-range interactions in polar GaAs.

A stochastic sampling method (s-TDEP) [27] was used
to generate an ensemble of (typically 20 to 40, depending
on structural symmetries and temperature) supercells with
thermal atomic displacements. The scheme generates position
vectors for the ith atom, {ui}, consistent with phonon displace-
ments and Bose-Einstein statistics

ui =
3Na∑
s=1

εis〈Ais〉
√

−2 ln ξ1 sin 2πξ2 , (3)

where {εis} are the eigenvectors corresponding to the {s}
phonon modes in a system of Na atoms. The embedded
expression

√−2 ln ξ1 sin 2πξ2 is a Box-Muller transform gen-
erating a random variable with a standard normal distribution,
given two uniformly distributed random numbers, ξn, between
0 and 1. Finally, 〈Ais〉 [28,29] is the temperature-dependent
expectation value of the normal mode amplitude of the sth
phonon mode of the ith atom, given by

〈Ais〉 =
√

h̄(2ns + 1)

2mi ωs
=

√√√√ h̄
(

2

e
h̄ωs
kBT −1

+ 1
)

2mi ωs
, (4)

which in the classical limit becomes

〈Ais〉 ≈ 1

ωs

√
kBT

mi
, (5)

where ωs and ns are the eigenvalue and thermal occupation of
the sth phonon mode and mi is the mass of the ith atom.

Each atomic displacement, ui, is therefore a thermally-
weighted superposition of all vibrational modes, with ran-
domness injected to simulate sampling atomic positions at
different times. Zero-point contributions are included with
Eq. (4) [30]. Generating these atomic positions requires prior
knowledge of the phonon mode eigenvectors and eigenvalues,
accessible given interatomic force constants. We therefore be-
gan by seeding these calculations with force constants either
from frozen phonon calculations or pre-existing work on sim-
ilar systems; phonon calculations consisting of stochastically
generated ensembles were then performed for two to four
iterations until the interatomic force constants converged.

214108-2



PHONON THERMODYNAMICS AND ELASTIC BEHAVIOR OF … PHYSICAL REVIEW B 101, 214108 (2020)

FIG. 2. Elastic moduli in GPa plotted versus pressure, also in
GPa, for (a)–(e) wGaAs and for (f)–(h) zGaAs. For C11 and C12

in wGaAs, we omitted data from approximately 15 to 20 GPa,
where evidence of a phonon instability emerges, as shown in Fig. 4,
to artificially decouple results on the elastic properties from this
instability.

III. RESULTS

Figure 2 presents elastic constants for wGaAs [Figs. 2(a) to
2(e)] and zGaAs [Figs. 2(f) to 2(h)] as functions of pressure.

FIG. 3. Illustration of the first two Born stability criteria versus
pressure for wGaAs (top) and zGaAs (bottom). The dashed orange
line is a guide to the eye spanning the region where data have been
omitted from Fig. 2 for C11 and C12. A dashed vertical black line at
27 GPa, labeled PEI , indicates the pressure at which elastic instability
occurs in each phase.

These results were obtained from VASP without accounting
for any temperature effects, i.e., from relaxed unit cells with
volumes at each pressure determined by a Birch-Murnaghan
equation of state fit to energy-volume relationships that did
not account for any phonon free energy. The elastic constants
for both materials increase with pressure, except for C44,
which decreases.

We do not show values for C11 and C12 between about
15 and 20 GPa in wGaAs, for reasons that will be explained
below using Figs. 4 and 5. Figure 3 presents results pertaining
to elastic stability that derive from the elastic constants shown
in Fig. 2. As for C11 and C12 in Fig. 2, we do not plot real data
from about 15 to 20 GPa in Fig. 3.

