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The time evolution of the lattice structure in graphene after ultrashort laser excitation results in a complex
dynamics of electrons and ions. In particular, a femtosecond laser pulse heats up the electrons, which then
couple strongly to particular optical phonon modes, called SCOPs (strongly coupled optical phonons), located
around the � and K (K’) points of the Brillouin zone. In this paper, a fully ab initio description of the ultrafast
structural response of graphene to femtosecond laser excitation is presented. Our atomistic simulations show that
upon intense ultrafast laser excitation, a biexponential decay of the Bragg peaks takes place, in agreement with
experiments. The calculated time-dependent phonon energies show that SCOPs equilibrate considerably faster
with phonons having frequencies above 10 THz than with lower frequency phonon modes.
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I. INTRODUCTION

Graphene and its allotropes are intensively studied due
to their unique properties, like high heat conductivity [1],
extraordinary electrical conductivity [2–4], and extreme struc-
tural strength [5,6]. Based on the above characteristics,
numerous applications in electronics [7–9], heat manage-
ment [10], photonics[11,12], and as a composite mate-
rial [6,12] are possible. Especially for electronics, it is cru-
cial to understand the electron-electron, electron-phonon, and
phonon-phonon scattering processes after the excitation of
the system by time-dependent electric fields. In particular,
it is widely accepted that the strong coupling between the
electronic system and specific optical phonon modes at the
� and K (K’) points, called strongly coupled optical phonons
(SCOPs), are of major importance for the high-field electronic
transport [13]. All three types of scattering processes are
relevant for the equilibration of graphitic materials after ul-
trafast laser excitation because the equilibration of the system
proceeds in three stages [14–21]. First, the electronic system
acquires a defined temperature, then SCOPs are generated
and, finally, the SCOPs equilibrate with the other phonons,
leading to the thermalization of the complete system. The
relevant timescales and interactions, which are believed to
take place in graphene upon laser excitation, are shown
schematically in Fig 1. Pump-probe optical experiments,
commonly used in the analysis of the ultrafast dynamical
response, yield indirect information about the contribution of
the scattering processes [14,15,19,22,23]. Direct information
can rather be obtained by ultrafast electron diffuse scattering
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measurements [24] and interpreted using density-functional
theory calculations [25,26].

Here, we report on the first ab initio molecular dynamics
(MD) simulations of the ultrafast lattice motions in graphene
after excitation with an intense ultrafast laser pulse. Beginning
from a thermalized electronic system, we model the coupling
of the electrons to the lattice using a modified two-temperature
model molecular dynamics (TTM-MD) approach, which is
based on ab initio determination of the laser-excited potential
energy surface and of the electron-phonon coupling. With this
approach, we obtain results for the time evolution of the (100)
and (110) families of Bragg peaks that are consistent with
time-resolved diffraction experiments. Furthermore, we ana-
lyze ultrafast relaxation processes in deeper detail by calculat-
ing the time evolution of the energies and occupations of the
different phonon modes allowed in our simulation supercell.
Our approach yields the presence of SCOPs, which are rapidly
excited by the hot electrons. The SCOPs themselves decay
by exciting phonon modes with frequencies above 10 THz,
whereas equilibration with lower frequency modes happens
on a considerably larger timescale.

II. METHODS

A. Modeling of the electron-phonon coupling

Electron-hole pairs are created in solids after excitation
with a femtosecond laser pulse. The electron-hole pairs ther-
malize on a very short timescale, during which the ions remain
cold. The resulting hot electrons transfer energy to the lattice
through electron-phonon interactions. This exchange results
in a decrease of the electronic temperature, and ultimately
leads to the equilibration of the electrons and the phonons.
In our paper, we use and adapt the TTM-MD developed in
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FIG. 1. Schematic time evolution of the current view on the relaxation of graphene after laser excitation, including the relevant timescales.
After the laser excitation (left), the electronic system equilibrates first due to Auger processes (green arrows) and impact scattering (red
arrows) within about 30–50 fs. Shortly afterwards, the recombination of electrons and holes generates SCOPs (middle) with frequencies ωop

on a timescale of 100–500 fs. Then, the SCOPs decay within 3.5–18 ps into other phonon modes via third- and fourth-order interactions,
yielding a heated lattice in nonequilibrium (right).

