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Jianfeng Chen®,” Wenyao Liang®," and Zhi-Yuan Li"
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China

® (Received 2 February 2020; accepted 14 May 2020; published 2 June 2020)

We propose and show that antichiral edge states can be realized in a gyromagnetic photonic crystal (GPC) with
a honeycomb lattice consisting of two interpenetrating triangular sublattices A and B. When sublattices A and B
are immersed in opposite external magnetic fields respectively, the band structure of the GPC tilts and antichiral
edge states emerge. These special edge states propagate in the same direction at the two opposite parallel zigzag
boundaries of the GPC, which are completely distinguished from the well-studied topological edge states in
chiral photonic systems where the edge states transport in opposite directions at the opposite two parallel zigzag
boundaries. We show that these unique antichiral edge states originate from the overall coupling effects of the
counterclockwise energy flux vortexes of sublattice A and clockwise energy flux vortexes of sublattice B, so that
two copropagating one-way transport channels are created on the boundaries. We further demonstrate that these
antichiral edge states are also strongly robust against backscattering from the obstacles at the zigzag edges. Our
findings clearly indicate that deeply digging into the GPC systems can help to find rich novel and significant
topological physics. Antichiral edge states are of significance not only in basic physics, but also in offering
useful insights and routines to design novel electromagnetic and optical functional devices, such as the compact

multichannel one-way waveguide.

DOL: 10.1103/PhysRevB.101.214102

I. INTRODUCTION

Topological concepts and physics have inspired tremen-
dous attention and research enthusiasm in science and tech-
nology communities in recent decades [1]. The presence of
robust interfacial states confined at the boundaries of bulky
material with insulating gap have an obvious prospect of
potential technological applications. Inspired from the dis-
covery of condensed quantum Hall effect and topological
insulator, researchers proposed that it is feasible to make an
analogy between photons in photonic crystal (PC) systems
and electrons in condensed physics systems, leading to the
emergence of topological photonics [2—4]. Researchers have
verified various basic concepts of topological physics, such
as Weyl points [5—-8], nodal lines [9], corner states [10-14],
valley states [15-20], and bulk Fermi arc [21] in photonic sys-
tems. Moreover, many interesting topological devices, such
as multimode one-way waveguides [22,23], high-performance
slow-light delay lines [24—26], and dissipationless wave ben-
ders [27-30], three-dimensional topological insulators [31],
topological lasers [32-35], and on-chip topological waveg-
uides [17,36], have been investigated.

One of the most striking and intriguing ways to produce
topological protected electromagnetic (EM) edge states is
to immerse a gyromagnetic photonic crystal (GPC) in an
external magnetic field to break the time-reversal symmetry
[37—46]. These EM edge states generally display the chiral
properties that the edge states can only propagate clockwise or
counterclockwise along the structure boundary. For example,
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when the structure is a rectangular or parallelogram, the
edge states transport in opposite directions at the two parallel
boundaries but not in the same direction. These EM chiral
edge states were theoretically predicted by Haldane et al. in a
two-dimensional (2D) GPC system by analogy to the integer
quantum Hall effect in a 2D electron gas system [37,38].
Shortly afterwards, Wang et al. [40] and Fu and co-workers
[42,43] experimentally observed the EM chiral edge states
at microwave domain in a square-lattice 2D GPC. Such a
GPC supports EM waves transporting unidirectionally and
robustly even in the presence of an inserted metal obstacle.
Subsequently, Poo er al. [44] experimentally demonstrated
that the EM chiral one-way edge states also could exist along
the zigzag edges of a honeycomb GPC, and they are also
strongly robust against various types of defects and obstacles.

Very recently, there has been growing interest to realize
one-way edge states transporting along the same direction on
two parallel boundaries (i.e., copropagating edge states), and
these special states are called antichiral edge states [47-49].
In 2018, Colomés et al. [47] theoretically proposed electronic
antichiral edge states through adopting an ingenious but phys-
ically unrealistic modification of the Haldane model, where
the next-nearest-neighbor hopping term was introduced to
act equally in both sublattices. Significantly, the emergence
of antichiral edge states enriches the realm of topological
physics and arises a wide range of research enthusiasms. In
2019, Bhowmick et al. [48] theoretically demonstrated that
electronic antichiral edge states could emerge in a honeycomb
lattice consisting of Heisenberg ferrimagnets with broken
sublattice symmetry, and they made the prediction of potential
materials, which may excite electronic antichiral edge states.
Very recently, Mandal et al. [49] theoretically discussed a
photonic antichiral edge state in an exciton-polariton system
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FIG. 1. Schematic illustrations of (a) counterpropagating edge states (single chiral GPC), (b) trivial copropagating edge states (double
chiral GPCs), (c) nontrivial copropagating edge states (single antichiral GPC). The arrows indicate the transport directions of the energy

fluxes, and the black dotted lines present the interfaces.

