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In this paper, we perform a systematic study on the electronic, magnetic, and transport properties of the
hexagonal graphene quantum dots (GQDs) with armchair edges in the presence of a charged impurity using
two different configurations: (1) a central Coulomb potential and (2) a positively charged carbon vacancy. The
tight-binding and the half-filled extended Hubbard models are numerically solved and compared with each other
in order to reveal the effect of electron interactions and system sizes. Numerical results point out that off-site
Coulomb repulsion leads to an increase in the critical coupling constant to βc = 0.6 for a central Coulomb
potential. This critical value of β is found to be independent of the GQD size, reflecting its universality even
in the presence of electron-electron interactions. In addition, a sudden downshift in the transmission peaks
shows a clear signature of the transition from subcritical β < βc to the supercritical β > βc regime. On the other
hand, for a positively charged vacancy, collapse of the lowest bound state occurs at βc = 0.7 for the interacting
case. Interestingly, the local magnetic moment, induced by a bare carbon vacancy, is totally quenched when the
vacancy is subcritically charged, whereas the valley splittings in electron and hole channels continue to exist in
both regimes.
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I. INTRODUCTION

The exact solution of a three-dimensional Dirac equation
in an external Coulomb field, produced by a point nucleus,
is only consistent up to a critical threshold Zc = α−1 ∼ 137,
where α = e2/h̄c is the Sommerfeld fine-structure constant
[1]. For larger values of the nuclear charge Z , the energy
eigenvalues become purely imaginary, the wave function is
non-normalizable, and its real part exhibits oscillatory be-
havior [2]. Actually, the singularity of the point nucleus at
the center leads to a non-self-adjoint Hamiltonian that could
not be properly solved unless a finite size for the nucleus is
introduced [3]. This regularization results in a larger critical
threshold of Zc ∼ 172 above which the wave function be-
comes a narrow resonance with a finite lifetime in compliance
with Fano’s formalism [4]. In particular, the lowest bound-
state 1S1/2 with the total angular momentum quantum number
j = 1/2 dives into the negative continuum for a coupling
constant β = Zα if it exceeds 1, but the direct evidence of
such a particular behavior has so far remained elusive in
high-energy heavy-ion collision experiments [5,6]. However,
the situation is slightly different in 2 + 1 dimensions for which
the critical coupling constant βc becomes 1/2 [7]. In this
sense, bulk graphene with a larger fine-structure constant αg =
2.2/κ , where κ is the dielectric constant, could provide an
ideal platform in theory [8]. Unlike quantum electrodynamics,
Zc is expected to be on the order of the unity [9,10], which
carries the signs of experimental transition to the supercritical
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regime in a table-top experiment. Indeed, the formation of an
infinite family of quasibound states in the presence of the
clusters of charged calcium (Ca) dimers on graphene have
been successfully monitored via the local density of states
(LDOS) in an experimental study [11].

Later, Mao et al. [12] demonstrated that a positive charge
can be deposited into a single carbon vacancy by applying
voltage pulses of 2 to 3 V for >10 s with the help of a scan-
ning tunneling microscope tip. A charged vacancy in graphene
is in analogy with the piling up positively charged ions and
similarly leads to the sudden appearance of a sequence of
quasibound states [12]. Besides, it is well known that the re-
moval of a single carbon atom lifts the spin and valley degrees
of freedom [8], hence, the local magnetic moment is induced
[13]. Since only a prominent resonant peak is observed in pre-
vious studies [14,15], the spin splitting has recently attracted
attention in experiments [16,17]. In addition, for a while there
has been significant progress in the measurement of the valley
splittings around a carbon vacancy [18] thanks to discrete
energy levels and an unconventional method of preparation of
graphene quantum dots (GQDs) [19,20]. The question arises
as to what sort of changes in physical properties happen after
a bare vacancy is positively charged with the subcritical and
supercritical Coulomb potentials.