Ref. [27], which describes the energy exchange between hot
electrons, characterized by a temperature Te(t ), and the ions,
described through Newton’s equation of motion. The model
is based on the assumption that a laser pulse mainly interacts
with the electrons and thus creates a nonequilibrium between
electrons and ions. We consider a supercell containing N
atoms. The energy changes inside the electronic system are
described in terms of a differential equation for the electronic
temperature, which reads

NCV,at (Te)
dTe

dt
= dUlaser(t )

dt
(1)

− Gep(Te, TI )×(Te − TI ),

where CV,at (Te) is the electronic heat capacity at constant
volume per atom, Te(t ) the electronic temperature, and t the
time. The first term on the right-hand side corresponds to the
laser source term, where Ulaser(t ) is the absorbed laser energy
integrated up to time t . The second term describes the cou-
pling between electrons and phonons by the electron-phonon
coupling constant Gep, which depends on the temperature of
the electrons Te and ions TI .

The general TTM-MD method [27] couples the rate Eq. (1)
for the electronic temperature to Newton‘s equations of mo-
tion of the ions via a friction/antifriction term which accounts
for the electron-phonon interactions. The motion of the ions
can thus be written in compact form as

d p
dt

− f − ξ p = 0, (2)

where p = (p1x, p1y, p1z . . . , pNx, pNy pNz ) is a 3N-
dimensional vector containing the momenta of all atoms
and f = ( �∇1�, . . . , �∇N�) contains the forces acting on all
atoms calculated as gradients of the interatomic potential
�. The term proportional to p reflects the electron-phonon
interactions and represents a damping (ξ < 0) when energy
of the ions is transferred to electrons, and an antidamping
(ξ > 0) when the ions absorb energy from the electrons.
The damping/antidamping factor ξ is proportional to the

temperature difference (Te − TI ) and to the electron-phonon
coupling constant Gep [27].

In this paper, we use a generalized version of the TTM-MD
and introduce a series of improvements. First, we use an
extended version of Eq. (1) and allow a distinction between
groups of phonons coupling differently to electrons. This
idea was previously used for other materials [28,29], and
yields a more general differential equation for the electronic
temperature, which can be written as

NCV,at (Te)
dTe

dt
= dUlaser

dt
(3)

−
∑

ν

nν G(ν)
ep

(
Te, T (ν)

I

) · (
Te − T (ν)

I

)
.

Here, each group ν contains nν phonons, has a particular
electron-phonon coupling constant Gν

ep, and a temperature

T (ν)
I . Note that Gν

ep is the electron-phonon coupling constant
per phonon group. The classification in phonon groups makes
sense for graphene because it is known from experiments that
the SCOPs couple more strongly to electrons than to other
types of phonons.

To have a consistent picture, we now project the equations
of motion for the ions [Eq. (2)] into the phonon degrees of
freedom. For this, we write the momenta and forces in terms
of their projections onto the phonon eigenvectors ei, which
yields

p =
∑

i

(ei p)√
m

√
mei =

∑
i

Pi
√

mei (4)

and

f =
∑

i

(ei f )√
m

√
mei =

∑
i

Fi
√

mei. (5)

Here, m is the mass of a carbon atom, Pi the projection of the
momentum, and Fi the projection of the force onto the phonon
mode i = 1, . . . , 3N . The phonon eigenvectors are calculated
by diagonalizing the dynamical matrix. Throughout this pa-
per, we assume that the phonon eigenvectors do not change in
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time. From Eqs. (4) and (5), the equation of motion Eq. (2)
becomes

∑
i

[
dPi

dt
− Fi − ξ (ν)Pi

]√
mei = 0 (6)

or, equivalently,

dPi

dt
− Fi − ξ (ν)Pi = 0, i = 1, . . . , 3N, (7)

since the eigenvectors ei are linearly independent. The super-
script ν denotes the group of phonons which have a similar
coupling to the electrons and to which mode i belongs to. ξ (ν)

is given by [27]

ξ (ν) = nνG(ν)
ep

(
Te − T (ν)

I

)
2E (ν)

kin

. (8)

Equation (7) couples the electronic subsystem to phonon
i, which is in the νth group of phonon modes. Notice
that the damping/antidamping force term ξ (ν)Pi deceler-
ates/accelerates the phonon i in its current direction of move-
ment depending on whether the electronic temperature Te is
smaller/larger than the temperature T (ν)

I of the phonons in
group ν. The kinetic energy of each phonon group E (ν)

kin reads

E (ν)
kin =

∑
j∈{ν} (P∗

j Pj )

2
. (9)