by using the polarization-dependent interaction of polariton
condensates; Nevertheless, this structure only works in a
low-temperature environment in practical experiments. Obvi-
ously, the finding of antichiral edge states will open up new
opportunities and research fields for topological physics and
functionality devices. However, there is still a great challenge
to achieve antichiral edge states in fields more diverse than
condensed-matter and exciton-polariton systems. Moreover,
it is also highly desirable to realize antichiral edge states in
a relatively simple structure and without harsh conditions.
Fortunately, the GPC system can provide a promising means
to attack this challenging issue. In this paper, we propose that
antichiral edge states can be realized in a honeycomb GPC
consisting of two interpenetrating triangular sublattices A and
B, which are immersed in opposite external magnetic fields
respectively.

The paper is organized as follows. In Sec. II, we discuss
the formation of two copropagating edge states by using two
chiral GPCs head by head, and propose a scheme to create co-
propagating edge states naturally in a single antichiral GPC. In
Sec. III, we calculate, plot, and analyze the band diagrams of
GPC under three different distributions of external magnetic
fields respectively. In Sec. IV, we further depict and discuss
the projected band structures for chiral and antichiral edge
states. Then, in Sec. V, we demonstrate the transport phenom-
ena of chiral and antichiral edge states and then verify their
robustness for obstacles at the zigzag edges along the x di-
rection. Furthermore, in Sec. VI, we generalize the formation
mechanism of chiral and antichiral edge states by analyzing
their transport behaviors. In Sec. VII, we construct a simpler
and more compact three-channel one-way waveguide by using
two antichiral GPCs, and further introduce the experimental
scheme design of antichiral GPC. Finally, Sec. VIII contains
a brief summary of the main findings.

II. MODEL AND METHOD

Generally, the EM chiral edge states exist in a GPC system
with broken time-reversal symmetry by applying an external
magnetic field [36—43], as shown in Fig. 1(a). There exist edge
states on both edges of the GPC, and they transport leftwards
and rightwards at the upper and lower boundaries respectively,

named as counterpropagating edge states. In order to create
edge states propagating rightwards both at the upper and lower
parallel boundaries (i.e., copropagating edge states), a natural
and simple way is to use two GPCs biased by the opposite
external magnetic field respectively, and combine them with
each other head by head, as shown in Fig. 1(b). However,
owing to the chirality of isolated GPC, other edge states
propagating leftwards will exist at the interface between the
two GPCs. Obviously, this method to create copropagating
edge states is trivial. It is our aim to explore a nontrivial way
to create EM copropagating edge states naturally in a single
antichiral GPC structure (colored by deep blue), as plotted in
Fig. 1(c).

We first construct a 2D GPC consisting of a honeycomb
lattice of gyromagnetic cylinders [yttrium-ion-garnet (YIG)]
with zigzag edges along the x direction immersed in air, as
shown in Figs. 2(a) and 2(b). Besides, the honeycomb lattice
can be divided into two interpenetrating triangular lattices
composed of second neighbors with 7 rotation symmetry
from each other [i.e., sublattices A and B, marked by the
dashed lines in Fig. 2(b)]. The radius of gyromagnetic cylin-
ders is r = 0.15a, where a = 1 cm is the lattice constant, and
the permittivity of YIG is ¢ = 15.

Numerical simulations in this work are all conducted using
the 2D EM waves (frequency domain) module and carried
out by finite-element method. In the band diagram calcula-
tions for bulk GPC, the unit cell is centered at the point of
sixfold rotation symmetry and is bounded by the hexagon
of nearest neighbors. All six boundaries of the unit cell are
set as Floquet periodic boundaries. Besides, in the projected
band-structure calculations for edge states, the parallelogram
supercell with zigzag edges along the x direction is used. To
ensure the results accurate enough, this supercell includes 24
unit gyromagnetic cylinders in our practical calculations. The
upper and lower boundaries of the supercell are set as perfect
electric conductors, and the left and right boundaries of the
supercell are set as Floquet periodic boundaries. Moreover,
in the transport phenomena calculations for edge states, the
upper and lower boundaries of the GPC are set as perfect
electric conductors, and the left and right boundaries of the
GPC are set as scattering boundary conditions. The edge states
are excited by two identical point sources at the upper and
lower edges respectively.
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FIG. 2. GPC structure, band structure, and equal frequency curves. (a) GPC Structure with the zigzag edges along x direction. The
parallelogram supercell [left side of (a)] and honeycomb unit cell [right side of (a)] are used to calculate the projected band structure and
bulk band structure respectively. (b) Schematic diagram of the honeycomb lattice. The light blue dots denote the two sublattices A and B
with no external magnetic field applied. (c) Band structure of the honeycomb lattice (bottom left: first Brillouin zone; bottom right: partially
enlargement of the band structure). The red dots indicate the two Dirac points which are connected by a green dotted line connects the two
Dirac points. (d),(e) Equal frequency curves of the first and second bands, respectively.