We predicted when wGaAs and zGaAs would become
elastically unstable using Born stability criteria that account
for pressure [31–34]. The three stability conditions that must
be met for cubic crystals such as zinc blende are

B11 − B12 > 0, B44 > 0, B11 + 2B12 > 0 , (6)

and for hexagonal crystals such as wurtzite

B11 − |B12| > 0, B44 > 0, B33(B11 + B12) > 2B2
13 . (7)

The elastic stiffnesses Bi j are the corresponding values of
elastic constants Ci j with pressure

Bii = Cii − P, i = 1, 2, . . . , 6 , (8)

B1 j = C1 j + P, j = 2, 3 . (9)
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FIG. 4. In panels (a) and (b), C11 and C12 are plotted against
pressure for wGaAs without omitting data from 15 to 20 GPa as
done in Fig. 2. The respective dip and spike shown correspond to
contributions to these elastic moduli that scale roughly inversely with
certain 
-point phonon frequencies as they approach zero. Below,
in (c) and (d), frequencies for the degenerate transverse optical
phonon modes at 
 are plotted against pressure. Panel (c) shows that
these phonon modes soften considerably until approaching 0 THz at
20 GPa. In (d) an expanded plot shows us that at 20 GPa frequencies
for this phonon mode become imaginary, giving the onset of a
phonon instability.

The third stability conditions of Eqs. (6) and (7) remain
true across our entire pressure range of 0 to 65 GPa for
both wGaAs and zGaAs. Figure 3 shows the first two Born
instabilities in wGaAs and zGaAs. The first stability condition
fails when B11 − B12 (B11 − |B12| for wurtzite) falls to zero.
Similarly, the second stability condition fails when B44 crosses
zero. According to the Born stability criteria, both wGaAs and
zGaAs become unstable at 27 GPa, denoted by the vertical
dashed lines. For wGaAs this occurs when B44 falls to zero;
for zGaAs there is a “tetragonal shear instability”[33] that
occurs when B12 becomes greater than B11.

Finally we address the omitted data from 15 to 20 GPa in
the trends for C11 and C12 of wGaAs in Fig. 2, and phonon phe-
nomena in this range of pressure. Figures 4(a) and 4(b) show
the full pressure trends for C11 and C12 of wGaAs. Between 15
to 20 GPa, C11 exhibits an anomalous dip; simultaneously C12

exhibits an anomalous spike. While the observed dip and spike
are themselves nonphysical, they reflect a phonon instability.
The dip and spike are side effects of the way VASP calculates
elastic constants via stress-strain relationships. VASP distorts
the crystal unit cell and obtains the elastic constants from the
resulting stress-strain relationships. The output is a version
of the elastic tensor containing symmetrized elastic moduli.
However, these symmetrized elastic moduli do not account
for the fact that the ionic positions of the unit cell are no
longer relaxed once each distortion is applied. To correct for
this, VASP calculates the contribution to the elastic tensor from

FIG. 5. Phonon dispersion relations at 0 K for wGaAs (top) and
zGaAs (bottom) with frequencies on the vertical axis plotted against
phonon wave vectors along high symmetry directions. Phonon dis-
persion relations at various pressures are overlaid, with increasing
pressure from blue to purple to pink. In wGaAs, we see pressure-
induced softening of the longitudinal acoustic mode at M and of
the degenerate transverse optical modes at 
, until an instability
occurs around 18 GPa at M, denoted by PC . In zGaAs, the transverse
acoustic modes soften at X and L with increasing pressure, until a
phonon instability occurs around 20 GPa at X .

ionic relaxation and adds this contribution to the symmetrized
elastic moduli, giving the total elastic moduli. VASP calculates
the contributions from the ionic relaxation using a dynamical
matrix constructed from phonon frequencies at the 
 point.
In wGaAs, the dip in C11 and spike in C12 correspond to the
contributions to elastic moduli from ionic relaxation. These
contributions to the ionic relaxation are made nonphysical by
a phonon instability as seen in Figs. 4(c) and 4(d), where the
phonon frequencies for the lowest-energy transverse optical
modes at 
 become imaginary at 20 GPa.