Of all the GQDs that have been reported so far [21–34],
the hexagonal GQDs with armchair edges deserve attention
due to the specific band-gap feature. Free of localized edge
states, the band gap is proportional to the inverse square
root of a number of atoms (Egap ∝ kmin ≈ 2π/�x ∝ 1/

√
N)

[31]. It corresponds to the linear photon dispersion relation
for confined Dirac fermions [35]. In addition, the hexagonal
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shaped GQDs have well-known properties, among which,
(1) sublattice symmetry results in spin symmetry; (2) two
doubly degenerate levels in the vicinity of the Fermi level
account for the valley symmetry [34]. These internal proper-
ties indicate that the pristine hexagonal GQDs with armchair
edges carry all the symmetries of graphene. Therefore, it
becomes possible to follow the evolution of the spin and
valley splittings as a function of the coupling constant β

when a point vacancy is deliberately created and gradually
charged. In this paper, we construct a set of Dirac vacuums
with the help of the hexagonal GQDs that differ in size.
The tight-binding (TB) and the extended mean-field Hubbard
(MFH) models are separately solved for the central Coulomb
potential and a charged vacancy. The central impurity in a
GQD was previously investigated using the effective-mass
approach with appropriate boundary conditions [36], but Hub-
bard descriptions including electron-electron interactions and
spin effects are still missing.

The rest of this paper is organized as follows. In Sec. II,
the Hamiltonian of the extended MFH model, the Coulomb
potential, and the nonequilibrium Green’s function formalism
are introduced. The finite-size effect, the effect of electron-
electron interactions, and the transmission coefficient of the
lowest bound states for the central potential are discussed
in greater detail in Sec. III. Both electronic and magnetic
properties as well as the transmission coefficients are studied
in the presence of a charged vacancy in Sec. IV. Finally,
Sec. V consists of our conclusions.

II. COMPUTATIONAL METHODS

We solve the extended mean-field theory of the Hubbard
model starting from a single-band TB approximation for the
πz orbitals. The single-valley Dirac description of the πz

electron dynamics are described by the following effective
Hamiltonian:

HMFH = t
∑
〈i j〉σ

(c†
iσ c jσ + H.c.) + U

∑
iσ

(
〈niσ 〉 − 1

2

)
niσ

+
∑

i j

Vi j (〈n j〉 − 1)ni − h̄vFβ
∑

iσ

c†
iσ ciσ

ri
. (1)

The operator c†
iσ (c jσ ) given in the first term describes the

creation (annihilation) of an electron with spin σ at the
lattice sites. The nearest-neighbor hopping term t = −2.8 eV
is used and which preserves the electron-hole symmetry in the
absence of the Coulomb potential [37]. The second term is
the on-site interaction term in which only two electrons with
opposite spin can occupy the same lattice site by paying an
extra correlation energy of U . It is taken to be 16.52/κ eV
where the dielectric constant κ equals 6 corresponding to the
interband polarization [34,38]. In Eq. (1), the terms 〈niσ 〉 and
niσ are associated with the spin-dependent expectation value
of electron densities and the number operator for an electron
with spin σ at site i, respectively. The off-site Coulomb
repulsion on top of the on-site repulsion is added to the
Hamiltonian by means of the Vi j term which is set to be
8.64/κ, 5.33/κ , and 1/κdi j eV for the first neighbors, second
neighbors, and the atomic sites at relatively long distances,

respectively [34,39]. The last term stands for the Coulomb
potential in which ri is the distance between the lattice site
i and the center of the Coulomb potential [40], and vF is the
Fermi velocity. The coupling constant β is assumed to be
attractive (>0) without loss of generality in this paper.