II1. BAND DIAGRAM FOR BULK GPCs

When the external magnetic field is zero, the permeability
of YIG is u =1, and gyromagnetic cylinders are colored
in light blue in Figs. 2(a) and 2(b). Only E polarization (E
is perpendicular to the xoy plane) is considered. Figure 2(c)
shows the band structure of the GPC. Obviously, there is no
band gap between the first and second bands, as these two
bands intersect with each other at two Dirac points of K and
K’ in the first Brillouin zone [bottom left corner of Fig. 2(c)].
Due to the protection of simultaneous time-reversal and space-
reversal symmetries, the band structure is symmetric about
the high-symmetry point M. Two Dirac points are marked
as red dots and they are connected by a green dotted line
[Fig. 2(c)]. The partial enlargement of band structure [bottom
right corner of Fig. 2(c)] shows that the frequencies of these
two Dirac points are at 8.730 GHz and the slope of the green
dotted line is zero. Figures 2(d) and 2(e) show the synthetic
pictures of band diagrams constructed by superimposing the
first Brillouin zone on the equal frequency curves of the first
and second bands, respectively. The equal frequency curves
of these two bands possess sixfold rotation symmetry around
point I' at the center of the first Brillouin zone owing to
the protection of the sixfold rotation symmetry. Besides, the
frequency ranges of the first and second bands are 0-8.730 and
8.730-1.1160 GHz respectively, which are consistent with the
calculated results of band structure displayed in Fig. 2(c).

Next, we study the case of the two sublattices A and B
both immersed in an external magnetic field of H; = 2200 G,

as schematically depicted in Figs. 3(a) and 3(b), where all
gyromagnetic cylinders are colored in red. As H, is applied
along the axis of gyromagnetic cylinders (i.e., +z direction
normal to the 2D plane), the strong anisotropy of YIG is
induced to produce a permeability tensor [22,23],

Hr ie 0
pL=1-—tk Hr 0 s
0 0 1

where u, = 0.84, u; = 0.41. Due to the presence of nondi-
agonal imaginary parts in the permeability tensor, the time-
reversal symmetry of GPC is broken. Figure 3(c) shows that
the degeneracy of Dirac points K and K’ are lifted up, so that
the first and second bands separate from each other, and then
a full band gap emerges (green zone). The partial enlargement
of the band structure [bottom-right corner of Fig. 3(c)] shows
that the frequency range of this band gap (green zone) extends
from 8.900 to 9.130 GHz (the band gap width is 0.230 GHz).
Besides, Figs. 3(d) and 3(e) show the equal frequency curves
of the first and second bands in the frequency ranges of 0—
8.900 and 9.130-11.710 GHz respectively. They still possess
a sixfold rotation symmetry around point I at the center of
the first Brillouin zone, owing to the protection of the sixfold
rotation symmetry.

We proceed to study the case of two interpenetrating tri-
angular sublattices A and B applied with H; = 2200G and
H_ = —2200 G respectively, as shown in Figs. 4(a) and 4(b).
The gyromagnetic cylinders of sublattices A and B are marked
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FIG. 3. GPC structure, band structure and equal frequency curves. (a) Structure of GPC with the zigzag edges along x direction. The
parallelogram supercell [left side of (a)] and honeycomb unit cell [right side of (a)] are used to calculate the projected band structure and bulk
band structure respectively. (b) Schematic diagram of honeycomb lattice. The red dots denote the two sublattices A and B with H, = 2200 G
applied simultaneously. (c) Band structure of honeycomb lattice (bottom left: first Brillouin zone; bottom right: partially enlargement of the
band structure). Green rectangle indicates the full band gap. (d),(e) Equal frequency curves of the first and second bands, respectively.