More direct evidence of phonon instabilities occurring at
pressures below the Born instabilities is seen in Fig. 5, where
phonon dispersions are shown for wGaAs and zGaAs. In
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FIG. 6. Mode Grüneisen parameters that are the most sensitive to
volume changes are plotted against pressure for 0, 600, and 1200 K
in wGaAs (top) and zGaAs (bottom).

wGaAs we see significant phonon softening with pressure, not
only for the lowest frequency transverse optical modes at 
,
but also from the transverse acoustic mode at M. At both these
phonon wave vectors, the modes soften until their frequencies
go imaginary. Figure 5 presents the onset of phonon instability
at the M point only, showing that it occurs at a lower pressure
than the phonon instability at 
. The first phonon instability in
wGaAs occurs at about 18 GPa. Similarly, in zGaAs there is a
large softening of transverse acoustic modes at X and at L. In
zGaAs the first phonon instability occurs at X , near 20 GPa.
Because zGaAs exhibits no phonon instability at 
 and only

 point frequencies contribute to determinations of the elastic
constants in VASP, no strange discontinuities are observed in
the elastic constants of zGaAs in Fig. 2.

The temperature dependence of the Grüneisen parameters
of the unstable phonon modes, calculated from third order
force constants in TDEP [23], are shown in Fig. 6. At 0, 600,
and 1200 K, the Grüneisen parameters for the lowest-energy
transverse acoustic modes at the M point in wGaAs and at
X in zGaAs are negative. They become increasingly negative
with pressure, meaning that their frequencies become more
sensitive to pressure, accelerating the onset of instability.
At higher temperatures, the Grüneisen parameters of these
modes are smaller in magnitude, and change less rapidly with
increasing pressure. Because the pressure sensitivities of these
phonon frequencies decrease with temperature, the onsets
of the phonon instabilities are shifted to higher pressures at
higher temperatures.

Figure 7 shows the phonon densities of states for wGaAs
and zGaAs. Each panel shows the phonon DOS at 0 K, at
1200 K from the QHA, and at 1200 K with both quasi-
harmonic and explicitly anharmonic effects. At 0 GPa, the

FIG. 7. Overlays of phonon DOS at 0 K and at 1200 K per
a QHA and with full anharmonic phonon effects are shown at
(a) 0.0 GPa in wGaAs, (b) 10.0 GPa in wGaAs, (c) 0.0 GPa in zGaAs,
and (d) 10.0 GPa in zGaAs. At elevated pressures, the QHA is less
reliable for predicting thermal shifts.

quasiharmonic phonon DOS at 1200 K is more similar to the
phonon DOS at 1200 K with explicit anharmonicity than it is
to the phonon DOS at 0 K. At 10 GPa, this is no longer true
and the quasiharmonic phonon DOS at 1200 K are much more
similar to results at 0 K than at 1200 K. At elevated pressure,
the QHA becomes less effective at approximating the effects
of temperature.

Figure 8 shows that the effects of pressure on thermal
phonon linewidths are mode-dependent. Here we overlay
phonon dispersions for wGaAs and zGaAs, respectively, with
pressure- and temperature-dependent broadening at 1200 K
and 0 and 10 GPa. The thicknesses of the phonon branches
are the phonon linewidths, i.e., the imaginary component of
the phonon self energy as calculated in TDEP [23]. (The
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FIG. 8. Calculated spectral weights showing phonon dispersions
for wGaAs (top) and zGaAs (bottom), showing broadening from
phonon-phonon processes at 1200 K for 0.0 GPa (purple) and
10.0 GPa (gray).

linewidths are nearly 0 THz at 0 K in both materials.) The
purple and gray lines in each panel show the broadening at
1200 K for 0 GPa and at 1200 K for 10 GPa, respectively.
Increasing the pressure at high temperature causes the spectral
shape of some phonon modes to broaden in energy, and others
to narrow. In wGaAs, for example, the broadening of modes at

 near 5 THz decreases with pressure, whereas the broadening
of modes at A near 4 THz increases with pressure. Similarly
in zGaAs, pressure can cause broadening to increase, as at X
near 7 GPa, or to decrease, as at L near 5 THz.

Figure 9 compares the average effect of pressure on phonon
broadening in wGaAs and zGaAs to that in wGaN and zGaN,
using data from our previous work [35]. The graph shows the
ratio of the values between high pressure and low pressure
of the average phonon linewidths. The average linewidth was
from all phonon branches across the high symmetry paths in
the dispersion curves of Fig. 8. In wGaAs and zGaAs, our high
and low pressures are 10 GPa and 0 GPa; in wGaN and zGaN
they are 30 GPa and 0 GPa. For both wGaAs and zGaAs, this
ratio is greater than 1 for 0, 600, and 1200 K and modestly de-
creases with temperature, indicating a temperature-dependent
increase in broadening with increasing pressure. Conversely
in both wGaN and zGaN, this ratio is smaller than 1 at
both 0 and 1120 K, indicating a decrease in thermal phonon
broadening with increasing pressure.