For the calculation of the lattice temperature T (ν)
I in Eqs. (3)

and (7), we use the equipartition theorem, which states that

E (ν)
kin = n(ν)kbT (ν)

I

2
, (10)

where kB is the Boltzmann constant.
The main improvements of the present paper are (i) the

MD simulations are ab initio; this means that the forces on the
ions are obtained as the gradients of the laser-excited potential
energy surface calculated via density-functional theory using
a generalized Born-Oppenheimer approximation (see below)
instead of using an analytical interatomic potential, and (ii) the
electron-phonon coupling constants G(ν)

ep are also calculated
from first principles. In this way, we provide a full ab initio
description of the ultrafast nonequilibrium lattice dynamics of
graphene after femtosecond laser excitation.

B. Electron-phonon coupling calculation details

To evaluate the electron-phonon coupling constants
G(ν)

ep (Te, T (ν)
I ) for Eqs. (3) and (8), we treat graphene as a

metal and use the formalism developed in Refs. [30,31], which
are based on the Allen formalism and the Eliashberg func-
tion [32]. In this framework, the electron-phonon coupling
Gep can be written as

Gep = − 2π

g(εF )(Te − TI )

×
∫ ∞

0

[
dω(h̄ω)2α2F (ω)(n(ω, Te) − n(ω, TI )) (11)

×
∫ ∞

−∞
dε g2(ε)

∂ f (ε, Te)

∂ε

]
.

Here, f (ε, T ) and n(ω, T ) are the Fermi-Dirac and Bose-
Einstein occupation factors at the electron energy ε and
phonon frequency ω. The parameter g(ε) is the electronic den-
sity of states, ε f the Fermi energy, and α2F (ω) the Eliashberg
spectral function, given by

α2F (ω) = 1

2πg(ε f )

∑
qν

γqν

ωqν

δ(ω − ωqν ), (12)

where

γqν = 2πωqν

∑
kmn

∣∣Mqν

{k+q,n},{k,m}
∣∣2

(13)
× δ(εk+q,m − ε f )δ(εk,n − ε f ).

The quantities |Mqν

{k+q,n},{k,m}| correspond to the electron-
phonon coupling matrix elements and ωqν the frequency of
phonon ν at q in reciprocal space. The evaluation of the
summations over delta functions in Eqs. (12) and (13) requires
the use of a Gaussian smearing function with a broadening
parameter σd .

For the calculations of the electron-phonon coupling and
the Eliashberg function, we use the QUANTUM ESPRESSO

package [33]. We employ the local density approximation
and a Hartwigsen-Goedecker-Hutter pseudopotential with a
120 Ry cutoff for the kinetic energy of the plane waves. For
the ground state and vibrational mode calculations, we use a
Monkhorst-Pack grid of 42×42 k points, and a Fermi-Dirac
smearing of the electronic states, σ0 = 0.003 Ry (∼473 K).
With these calculation parameters, we obtain an accurate
description of the phonon frequencies. The phonon linewidths
were further interpolated to a finer mesh of 252×252 k
points [34]. Because of the ultrafast laser excitation, the elec-
tronic states and electron-phonon interactions are consider-
ably broadened. To account for this, we use three broadening
factors σd with values of 0.025 (3947 K), 0.035 (5526 K),
and 0.05 Ry (7894 K), respectively. Note, that a simpler
two-temperature model was previously used to model the
time evolution of the electrons and the SCOPs of graphene
in Ref. [17].

C. Ab initio MD simulation details

For simulating graphene, we use our in-house Code for
Highly Excited Valence Electron Systems (CHIVES), which
is an electronic-temperature-dependent density-functional
theory MD code [35]. It uses the local density approxima-
tion, [36] atom-centered Gaussian basis sets [37], relativistic
pseudopotentials [38,39], and periodic boundary conditions.
For graphene, we consider an orthorhombic simulation su-
percell with N = 180 carbon atoms, a time step of 0.5 fs
and a 2×2×1 k-space grid. The equation of motion is solved
using the Velocity-Verlet algorithm, for which the forces f
are obtained as gradients from the laser-excited potential
energy surface, which is given by the Mermin functional [40],
obtained from finite-temperature density-functional theory.
The laser excitation is modeled by increasing the electronic
temperature, where the change of the electronic temperature
due to the laser pulse is given by dUlaser (t )

dt in Eq. (3). In this
paper, we consider two different pulse forms. In the first case,
we use an ideal delta pulse. This results in an instantaneous