Zigzag boundary
(a) 8.7 12+
i
S 8
9
<
g
54
y =
@ A sublattice (H>0) 0
ST =3 ? @ B sublattice (H<0) r
x Zigzag boundary
d (e) The second band
( )0,5 ke xstband =9.130 5 11710
4 7304 X 11158 o
[ > L %
= F5.478 =~ = +10.596 =
& i 8 & K r 2
Q r K i 3 g L i g
< 3.652 % < F10.024 &
i I i I
M F1.826 M -9.462
0.5 5 540.000 05 i 5;8.900
- k2rla) : - k(2na) :

FIG. 4. GPC structure, band structure, and equal frequency curves. (a) Structure of GPC with the zigzag edges along x direction. The
parallelogram supercell [left side of (a)] and honeycomb unit cell [right side of (a)] are used to calculate the projected band structure and bulk
band structure respectively. (b) Schematic diagram of honeycomb lattice. The red and blue dots denote that two sublattices A and B are applied
with H, = 2200 G and H_ = —2200 G respectively. (c) Band structure of honeycomb lattice (bottom left: first Brillouin zone; bottom right:
partially enlargement of the band structure). Red dots indicate the two Dirac points which are connected by a green dotted line. (d),(e) Equal
frequency curves of the first and second bands, respectively.
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FIG. 5. Projected band structures and eigenmodal fields of the
chiral edge states. (a) Projected band structures of the YIG in
Fig. 3(a). (b) Eigenmodal fields of points 1 and 2 denoted in (a).
The red and blue arrows indicate edge states propagating rightwards
and leftwards respectively.

in red and blue respectively. Figure 4(c) shows that the first
and second bands are not separated from each other and
still intersect at Dirac points K and K’. However, the band
structure tilts and loses the symmetry about point M in the
first Brillouin zone because the Dirac points at K and K’
move down and up respectively. To see more conspicuously
the tilt of the band structure, a green dotted line is used to
connect these two intersecting points. Obviously, the slope
of the dotted line is a positive value instead of zero. Besides,
the frequencies at points K and K’ are 8.900 and 9.130 GHz
respectively, and their difference is 0.230 GHz, which is
consistent with the band-gap width of Fig. 3(c). Figures 4(d)
and 4(e) show that due to the breaking of the sixfold rotation
symmetry, the equal frequency curves of the first and second
bands lose the sixfold rotation symmetry around point I', and
they are divided into two sets of triangular rotation symmetry
with 7 rotation symmetry different from each other. Points
K and K’ are shifted downwards and upwards respectively
to create tilted band structures. It should be noted that the
frequency range of the first and second bands are 0-9.130 and
8.900-11.710 GHz respectively, which are consistent with the
calculation results of band structure in Fig. 4(c).

IV. PROJECTED BAND STRUCTURES FOR CHIRAL
AND ANTICHIRAL EDGE STATES

Now, we consider the projected band structures of the
honeycomb GPC system with zigzag edges along the x
direction to study the properties of edge states, and predict
the transport behaviors of EM waves by analyzing their
eigenmodal fields. We first consider the case of Fig. 3(a)
where the GPC is immersed in Hy = 2200G. Figure
5(a) shows the projected band structure of the GPC. The
whole band structure is symmetrical about k, = 1/2, and
two dispersion curves (colored in blue and red respectively)
appear inside the band gap and they intersect with each other
at k, = 1/2. Generally, the signs of the slopes of dispersion
curves represent the transport directions of their eigenmodal
fields. Thus, the eigenmodal fields corresponding to the red
and blue dispersion curves in the band gap will transport
in positive (right side) and negative (left side) directions,
respectively. The eigenmodal fields of points 1 and 2 (green
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FIG. 6. Projected band structures and eigenmodal fields of an-
tichiral edge states. (a) Projected band structures of the YIG in
Fig. 4(a). (b) Eigenmodal fields of points 1, 2, 3, and 4 in (a).
Magenta arrows indicate edge states propagating rightwards, while
black arrows denote bulk states transporting leftwards.

points) at 9.050 GHz are depicted in Fig. 5(b). Obviously,
they both are one-way edge states, since the slopes at points 1
and 2 are negative and positive respectively in the whole first
Brillouin zone as shown in Fig. 5(a). Specifically, the EM
wave corresponding to points 1 and 2 will transport leftwards
(blue arrow) and rightwards (red arrow) along the lower and
upper boundaries respectively, as shown in Fig. 5(b). In other
words, the EM edge states will transport along two parallel
boundaries in opposite directions, which show the chirality of
edge state in this GPC system clearly.