FIG. 9. The factor by which average linewidth across high sym-
metry paths for all phonon branches changes with a pressure of
either 10 GPa (GaAs) or 30 GPa (GaN) [35] versus temperature
for wGaAs, zGaAs, wGaN, and zGaN. Values greater than 1 show
that pressure increases broadening. Values less than 1 indicate that
pressure decreases broadening.

IV. DISCUSSION

A. Elastic properties and origin of lattice instability

The Born stability criteria implicitly account for the be-
havior of long-wavelength acoustic phonon modes near 
,
but assume the stability of shorter-wavelength phonon modes.
There is a correspondence between elastic constants and
interatomic force constants in the long wavelength limit. As
explained in other work [36,37], the elastic constants can be
used to construct an analog to the dynamical matrix, A(q)

Ai j (q) =
∑

kl

Cik jl qkql , (10)

where q is a point in reciprocal space and Cik jl is an element
of the elastic tensor, equivalent in Voigt notation to Ci j . The
linear eigenvalue equation

A(q)u(q) = ρω2(q)u(q) , (11)

holds near q = 0, giving frequencies of long wavelength
phonon modes, scaled by the density ρ, where u(q) is the
corresponding eigenvector at q.

In wGaAs a phonon instability occurs near the 
-point. It
is revealed by imaginary frequencies in Eq. (11), and gives a
strange dip and spike in C11 and C12 at 20 GPa when VASP

calculates elastic constants. Nevertheless, these transverse
acoustic modes at 
 are not the first to become unstable in
wGaAs. The first instability is at 18 GPa in the transverse
acoustic modes at M. This is evident in the phonon dispersions
in Fig. 5, but not in the elastic constants of Figs. 2 or 3
(because VASP reports and uses 
 frequencies but not others
to calculate Ci j). This phonon instability in wGaAs at 18 GPa
is approximately 9 GPa below the Born instability at 27 GPa.
In zGaAs, the first instability occurs at 20 GPa for a transverse
acoustic mode at X . By examining the eigenvectors of the
unstable transverse mode at M in wGaAs, we found that it has
atom displacements in the basal plane, perpendicular to the
z-direction. Likewise, the unstable transverse acoustic mode
in zGaAs at L has atom displacements in its close-packed
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{111} planes. Other reports that short wavelength modes can
become unstable before the onset of Born instabilities include
Refs. [38,39], and an older analysis with Morse potentials
predicted that this would cause amorphization of GaAs [40].

It is interesting to compare these results on GaAs to the
elastic properties of wurtzite and zinc blende gallium nitride,
GaN. In contrast to wGaAs and zGaAs, wGaN and zGaN
did not exhibit phonon instabilities prior to the onset of Born
instabilities. The phonon modes that soften to zero in GaAs
under pressure show only a small tendency towards softening
for both wGaN and zGaN. The first Born instability was the
same across crystal structures, with wGaAs and wGaN be-
coming unstable when B44 becomes nonpositive, and zGaAs
and zGaN exhibiting a tetragonal shear instability [35].

B. Coupled effects from pressure and temperature

1. Temperature effects on pressure-driven lattice instability

Mode Grüneisen parameters,{γi}, defined as

γi ≡ −V

ωi

∂ωi

∂V
, (12)

give the volume sensitivity for the frequency of a phonon
mode. In quantifying how phonon frequencies shift with
volume, mode Grüneisen parameters provide a way to predict
the onset of phonon instabilities in wGaAs and zGaAs by
estimating the volumes (and thereby the pressures) at which
frequencies become nonpositive (explained further in the Sup-
plemental Material [17]). Qualitatively, Grüneisen parameters
of larger magnitude indicate greater sensitivity to pressure,
and faster progression towards a lattice instability. Figure 6
shows that the negative γ become increasingly negative with
pressure for both wGaAs and zGaAs at all temperatures. As
pressure is applied, transverse acoustic modes at M in wGaAs
and at X in zGaAs accelerate towards instability. This trend
is reduced by temperature, however. By extrapolating phonon
frequencies with volume, and using Grüneisen parameters
from the sTDEP calculations, we estimate that at 0, 600, and
1200 K, respectively, the onset of shorter wavelength phonon
instabilities will occur in wGaAs at 20, 27, and 30 GPa, and
in zGaAs at 25, 30, and 38 GPa.