As a measurable feature of the critical states, LDOS is
obtained by the formula,

N (E , r) =
∑

n

|�n(r)|2δ(E − En). (2)

LDOS is projected onto the lattice sites to demonstrate spatial
distribution of the collapse states at different coupling con-
stants. In the presence of a single charged vacancy, starting
from the self-consistent expectation values of electron densi-
ties, we compute the spin density per lattice site as follows:〈

sz
i

〉 = mi = (〈ni↑〉 − 〈ni↓〉)/2, (3)

where 〈niσ 〉’s are calculated by summing up all states lying
below the Fermi level. Starting from Eq. (3), the staggered
magnetization as an order parameter of the antiferromag-
netism is numerically calculated from

μz
s =

∑
i

(−1)i
〈
sz

i

〉
, (4)

where (−1)i indicates that the contributions are summed
up from the opposite sublattices with opposite signs. μz

s is
proportional to the antiferromagnetic phase [41].

To calculate the transmission coefficients, we utilize the
nonequilibrium Green’s function formalism. The transmission
coefficients are obtained from

T (E ) = Tr[
L(E )G(E )
R(E )GT (E )], (5)

where

G(E ) = [(E + i0+)IN×N − Hc − �L − �R]−1 (6)

is the Green’s function in which 0+ is 10−6 × t, Hc repre-
sents the central Hamiltonian of the analyzed structures, and
�L (�R) is the self-energy matrix of the left (right) probe
where generic electrodes are used in order to avoid structural
features arising from the electrodes in the resulting transmis-
sion spectra. For that purpose, a one-dimensional wide band-
width TB chain is assumed. Self-energies matrices (�N×N )
for the right and left leads are obtained from the analytical
solution of the surface Green’s function [42]. The probes are
placed at the ends of the GQDs, and the hopping term is taken
as t/4. In Eq. (5), 
L,R’s are the corresponding broadening
matrices, and the hopping parameter of t in the reservoirs is
used [42]. The transmission coefficients around the resonance
energies of the defect-induced and atomic collapse states are
numerically calculated for different values of β.

III. CENTRAL COULOMB POTENTIAL

A. Size quantization and electron-electron interactions

To reveal the effect of the size quantization, we systemat-
ically study a series of the pristine hexagonal GQDs consist-
ing of up to 10 806 atoms (R = 10.4 nm). After this limit,
physical properties approach those of the corresponding bulk
material [43]. A Coulomb potential is placed at the center of
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FIG. 1. Energy values of the lowest bound states as a function of
the coupling constant β. (a) The critical coupling constant βc is 0.6
within the MFH model for all samples that differ in size. The inset
contains a sketch of the problem for the hexagonal GQD that consists
of 114 atoms. Here, sublattices A and B are red and blue filled circles,
and a positively charged impurity is at the center. Green triangles
show how the leads are connected to samples throughout our paper
to determine the transmission coefficients. (b) shows a zoomed view
of the energy eigenvalues. (c) contains a comparison between the TB
and the MFH models for a GQD consisting of 5514 carbon atoms.

each hexagonal GQD; see the inset of Fig. 1(a). To discuss
the size effect within the MFH model, energy eigenvalues of
the lowest bound states of all samples as a function of the
coupling strength β and zoomed portion around the critical
coupling constant βc are shown in Figs. 1(a) and 1(b), re-
spectively. In Figs. 1(a) and 1(b), each of the lowest angular
momentum channels is doubly degenerate due to the valley
symmetry [28,31]. In short, the spin and valley degeneracies
are preserved as a function of β. As a result, the MFH results
do not make any discrimination between the spin components
due to the spin symmetry. From now on, TB results are given
by the black lines, whereas results of the spin up and the spin
down can be followed by the red and blue lines in each of the
remaining graphs, respectively. Different kinds of symbols in
Fig. 1(a) show the size of the hexagonal GQDs, and we use
these symbols in the remaining part of the paper.

Each of the lowest bound states dives into the negative
energies at the same value of the coupling strength that is
0.6. It can be accepted as a critical point at this stage, and we
will discuss this point in more detail below. It is clear that the
effect of the size is negligible due to the special characteristic
of their band gaps. The collapse states are pinned at the Dirac
point (DP) as clearly shown in the experiments [11,12]. In this
sense, our results indicate that the zero energy plays the same
role with the DP in bulk graphene. In contrast, the Fermi level
follows the highest filled level due to a constant number of
electronlike Dirac fermions. Our results pave the way for the
examination of the reconstruction of the Dirac vacuum within
quite small sample sizes by a low computational cost.