We further study the case of Fig. 4(a) where the two
sublattices A and B are subject to application of magnetic field
with H; = 2200G and H_ = —2200 G respectively. Figure
6(a) shows the projected band structure of the GPC. The
whole band structure tilts and loses symmetry about k, =
1/2 (2 /a). There exist two mutually intersecting dispersion
curves (colored in magenta), and they are degenerate with
each other around k, = 1/2 (27 /a), i.e., possessing the iden-
tical dispersion. The eigenmodal field profiles of points 1-4
(green points) at 9.050 GHz are plotted in Figs. 6(b1)-6(b4),
respectively. Figures 6(b1) and 6(b4) show that the eigen-
modal fields of points 1 and 4 are both dispersed uniformly in
the bulk and thus they are dispersive bulk states in the GPC. It
should be pointed out that as time elapses, they will transport
leftwards continuously (black arrows), which is in accordance
with the facts that the slopes of the dispersion curves at points
1 and 4 are both negative. However, Figs. 6(b2) and 6(b3)
show that the eigenmodal fields at points 2 and 3 are primarily
concentrated on both edges of the GPC and thus they are
localized edge states against the GPC. Being completely
different from the case of chiral edge state in Fig. 5(b), as time
elapses, these two edge states will both transport rightwards
(magenta arrows), in accordance with the positive slopes of
the dispersion curves at points 2 and 3. These features clearly
indicate that there indeed exist edge states propagating in the
same direction at both parallel boundaries of the designed
GPC, clearly confirming the existence of antichirality. Be-
sides, these antichiral edge states are accompanied by minor
bulk states to provide necessary counterpropagating energy
fluxes for balance. It should be noted that the intensities of
edge states [Figs. 6(b2) and 6(b3)] are greater than those of
bulk states [Figs. 6(b1) and 6(b4)] on both boundaries of the
GPC. Therefore, it is expected that the antichiral edge states
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FIG. 7. Transport phenomena of chiral and antichiral edge states
without metallic obstacles: (al)—(a3) chiral edge states, (b1)—(b3)
antichiral edge states. The thick and thin black arrows indicate the
main and secondary transport channels of energy fluxes, respectively.
The white stars with black frame are sources.

will dominate the bulk states when point sources radiating at
9.050 GHz are placed on the boundaries.

V. TRANSPORT ROBUSTNESS OF CHIRAL
AND ANTICHIRAL EDGE STATES

So far, we have discussed the existences of chiral and
antichiral edge states by analyzing their band structures and
eigenmodal fields. Next, we construct a honeycomb GPC
parallelogram ribbon with two zigzag edges (i.e., the upper
and lower edges) along the x direction to excite chiral and
antichiral edge states to see their transport behaviors. As
shown in Fig. 7, two point sources (white stars) are located at
the upper and lower zigzag edges, respectively, and they both
oscillate at 9.050 GHz. The upper and lower boundaries of the
structure are perfect electric conductors to avoid energy fluxes
radiating into air, while the left and right boundaries of the
structure are set as scattering boundary condition. When all
YIG cylinders are biased by Hy = 2200 G [Fig. 3(a)], there
exist two edge states only transporting rightwards and left-
wards at upper and lower edges respectively, i.e., counterprop-
agating, which shows the chirality [Fig. 7(al)]. The partially
enlarged field pattern at the upper and lower boundaries are
shown in Figs. 7(a2) and 7(a3), respectively. There exist two
transport channels, i.e., the main and secondary channels. The
majority of energy fluxes transport leftwards (or rightwards)
along the upper (or lower) zigzag edge, forming the main
channel (thick black arrows). The minority of energy fluxes
also propagate in the same direction with the main channel at
some distance below the inner edges, forming the secondary
channel (thin black arrows).

When the two triangular sublattices A and B are immersed
in H; = 2200G and H_ = —2200 G respectively [Fig. 4(a)],
we find that there exist edge states at the upper and lower
boundaries of the parallelogram structure respectively, and
they both transport rightwards, i.e. copropagating, showing
the antichirality [Fig. 7(bl)]. The partially enlarged field
patterns at the upper and lower boundaries are shown in
Figs. 7(b2) and 7(b3), respectively. There also exist two trans-
port channels (i.e., the main and secondary channels). How-
ever, the energy fluxes of the main and secondary channels are

(@) e
Teae

FIG. 8. Transport phenomena of chiral and antichiral edge states
with the rectangular metallic obstacles: (al)—(a3) chiral edge states,
(b1)—(b3) antichiral edge states. The thick and thin black arrows
indicate the main and secondary transport channels of energy fluxes,
respectively. The white stars with black frame denote sources.

opposite, i.e., the energy fluxes of the main channel transport
rightwards along the upper and lower zigzag edges, while the
energy fluxes of the secondary channel propagate leftwards
at some distance below the inner edges. These transport
phenomena are completely consistent with the calculation and
analysis results of eigenmodal fields illustrated in Fig. 6.