This temperature dependence is poorly described by the
quasiharmonic approximation, which attributes all change
in phonon frequencies to changes in volume. Using mode
Grüneisen parameters from quasiharmonic phonon calcula-
tions at 1200 K (with 1200 K volumes and 0 K potentials),
the onset of lattice stability occurs at approximately 23 GPa
in wGaAs and at 25 GPa in zGaAs. The QHA accounts for
only about 30% and 0% of the temperature-driven elevation
in pressure of the lattice instabilities in wGaAs and zGaAs.
Explicit anharmonicity in wGaAs and zGaAs dominates the
temperature dependence of the phonon instabilities, and in-
creases the pressure range of stability.

The Born stability criteria overestimates the pressure at
which instability would occur by several GPa in both wGaAs
and zGaAs, according to phonon data at 0 K. Temperature
suppresses the phonon instability, and should decrease the
elastic constants. We did not calculate the temperature depen-
dence of the elastic constants, so we do not know if the elastic

instability from the Born criteria would overtake the phonon
instability at temperatures below the melting temperature.

2. Pressure effects on phonon anharmonicity

The Grüneisen parameters of Eq. (12) change with temper-
ature as

∂γi

∂T
= γi

[
β − 1

ωi

∂ωi

∂T

]
− V

ωi

∂2ωi

∂T ∂V
, (13)

so the effect of pressure on individual phonon frequencies
is also temperature dependent. (Here β is the coefficient of
volume thermal expansion, but it can probably be neglected.)
The second and third terms in Eq. (13) give phonon frequency
shifts proportional to the product 
T × 
P. [The third term
in Eq. (13) is also obtained when the pure anharmonicity,
proportional to (∂ωi/∂T )V , has a volume dependence [41].]

If pressure and temperature were to cause additive effects
on phonon frequencies, the changes of phonon frequencies
and broadenings with temperature should be independent of
the effects of pressure, and vice versa. This is the prediction of
the quasiharmonic approximation (QHA), where all frequency
shifts depend only on volume. However, Fig. 7 shows that a
temperature of 1200 K causes shifts in the phonon spectra that
differ between the QHA and the full sTDEP calculations, and
furthermore, these discrepancies increase with pressure for
both wGaAs and zGas. The QHA phonon spectra at 1200 K
become more similar to 0 K phonon spectra at 10 GPa than
at 0 GPa. This is an effect of reduced thermal expansion at
elevated pressures.

Figure 8 shows that the effects of pressure on the thermal
broadening of phonon spectra are not simple. Adding 10 GPa
of pressure at 1200 K changes the phonon linewidths, but with
mixed results; sometimes pressure increases the magnitude
of the thermal broadening, but sometimes pressure decreases
the phonon broadening, indicating the disappearance of previ-
ously accessible phonon decay channels. (Phonon linewidths,
which are inversely proportional to phonon lifetimes, reflect
the availability of opportunities for phonons to decay into
combinations of lower frequency modes. The QHA does not
account for broadenings of phonon spectra.) If all phonon
modes had the same Grüneisen parameter, pressure would
cause a proportional shift in all phonon dispersions. In this
hypothetical case, the downscattering channels would re-
main unchanged, and the phonon anharmonicity would be
unchanged by pressure. For both zGaAs and wGaAs the
effect of pressure is quite different for the transverse acoustic
branches and all others, which have negative and positive
Grüneisen parameters, respectively. Pressure-induced changes
to the phonon dispersions cause the three-phonon processes to
change, thus changing the phonon anharmonicity.