On the other hand, the electron-electron interactions in the
half-filled MFH model are set by the on-site U and off-site V
terms as given in Eq. (1). Energy eigenvalues of the TB model
are compared with those of the MFH model by setting the
off-site term V to zero. As is clear from Fig. 1(c), the on-site
term U gives no contribution to the renormalization of βc.
In contrast, the off-site term V decreases the overscreening
tendency [44,45] of the TB approximation by smearing out
the induced charge density [46], and which turns out to be a
20% increase in βc. It would be interesting to study screening
properties in the GQDs as extensively examined in bulk
graphene [46–52], but we directly give a critical bare valance
charge Zc,

Zc

(
2.2

κ

)
= βc → Zc ≈ 1.64, (7)

where the dielectric constant κ = 6 and the critical coupling
constant βc equals 0.6. It indicates that impurities with the
critical valence charge Zc ≈ 1.64 can be used to create artifi-
cial supercritical nuclei for all GQD sizes. Our result is also
consistent with the previous one in which Zc is calculated to
be larger than the unit charge [10]. The TB result for one
particular hexagonal GQD consisting of 5514 atoms shows
[Fig. 1(c)] that the lowest bound state enters the supercritical
regime at βc = 0.5, the same as what is expected for bulk
graphene. In compliance with our results, the critical wave
functions of the circular GQDs merge into negative energies at
the value of βc = 0.5 within the effective-mass approximation
with an infinite mass boundary condition [36].

The band gap in the GQDs is only due to size restriction of
massless Dirac fermions, and we give an interaction-induced
renormalization of βc. This gap should not be confused with
that of a gapped graphene monolayer [53], modeled by adding
a mass term in bulk graphene [54–56]. Reported values of
βc up to �0.9 [57,58] are calculated for the noninteracting
massive Dirac fermions where the critical point is defined as
the crossing of the collapse state with the lower continuum
[57], instead, of the DP in our calculations. In addition, the
Fermi level moves automatically down due to the absence of
charge compensation, similar to our case.

B. Transmission coefficients

The transmission coefficients T of the lowest bound states
as a function of energy E are shown in Figs. 2(a)–2(c) for the
hexagonal GQDs consisting of 546, 1626, and 10 806 atoms,
respectively.

In all figures, from left to right, each of the transmission
peaks is calculated for the consecutive values of β with a step
size of 0.1, starting from β = 0 . When the subfigures are
compared with each other in the absence of the Coulomb po-
tential, i.e., β = 0, it is clear that the transmission coefficients
of the lowest bound spin-down states decrease inversely with
the size of the GQDs and reach their minimum for the GQD
that contains 10 806 atoms. It can be noted that the maximum
transmission is observed for all the GQDs consisting of up
to 222 atoms. For the subcritical range of 0 < β < βc, the
transmission coefficients do not make significant changes. In
other words, the transmission coefficients of the lowest bound
states remain almost the same in the subcritical regime due to
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FIG. 2. The transmission coefficients in (a)–(c) for the number
of 546, 1626, and 10 806 atoms, respectively. The behavior of trans-
mission coefficients obviously corresponds to two different regimes.
The inset in (c): The critical coupling constant βc is at the point of
intersection of two lines on a linear scale.

the absence of the backscattering in the presence of the central
Coulomb impurity [59].

When the coupling constant exceeds the critical value of
βc = 0.6, those coefficients drop immediately because of the
collapse of the wave functions. The peak values of the trans-
mission coefficients are plotted as a function of the coupling
strength β in the inset of Fig. 2(c) for the GQD consisting of
10 806 atoms. Two different regimes are represented with the
lines, and the point of intersection clearly exhibits βc.