As is well known, the unique property of the topological
edge state is its robust transport immune against perturbations
and obstacles at the path. To demonstrate the robustness of
chiral and antichiral edge states, two metallic rectangular ob-
stacles with length of 1.5a and thickness of 0.2a are inserted
at both zigzag edges respectively, as shown in Figs. 8(al)—
8(a3) and 8(b1)-8(b3). The majority of energy fluxes are
still strongly concentrated at edges and transport forwards
along the main channels, and the minority of energy fluxes
propagate along the secondary channel. Importantly, no matter
whether they are chiral or antichiral edge states, their en-
ergy fluxes both can go around the obstacles and transport
forwards with almost no backscattering, showing excellent
robustness.

VI. PHYSICAL MECHANISMS UNDERLYING
THE FORMATION OF CHIRAL AND
ANTICHIRAL EDGE STATES

To observe and compare the transport behaviors of chiral
and antichiral edge states in detail, Figs. 9 and 10 plot the
detailed distributions of energy fluxes (magenta arrows) along
the upper and lower edges corresponding to the field patterns
displayed in Figs. 7 and 8, respectively. The magenta arrows
are used to reflect explicitly the intensities and directions
of energy fluxes, i.e., the Poynting vector. Since the strong
circulation of energy fluxes around each single gyromagnetic
cylinder are excited, for convenience, the counterclockwise
and clockwise rotating energy fluxes are respectively marked
as blue and green circular arrows, with their thicknesses used
to represent the relative intensities of energy flux. Besides, the
main and secondary transport channels are marked as the thick
and thin black arrows, respectively.

Very recently, Chen et al. proposed a left-hand law
to describe the transport directions of the EM wave in

214102-6



ANTICHIRAL ONE-WAY EDGE STATES IN A ...

PHYSICAL REVIEW B 101, 214102 (2020)

FIG. 9. Distributions of energy fluxes (Poynting vector, marked
as the magenta arrows) of the edge states without metallic obstacles:
(al),(a2) chiral edge states. (b1),(b2) antichiral edge states. (al),(b1)
and (a2),(b2) are the cases of upper and lower edges respectively.
The yellow stars indicate the sources at zigzag edges.

gyromagnetic materials [50]. According to the left-hand law,
when gyromagnetic cylinders used in this work are immersed
in Hy =2200G, due to B(H;) = ux/i, = 0.488 > 0, an
EM wave around gyromagnetic cylinders will rotate coun-
terclockwise. In contrast, when they are biased by H_ =
—2200G, B(H-) = — i/ = —0.488 < 0, and the rotating
direction will be clockwise. As shown in Fig. 9, the Poynting
vector distributions of each single gyromagnetic cylinder are
completely consistent with the predicted results of Ref. [50].
On one hand, for chiral edge states in Figs. 9(al) and 9(a2),
where all gyromagnetic cylinders are immersed in Hy =
2200 G, the direction of the EM wave traveling around gy-
romagnetic cylinders is counterclockwise. Under the overall
coupling effects of counterclockwise energy vortexes, the
main and secondary channels can only support energy fluxes
in one direction. Especially, the minority of energy radiating
backwards is completely towed back to propagate forwards
via a counterclockwise loop along the inner edges of the
whole hexagon.

On the other hand, for antichiral edge states in Figs. 9(b1)
and 9(b2), because sublattices A and B are applied with oppo-
site external magnetic field respectively, the energy fluxes are
counterclockwise and clockwise cycling around the gyromag-
netic cylinders of A and B lattices respectively. For the upper
edge [Fig. 9(bl)], the energy fluxes are counterclockwise
cycling (blue circular arrows) around the odd rows of gyro-
magnetic cylinders (the first row is at upper edge site), while
the energy flux vortexes of even rows of gyromagnetic cylin-
ders are clockwise (green circular arrows). These microscopic

RN I C. y
""" GO~

® @
QO NG N O O - ©
Chiral edge states

Antichiral edge states

FIG. 10. Schematic diagrams of physical mechanism. (a) Chiral
edge states, (b) antichiral edge states. The blue and green circular
dotted arrows denote the counterclockwise and clockwise energy
vortexes around gyromagnetic cylinders respectively.

energy flux vortexes finally form the unique macroscopic
transport phenomena, that is, the vast majority of energy
fluxes propagate rightwards along the main channel, whereas
the small part of the energy fluxes transport leftwards along
the secondary channel. Besides, at the first glance it seems that
the main and secondary channels are in spatial separation, but
actually, the energy fluxes of edge states are not independent
when transporting along the main and secondary channels.
They couple with each other to propagate rightwards during
the transport process. Thus, the backscattering of the antichi-
ral edge states is nearly suppressed in this honeycomb GPC
structure. Conversely, for the lower edge [see Fig. 9(b2)],
the energy fluxes are clockwise (or counterclockwise) cycling
around the odd (or even) rows of gyromagnetic cylinders (the
first row is at lower edge site), and these microscopic energy
flux vortexes finally form the energy fluxes macroscopically
propagating rightwards.