Examples of how pressure alters downscattering channels
are shown in Fig. 10. Pressure changes both the “source”
modes, depicted as four-point stars, and the “destination”
modes, the thick dots (that appear as short, thick purple and
gray lines). The source modes are kept at the same k-vector,
but as their frequencies increase with pressure, energy, and
momentum conservation cause substantial changes in the al-
lowed k-vectors of the destination modes. In wGaAs, a source
mode is shown near M along the path from 
, [0, 0, 0], to

214108-7



JANE E. HERRIMAN AND BRENT FULTZ PHYSICAL REVIEW B 101, 214108 (2020)

FIG. 10. Examples of decay channels that conserve crystal mo-
menta and energy in downscattering. Pairs of source modes are
marked by four-point stars, and dashed arrows point from source
modes to their various decay products, shown as circular points.
These modes overlay the phonon dispersions of Fig. 8. These three-
phonon processes are changed by pressure.

M, [ 1
2 , 0, 0], and another near K along the path from 
 to

K , [ 2
3 , −1

3 , 0]. Each of these source modes decays into two
destination modes along the same high symmetry direction —
one just under 6 THz and one near 1 THz. (There are several
destination modes near 6 THz, each with a partner mode near
1 THz.) In zGaAs, longitudinal acoustic source modes are
shown near K along the path from K ([ 3

8 , 3
8 , 3

4 ] in zinc blende)
to 
, and near L along the path from 
 to L at [ 1

2 , 1
2 , 1

2 ].
Each of these source modes can decay into one longitudinal
acoustic mode on the same branch and one transverse acoustic
mode along the same high symmetry direction, but these
destination modes change significantly with pressure. On the
other hand, the decay channels for the source modes in zGaAs
near L do not change much with pressure. The source modes
have, of course, additional destination modes that lie off the
high symmetry directions, but these examples are typical in
that they show the mode-to-mode variations of how pressure
alters the anharmonicity. More detail is presented in a table in
the Supplemental Material [17].

Figure 9 shows that pressure increases the average thermal
broadening in wGaAs and zGaAs at all temperatures. In
contrast, for wGaN and zGaN, pressure decreases the average

phonon linewidth. Both wGaN and zGaN have a phonon band
gap that increases with pressure. For GaN, increasing the
distance between acoustic and optical modes leaves the optical
modes with fewer combinations of acoustic modes into which
they can decay, increasing phonon lifetimes and making GaN
more harmonic with pressure, in contrast to GaAs.

V. CONCLUSION

The phonons and elastic properties of GaAs were calcu-
lated at simultaneous temperature and pressure using sTDEP,
a fully anharmonic method, and the approximate quasihar-
monic method (QHA, where all changes are attributed to
effects of volume). It was found that the Born stability criteria,
which implicitly account for the behavior of long wavelength
phonon modes near 
, are not the appropriate criteria for the
lattice stability of either wGaAs or zGaAs because shorter-
wavelength phonon instabilities occurred at lower pressures.
In particular, the pressure-induced softening of transverse
acoustic modes at the M and X points in k-space cause lattice
instabilities in wGaAs and zGaAs at 18 and 20 GPa at 0 K,
whereas the Born stability criteria predict lattice stability until
27 GPa in each material. Temperature causes a significant
stabilization of these phonon modes, however, slowing their
softening with pressure. The mode Grüneisen parameters
depend significantly on temperature, causing changes in ther-
mophysical properties that depend on the product 
T × 
P.

Pressure-temperature coupling changed the anharmonic
thermal broadening of phonon modes. On average for GaAs,
pressure tends to increase the thermal broadening between
0 and 1200 K. The independent shifts of phonon branches
induced by pressure tend to increase the number of phonon-
phonon interactions and phonon linewidths at 1200 K by
creating more downscattering channels for phonon decay. In
comparison to GaN with the same crystal structures, pressure
had a larger effect on the average phonon broadening in GaAs
than in GaN, with GaN becoming more quasiharmonic with
pressure, but GaAs less so. Although the Born criteria for
elastic instability failed similarly in both GaAs and GaN, for
GaN the Born instabilities occur at pressures before the onset
of phonon instabilities.
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