IV. CHARGED VACANCY

A. Spin and valley splittings

The breaking of the fourfold symmetry in nanographene
and related structures is a vital importance in understanding
the electronic as well as magnetic properties [60]. In this
sense, we analyze the sublattice-induced symmetry breaking
starting from the pristine hexagonal GQDs. DOS obtained
for the clean hexagonal GQD consisting of 5514 atoms us-
ing the TB model shows that the highest (lowest) occupied
(unoccupied) state in the valence (conduction) band is doubly
degenerate [Fig. 3(a)]. It can be noted that all sizes have
the same valley symmetry [34], and the valley degeneracy is
observed in both the TB and the MFH models in the same
way.

FIG. 3. (a) Total densities of states are shown for a pristine
hexagonal GQD consisting of 5514 atoms, (b) total TB DOS belongs
to the same GQD that contains a bare vacancy placed near the
center, and (c) contains the spin and valley splittings for both spin
components.

When a single carbon defect is intentionally created by
removing the πz orbital of sublattice A from the central
benzene, the broken symmetry of the valley states shows itself
as the valley splittings with equal magnitude in electron and
hole channels within the TB method, see the vertical arrows in
Fig. 3(b). At the Fermi level, we have a pronounced vacancy
peak due to intervalley scattering caused by a bare carbon
vacancy.

This vacancy state splits into up and down vacancy states
with equal spin probability and the occupation of 〈n↓〉 = 1
and 〈n↑〉 = 0 as shown in Fig. 3(c) when the interactions
are turned on. These vacancy peaks are located symmetri-
cally with respect to Fermi level, and the spin splitting �spin

between them is found to be 78 meV for this particular
GQD. This splitting, also known as the spin polarization, is
proportional to the on-site Coulomb repulsion U [17]. When it
comes to the valley splittings, the picture becomes much more
complicated. Note that the total DOS distribution of the spin
up contains two unequivalent valley splittings. In the electron
channel, we have the valley splitting �e,↑ of 26 meV. In the
hole channel, the valley splitting �h,↑ is found to be 13 meV.
Similarly, the total DOS distribution of the spin down has two
unequivalent valley splittings in both channels. Interestingly,
there is an additional symmetry related to the valley splittings
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FIG. 4. (a) clearly shows the spin and valley splittings as a
function the size of the hexagonal GQDs. Additional symmetry in
Eq. (8) can be followed by the overlapped lines. (b) The spin splitting
disappears as a function of β, whereas the valley splittings do not
completely vanish.

dictated by the electron-hole symmetry. In the presence of a
bare vacancy on the A sublattice, that is given by

�e,↓ = �h,↑, �h,↓ = �e,↑. (8)

As yet, there is no discussion on the effect of the size
on the splittings. To analyze the size dependence, the spin
and valley splittings are plotted as a function of the size of
the hexagonal GQDs in Fig. 4(a). It is clear that the valley
splittings dominate the spin splitting at small sizes. On the
contrary, for larger sizes, the valley splittings are quite small
as compared to the spin splitting in the presence of a single
bare vacancy. Moreover, the additional symmetry between the
valley splittings, given in Eq. (8), is conserved as a function
of the size.

When the vacancy is positively charged with the Coulomb
potential, the spin splitting decreases as a function the cou-
pling strength β as shown in Fig. 4(b). The quenching of
the spin splitting occurs at the coupling constant of β = 0.4
that lies in the subcritical regime. It mimics that the local
magnetic moment can be tuned with the help of a charged
vacancy.

The situation is totally different in the valley splittings
depending on the occupation of the states. Whereas the
valley splittings of �h,↑ and �h,↓ increase as a function of
the coupling strength, both �e,↑ and �e,↓ show a decre-

FIG. 5. The energy spectrum of the TB model as a function of
β is shown in (a). The positions of the leads and the bare carbon
vacancy are sketched in (b). Scaled electronic densities per lattice of
the vacancy state, i.e., LDOS, for β = 0, 0.1, 0.2, and 0.3 can be seen
in (c), from top to bottom. The quasilocalization of the lowest bound
state is demonstrated in (d) for β = 0, 0.3, 0.6, 0.8, and 1.0 from top
to bottom.

ment. However, all valley splittings continue to exist. As
is clear, the spin splitting has a different behavior from
that of the valley splittings for a charged vacancy and
which could prevent the valley states mixing with the spin
states.