It should be noted that the directions of energy flux
vortexes around the gyromagnetic cylinders at the odd or
even rows of the upper boundary are opposite from those of
the lower boundary [see Figs. 9(bl) and 9(b2)]. These are
completely different from the cases of chiral edge states where
the energy flux vortex directions of all gyromagnetic cylinders
are counterclockwise [see Figs. 9(al) and 9(a2)]. We further
depict the physical pictures of the formation mechanism of
chiral and antichiral edge states by simplifying the distribu-
tions of energy fluxes, as shown in Fig. 10. For the chiral
edge states [see Figs. 10(a)], the overall coupling effects of
the counterclockwise energy vortexes result in the feature that
the upper or lower zigzag edges only support the energy fluxes
transporting rightwards or leftwards respectively, while for the
antichiral edge states [see Figs. 10(b)], since the energy flux
cycling around the gyromagnetic cylinders of sublattices A
and B are counterclockwise and clockwise respectively, two
one-way transport channels are created between A and B gyro-
magnetic cylinders along the boundaries. Besides, the energy
vortexes of gyromagnetic cylinders at the upper and lower
boundaries are opposite (i.e., the symmetry of sublattices are
broken), as a result, these two one-way transport channels
only support the energy fluxes propagating rightwards, result-
ing in the antichiral edge states.

FIG. 11. Distributions of energy fluxes (Poynting vector, marked
as the magenta arrows) of the edge states with metallic rectangular
obstacles at the zigzag edge: (al),(a2) chiral edge states. (b1),(b2)
antichiral edge states. (al),(b1) and (a2),(b2) are the cases of upper
and lower edges respectively. Yellow stars and rectangles indicate the
sources and obstacles respectively.
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(a)

Wy

FIG. 12. Three-channel one-way waveguide: (a) schematic illus-
tration, (b) simulated result. Three point sources (marked as white
stars) radiating at 9.050 GHz are placed on the boundaries.

We use the following physical picture to understand the ro-
bust transport feature of both chiral and antichiral edge states.
When the metallic rectangular obstacles (colored in yellow)
are inserted into the zigzag edges, as shown in Fig. 11, the
energy fluxes still only transport rightwards (or leftwards) in
the form of the microscopic energy flux vortexes as mentioned
above, and an equivalent transport channel is created between
the obstacle and GPC. The energy fluxes move rightwards
along the equivalent channel to go around the metallic obsta-
cle. Especially, for antichiral edge states, although there is still
a small amount of energy fluxes transporting leftwards in the
inner edges due to the clockwise vortexes, they are coupled
back into the main channel to transport rightwards, resulting
in the nearly perfect transport of energy fluxes even if there
exists a metallic obstacle. Besides, there are four boundary
types in honeycomb photonic crystal, i.e., zigzag, bearded
zigzag, armchair, and bearded armchair boundaries, obtained
by cutting the honeycomb lattice in different directions. How-
ever, it should be emphasized that only the zigzag boundary
has the antichiral edge state.

VII. APPLICATION AND EXPERIMENTAL DESIGN

As we know, the topological photonic chiral state may
pave the way to the integrated one-way photonic circuits,
because such a chiral state propagates unidirectionally and
its transmission is immune to large metallic scatters and
defects. In these one-way photonic circuits, EM waves travel
inside the waveguide channels and they are located at the
topological photonic crystal boundaries. For a single chiral
topological photonic crystal with two parallel boundaries,

(a) i% (b)
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only one boundary can be utilized to transport energy fluxes
from the left side to the right side, owing to their chirality.
If one hopes to design an integrated photonic circuit with
multiple one-way channels for EM waves transporting from
the left side to the right side, it is necessary to use many
chiral topological photonic crystals, which would be very
costly and bulky. However, thanks to the antichiral topological
photonic crystals, it is possible to transfer EM waves in a
multichannel one-way waveguide with a simpler and more
compact structure.

Here we exhibit the unique advantages and applications of
antichiral edge state by constructing a three-channel unidirec-
tional waveguide. Figure 12 shows that antichiral GPC can
be used to construct such a three-channel one-way waveguide
in a natural and simple way, owing to the copropagating
properties of antichiral edge states. We combine two an-
tichiral GPCs with each other head by head to construct a
three-channel waveguide with certain waveguide width (wy; =
1.5mm = 0.15a), as shown in Fig. 12(a). Figure 12(b) shows
that three independent channels indeed can simultaneously
support the EM wave transporting rightwards unidirection-
ally. However, it is impossible to construct a three-channel
one-way waveguide by combining two chiral GPCs in any
form (at least three chiral GPCs are required), owing to the
chirality of these isolated GPCs. Thus, the existence of the
antichiral edge state may provide a great potential to promote
a more compact multichannel one-way waveguide structure,
improve the utilization efficiency of the waveguide channels,
and increase the transmission amount of energy fluxes.