205428-3



KRYLOW, HERNANDEZ, BAUERHENNE, AND GARCIA PHYSICAL REVIEW B 101, 205428 (2020)

 0

 0.5

 1

 1.5

K  0.05  0.1  0.15  0.2

(a)

D
im

en
si

on
le

ss
 c

ou
pl

in
g 
λ q

|q-K| (2 π /ao)

σd=  0.025 Ry (3947 K)
σd=  0.035 Ry (5526 K)
σd=  0.050 Ry (7894 K)

 0

 1

 2

 3

 4

 5

 6

 0  2000  4000  6000  8000  10000

(b)

TSCOPs = 300 K G
ep

 (
10

9  W
/(

K
 m

2 ))

Temperature (K)

 0
 0.1
 0.2
 0.3

 1000  1250  1500  1750

TSCOPs = 300 K 

α2 F
(ω

)

ω (cm-1)

FIG. 2. (a) Adimensional e-ph coupling parameter calculated for optical modes near the K point, using different Gaussian broadening
parameters σd . (b) Coupling coefficient Gep as a function of the electronic temperature, calculated using different Gaussian broadening
parameters σd . The inset shows the Eliashberg function for the used broadening parameters.

increase of the electronic temperature at 0 ps to 8000 K. In
the second case, we assume a Gaussian laser pulse centered
at 0 fs with a FWHM of 40 fs, so Ulaser(t ) becomes an
error function. We approximate the absorbed fluence of both
pulses to 56 μJ

cm2 . Our assumption that the electrons are al-
ways equilibrated is reasonable because the electronic system
reaches a well-defined electronic temperature within about
30–50 fs after irradiation in graphene and graphite [14–18].
The analyzed time period in this paper is considerably larger
than this one. To sample the phase space in our simulation,
we have generated 20 MD runs using the method described
in Ref. [21]. All presented results are averaged over these
20 runs for the results from the ab initio MD simulation.
The ionic temperature TI entering in Eq. (3) is calculated “on
the fly” from the computed velocities using the equipartition
theorem [Eq. (10)]. In each MD time step, we average T (ν)

I
over 20 parallel running simulations. This smooths the time
evolution of T (ν)

I , which would otherwise fluctuate consider-
ably because of the limited size of our supercell. We also use
CHIVES to ab initio determine heat capacity of the electrons
CV,at entering in Eq. (3). For this purpose, we calculate the
change of the total energy of the system with respect to the
electronic temperature. The ions are fixed at their equilibrium
positions during the calculation of CV,at .

III. RESULTS AND DISCUSSION

A. Calculation of the electron-phonon coupling

Equation (3) describes the coupling between groups of
phonons to the electronic subsystem. To identify the groups of
phonons, which strongly couple to electrons in graphene, we
analyze both the dimensionless coupling parameter λq given
by

λq = γqν

π h̄g(εF )ω2
qν

, (14)

which is based on the calculations of Eq. (13) in Sec. II B,
and the Eliashberg function. The dimensionless coupling
parameter λq helps to locate the regions in q space where
such phonons are present, without giving energy resolution.
λq is shown in Fig. 2(a) in the vicinity of the K point for

the assumed broadening parameters σd . It is evident that the
electron-phonon coupling is only nonzero near the K point.
For increasing electronic temperatures, the coupling decreases
directly at the K point, but modes in the q points in the near
vicinity become more important. This can be explained by the
considerable broadening of the Fermi distribution due to
the ultrafast laser excitation. The same behavior can be seen at
the K’ and � points. Thus, only phonons around these q points
contribute to the electron-phonon coupling and the contribu-
tion of the other phonon modes is negligible. This means that
the the quantity λq can clearly identify the q points at which
the SCOPs are located. A Gaussian with a variance σ can be
fitted to the dimensionless coupling parameter in Fig. 2(a).
The obtained variances are about 0.024 2π/a0, 0.033 2π/a0,
and 0.05 2π/a0 for the broadening parameters σd of 3947 K,
5526 K, and 7894 K, respectively. The variance can be used
to define a radius rSCOP, within which the q points with the
SCOPs are distributed. In our simulation, we use a radius
rSCOP of 0.1 2π/a0, which is about two times the variance
at a broadening parameter σd of 7894 K. Ideally, the radius
rSCOP should be smaller but in that case only the K, K’, and �

points would contribute to the electron-phonon coupling and
the dynamics of the simulation would be quite different from
experimental observations. This discrepancy is caused by the
limited supercell size for which the distances between q points
in reciprocal space are larger than σ . Increasing the supercell
size would solve this problem but would make the simulation
computationally unfeasible. Note that not all phonons at the
q points, at which λq is large, contribute to the electron-
phonon coupling. For a frequency resolution, we need to
analyze the Eliashberg function, which is plotted in the inset
of Fig. 2(b). The Eliashberg function shows that only phonons
with frequencies near 1350 (40.5 THz) and 1600 cm−1 (48
THz) contribute to the electron-phonon coupling. Near the
K and K’ points, the three highest phonon branches have
phonon frequencies near 1350 cm−1 (40.5 THz), so SCOPs
are the phonons with those frequencies. At the � point, the two
highest phonon branches have frequencies near 1600 cm−1

(48 THz) and these phonon modes are also SCOPs. Directly
at the K and K’ points, the SCOPs can be identified by com-
paring the eigenvectors obtained from the electron-phonon
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FIG. 3. (a), (c) Time evolution of the normalized intensities of the (100) and (110) Bragg peaks in graphene for the delta pulse (a) and the
Gaussian pulse (c). (b), (d) Time evolution of the temperature of the SCOPs, the other phonon modes, and the electrons for the delta pulse
(b) and the Gaussian pulse (d).

coupling calculations with the ones from the ab initio MD
simulations. This not possible for the other q points. In total,
we obtain 20 SCOPs for our supercell of 180 atoms. We have
shown above that only a subset of phonon modes contribute to
the electron-phonon coupling in graphene. Therefore, we can
simplify Eq. (3) to

NCV,at (Te)
dTe

dt
= dUlaser(t )

dt
− nSCOPG(SCOP)

ep

(
Te, T (SCOP)

I

)
(15)

× (
Te − T (SCOP)

I

)
,

where the sum over ν vanishes because only SCOPs couple
to the electronic subsystem. Here, we made the simplification
that all SCOPs couple equally to the electronic subsystem to
make the interpretation of results easier. This assumption is
reasonable since the average Eliashberg function in Fig. 2(b)
is similar for the low (40.5 THz) and high (48 THz) frequency
SCOPs.

Figure 2(b) shows the electron-phonon coupling parameter
Gep in dependence of the electronic temperature for the used
broadening parameters σd and a lattice temperature of 300 K
for the SCOPs. The electron-phonon coupling constants in-
crease monotonically for increasing electronic temperatures.
The dependence of the electron-phonon coupling parameter
Gep on the temperature of the SCOPs is considerably smaller
than on the electronic temperature. The difference between
the coupling constant at the same electronic temperature but
at different SCOP temperatures in the range of 50 to 6000 K

does not exceed 9.6×107, 1.5×108, and 2.5×108 W
Km2 for the

broadenings of 3947 K, 5526 K, and 7894 K, respectively.
Note, that the SCOPs have a small heat capacity because
they are only a small subset of all phonons. Since electrons
only couple to the SCOPs, the temperature of the SCOPs
can reach high values, eventually higher than the melting
threshold of graphene. For our ab initio MD simulations,
we use the coupling constants obtained with a broadening of
σd = 5526 K.

B. Time evolution of the Bragg peaks after laser excitation.

Using the calculated electron-phonon coupling constants,
we have performed ab initio MD simulations on graphene.
Details of the simulations are given in Sec. II C. We first
analyze the time evolution of the Bragg peaks I ({q}, t ) after
ultrafast laser excitation, which are calculated by

I ({q}, t ) =
∣∣ ∑

j

∑N
i=1 exp (iq j × ri(t ))

∣∣2

∣∣∑
j

∑N
i=1 exp (iq j × ri(0))

∣∣2 . (16)

The first sum is over all peaks of the same family with
reciprocal lattice vectors q j . The second sum is over all atoms
N located at positions ri. Figures 3(a) and 3(c) show the
obtained results for the (100) and (110) families of peaks of
graphene using the delta pulse and the Gaussian laser pulse,
respectively. A fast initial decay of the Bragg peaks and a
slower decay afterwards can be seen. The slower decay shows
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an increase of the decay rate in time, which is not visible in
experiments. We attribute this to the time-dependent change
of the decay channels for the SCOPs. This can be expected
because the electron-phonon coupling changes the electronic
temperature, which in turn modifies the potential energy sur-
face and with that the frequencies of the phonon modes. Thus,
due to energy conservation, decay channels might close or
open up in time. This will also occur in real systems. However,
real systems have infinite phonon modes, so the opening or
closing of decay channels leads to smooth changes. In our
simulations, such changes will occur discretely. A consider-
able increase of the number of atoms would solve the problem,
but an extension of the computational cell is not possible
because modern density-functional theory codes are limited
to about 1000 atoms. Note that heat conduction becomes
important after about 4–5 ps, which will also influence the
dynamics of the system [41].