B. State characteristics

The TB energy spectrum of a GQD consisting of 5513
atoms is plotted in Fig. 5(a) as a function of β. The vacancy
state, labeled as (c) in Fig. 5(a), is pinned at the energy
origin and dives immediately into negative energies when the
carbon vacancy is charged. From top to bottom, the spatial
distributions of the πz-derived state are shown in Fig. 5(c) for
the following values of β = 0, 0.1, 0.2, and 0.3, respectively.
When we zoomed into the bare defect [at the top of Fig. 5(c)],
the triangular interference pattern due to intervalley scattering
can be seen as a characteristic spatial shape [14]. As β is
increased, the intervalley scattering is gradually surpassed
by the intravalley scattering, and finally, the uniform dis-
tribution of the vacancy state takes place at β = 0.2 and
0.3. It means that the highly localized defect state returns to
its original bound-state characteristic; however, these scaled
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FIG. 6. The energy spectra of the spin up and spin down are
shown in (a). βc equals 0.7 for a Coulomb charged vacancy. Scaled
electronic densities for the vacancy states can be seen in (b) and
(c) for β = 0, 0.2, and 0.4 from top to bottom. In (d) and (e), the
behavior of the critical states for the β values of 0, 0.7, and 1.2 can
be seen starting from the top.

figures render the uniform spatial distribution invisible. This
particular behavior will be strengthened below by means of
the transmission coefficients.

It is also shown the spatial extension of the state labeled
as (d) in Fig. 5(a). From top to bottom, Fig. 5(d) exhibits
the spatial extension of the critical state around the vacancy
for β = 0, 0.3, 0.6, 0.8, and 1.0, respectively. Uniform spatial
extension of the critical state exists for the β = 0 as shown at
the top of Fig. 5(d). On exceeding the critical value β � 0.5,
the critical state dives into the negative energy spectrum so
that the appearance of the quasilocalized state occurs around
the charged vacancy. It is actually defined as the counterpart
of the 1S atomic collapse state in Ref. [12].

When the electron interactions are turned on, we have
a different picture. The energy spectrum of the spin up is
superimposed to that of the spin down in Fig. 6(a) as a
function of β. If Fig. 6(a) is analyzed, the spin symmetry does
not exist up to β = 0.4. In other words, an exact overlap of
the energy spectra occurs at β = 0.4 meaning that the spin
symmetry is regained for the larger coupling strength values
as previously discussed.

There is a defect state in the spin-up spectrum that is
labeled as (b) in Fig. 6(a). Its spatial distribution is displayed
in Fig. 6(b) for β = 0, 0.2, and 0.4 starting from the top.
The defect state in the spin-up spectrum merges into negative
energies when β exceeds 0.1. The ideal triangular interference
pattern characteristic starts to decay, indicating a uniform
distribution on the lattice sites. On the other hand, the defect
state in the spin-down spectrum loses its triangular shape from
the moment the vacancy begins to charge, and, similarly, it
has a uniform distribution at β = 0.4 as shown at the bottom
of Fig. 6(c). At a value of β = 0.7, both spectra have new
diving levels; see Fig. 6(a). Both of the critical states become
quasilocalized in the supercritical regime as displayed in the
right columns for spin-up (d) and spin-down (e) states for β =
0, 0.7, and 1.2 from top to bottom, respectively. As compared
to the noninteracting case, the critical coupling constant is
renormalized to β = 0.7 in the presence of electron-electron
interactions. The critical states in both energy spectra collapse
at the same βc. The values of βc are valid for all sizes of
the hexagonal GQDs when a vacancy is charged with the
Coulomb potential.