So far, we have theoretically analyzed the implementation
of antichiral edge states of GPCs in detail. Here we would
like to propose a realistic experimental design to observe
the aforementioned phenomena. Two metallic slabs are set in
the upper and lower parts of the GPC structure and they are
carved out as honeycomb arrays respectively, but they are not
completely hollowed out and leave a certain thickness (d) [see
Fig. 13(b)], in order to forbid the electromagnetic waves from
leaking and transporting in the z direction. A pair of honey-
comb magnet arrays are pressed into the honeycomb holes in
metallic slabs (made from nonmagnetic metals, such as alu-
minum alloy) above and below the YIG structure respectively,
to avoid the displacement of magnets owing to the attraction
and repulsion of different magnets. The positive and negative
magnetic fields are produced by the different combinations of
the magnetic pole respectively, as shown in Fig. 13(b). Similar

S N s ;
N S N L
Metallic — . : +d
slabs il ?I I i I h
\ H. 4 H. ‘Ld
N BT
N 3 N

FIG. 13. Experimental scheme design. (a) Schematic diagrams of a unit cell. (b) Side view of (a); the angle of view is the direction marked

by the blue arrow in (a).
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schemes were utilized in Refs. [51,52]. Besides, to produce as
uniform a magnetic field strength as possible along the YIG
cylinders (i.e., +z direction), the magnet should be designed
to be a cylindrical shape with its radii larger than those of YIG
cylinders (i.e., R > r). Furthermore, to reduce the attenuation
of magnetic fields along the +z direction and the influence of
the demagnetization factor, the surface magnetic field strength
of magnets in experiment should be larger than that used in
simulations.

VIII. CONCLUSIONS

In summary, we have proposed that a honeycomb GPC
composed of two interpenetrating triangular sublattices A and
B of YIG cylinders can realize antichiral edge states, i.e.,
create the copropagating edge states in a single GPC. We have
considered three different configurations of external magnetic
field distributions, which are applied to the GPC. In the first
configuration, when the GPC is not magnetized, the first
and second bands intersect each other at two Dirac points
owing to the protection of simultaneous time-reversal and
space-reversal symmetries. In the second configuration, when
the GPC is biased by an external magnetic field, the time-
reversal symmetry is broken, the degeneracy of Dirac points
are lifted up, and the chiral edge states (i.e., counterpropagat-
ing edge states) emerge in the full band gap. Remarkably in
the third configuration, we have found that when sublattices A
and B of the honeycomb GPC are applied with opposite exter-
nal magnetic fields respectively, the band structure of the GPC
tilts and leads to the emergence of antichiral edge states (i.e.,
copropagating edge states). Significantly, through observing
the energy flux distributions of the chiral and antichiral edge
states, we have found that the antichiral edge states, similar
to the chiral edge states, are also strongly robust against the
backscattering from obstacles located at the zigzag edges.

Furthermore, we have analyzed the formation mechanisms
and depicted the physical pictures for the chiral and antichiral
edge states. We show that the overall coupling effects of
the counterclockwise energy flux vortexes cycling around
each YIG cylinder will result in the formation of chiral edge
states, i.e., counterpropagating edge states, where the upper

and lower zigzag edges only support the energy fluxes trans-
porting rightwards and leftwards respectively. In contrast, the
overall coupling effects of the counterclockwise energy flux
vortexes of sublattice A and clockwise energy flux vortexes
of sublattice B will lead to the formation of antichiral edge
states, namely, two copropagating one-way transport channels
are created on the opposite boundaries of the GPC. Finally,
we have created the three-channel one-way waveguide with a
simpler and more compact structure by two antichiral GPCs,
and designed the experiment scheme to construct the antichi-
ral GPC.

Our findings indicate that the GPC system as one of the
most promising ways to create topological chiral edge states
also can be used to achieve the antichiral edge states in a
relatively simple structure and without harsh conditions. Most
importantly, our implementation of antichiral edge states
(i.e., copropagating edge states) may offer useful hints to
explore deeply fruitful electromagnetic and optical states,
properties, and phenomena of nontrivial physical significance
in topological photonic structures and systems. The antichiral
edge state on which we focus to investigate as a special
type of one-way edge state, besides its significance in basic
physics, is also promising for practical applications requiring
deliberate manipulation of the propagation of EM waves.
It can also offer useful insights and routines for designing
photonic devices from microwave to optical waves, such
as multichannel tunable optical switches and dynamically
reconfigurable logic devices.
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