C. Transmission coefficients and staggered magnetization

Transmission coefficients of the critical states of TB, spin-
up, and spin-down spectra are calculated. First of all, in
Figs. 7(a), 7(c), and 7(e), the transmission coefficients are
approximately 2 × 10−4 in the subcritical regime β < βc. It
can be inferred that there is not a direct effect of including
electron-electron interactions on the transmission coefficients.
Whenever a critical state dives into the negative energies,
which happens at βc ≈ 0.5 for the TB and β = 0.7 for the
MFH spectra, the transmission coefficients immediately drop.
Basically, the quasilocalized character of these states is re-
sponsible for a decrement observed in transmission coeffi-
cients.

The transmission coefficient of the vacancy state in the TB
spectrum is plotted in Fig. 7(b). It has a too small transmission
value at β = 0, whereas the transmission coefficient increases
and stays nearly the same for β > 0.1.

This result actually points out that returning to the bound-
state characteristic leads to an increase in the transmission
coefficient [see again Fig. 5(c)]. The same physics is valid
for all the vacancy states observed within the MFH models.
As shown in Fig. 7(d), the transmission coefficient for the
vacancy state in the spin-up spectrum reaches its maximum
at β = 0.4, although there is a small deviation at β = 0.1.
When it comes to the vacancy state in the spin-down spectrum,
the transmission coefficient [Fig. 7(f)] gradually increases
up to β = 0.4 when we charge the defect. The reason for
this is the recovering of the initial bound-state characteris-
tic.

As plotted in Fig. 8, a large amount of the staggered
magnetization μz

s vanishes when the coupling constant β

equals 0.4. This behavior guarantees that the spin symmetry
is regained for a Coulomb charged vacancy. In this manner,
the mechanisms of evolution, observed for the vacancy states
in Figs. 6(b) and 6(c), seem to be the underlying reason.
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FIG. 7. Transmission coefficients of the critical states of the TB in (a), spin-up in (c), and spin-down in (e) spectra, whereas the vacancy
states are given in (b), (d), and (f).

V. CONCLUSIONS

To summarize, the hexagonal GQDs with the special char-
acteristic band-gap feature are studied by means of the TB
and MFH models. The critical coupling constant is found to
be β = 0.5 for the noninteracting cases when the Coulomb
potential is placed at the center. However, βc is renormalized
to 0.6 for all sizes in the presence of off-site electron-electron
interactions. It can be noted that the off-site repulsion term is
responsible for this incasement due to the long-range repulsive
tail. It is calculated that the central impurities with bare
nuclear charge Zc ≈ 1.64 are at the edge of the supercritical
threshold. Additionally, it is revealed that the transmission
coefficients remain the same in the subcritical regime β < βc

due to the absence of the backscattering. However, those

FIG. 8. The quenching of staggered magnetization μz
s is given as

a function of β. Up to β = 0.4, a large portion of μz
s disappears.

values in the supercritical regime β > βc show a strong de-
pendence on the coupling strength.

It is revealed with the help of the DOS that a bare vacancy
gives rise to the simultaneous formation of the valley and
spin splittings. The spin splitting is larger than the valley
splittings for the larger sizes, whereas the valley splittings
become dominant for the small sizes. As the coupling strength
β is increased, the spin splitting vanishes at β = 0.4. The
behavior of valley splittings completely depends on the oc-
cupation of the valley states. In the hole (electron) channel,
the valley splittings show an increment (decrement) for the
larger coupling strength. However, the valley splittings never
vanish. It signals that the mixing of the valley states with the
spin states is not possible in the presence of a charged vacancy.

The formation of the quasilocalization around a charged
vacancy is monitored with the help of the LDOS. The critical
state collapses when the coupling constant exceeds βc ≈ 0.5
for the TB and βc = 0.7 for the MFH models for a charged
vacancy. Furthermore, the transmission coefficient of the
critical states decreases in the supercritical regime. On the
contrary, those coefficients of the vacancy states increase in
the subcritical regime as the coupling strength is increased.
The quenching of the spin splitting is also discussed with
the help of the staggered magnetization which reinforces the
findings related to the regaining of the spin symmetry.
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