A biexponential function of the form

Ifit(t ) = I0 + A(1 − exp (t/τ1))
(17)

+ B(1 − exp (t/τ2))

cannot fit our data because of the modification of the decay
channels described above. Nevertheless, we see that the fast
initial decay is faster than 100 fs and the long decay is in the
order of several ps. Thus, the obtained decay is consistent with
the experimentally observed ones for graphite and graphene,
which usually range from 100 to 500 fs for the fast decay and
from 3.5 ps to 18 ps for the long decay [14–18,22,42]. Other
theoretical works also suggested short decay times below
100 fs [42,43].

C. Change of the temperatures in time

The time-dependent temperatures of the electrons, SCOPs,
and of the remaining phonon modes are shown in Fig. 3(b)
for the delta pulse and Fig. 3(d) for the Gaussian pulse. Two
timescales govern the temperature evolution for the electrons
and SCOPs. For the delta pulse, the electronic temperature
drops within the first 100 fs after laser excitation and then
decays more slowly. For the Gaussian pulse, on the other
hand, a fast increase of the electronic temperature within the
first 100 fs can be seen. After that, the electronic temperature
starts to decay due to the coupling to the SCOPs. For both
considered pulses, a fast initial increase of the temperature
of the SCOPs is visible. After its first increase, the tem-
perature of the SCOPs starts to decrease due to phonon-
phonon interactions. During this decrease, the temperature
of electrons and SCOPs converge to each other due to the
strong electron-phonon coupling. The temperature of the other
phonon modes increases slowly and nearly linearly. Note that
the heat capacity of the other modes is much higher than
the heat capacity of the SCOPs. Thus, the decrease of the
temperature of the SCOPs is stronger than the increase of the
temperature of the other phonon modes. Similar to the Bragg
peak analysis, the dynamics are independent of the used laser
pulse form for long times. Therefore, we will use the results
from the delta pulse excitation for the further analysis.

For small supercells, as considered in this paper, the details
of the simulation will depend on the size of the supercell.
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This can be seen in the Supplemental Material in Ref. [44],
where calculations of the time evolution of the Bragg peaks
and temperatures for a supercell with 96 atoms are shown.
The details are the same except that we have 40 instead of
20 runs over which we average. Note that the radius rSCOP

for choosing the q points, in which the SCOPs are in, were
chosen as described before. For the supercell of 96 atoms, 20
SCOPs are also obtained. Although the Bragg peaks have the
same dynamics, the time evolution of the time evolution of the
temperatures are different. This can be explained as follows.
The absorbed fluence per atom is equal for both systems but
the total absorbed energy is larger for the greater supercell.
However, the total absorbed energy is distributed between the
same amount of SCOPs, so the temperature of the SCOPs and
electrons is higher if the supercell is larger. In general, the
number of SCOPs will depend on the size of the supercell. For
the supercell sizes used here, the number of SCOPs is limited
due to the large distance between q points as described before.
Nevertheless, the temperature in thermal equilibrium will be
equal for both supercell sizes. Although the time evolution
of the temperatures depends on the used supercell in our
calculations, our simulations clearly demonstrate that the fast
decay is caused by the SCOPs and the further decay by the
other phonon modes. Thus, we further analyze the dynamics
obtained for the supercell of 180 atoms.

D. Time evolution of the nearest neighbor distance

Next, we analyze the time evolution of the average bond
length dN between carbon atoms after ultrafast laser excita-
tion. For every atom i on position ri a set of nearest neighbors
{nn}i can be defined, so dN can be written as

dN (t ) =
∑N

i=1

∑
j∈{nn}i

(|ri(t ) − r j (t )|)
2Nbonds

. (18)

The first sum is over all atoms, the second one over the set
{nn}i, and Nbonds is the total number of bonds between the
carbon atoms. The distance |ri − r j | can be further split into
an in-plane and an out-of-plane part. Figures 4(a) and 4(b)
show �dN (t ) = dN (t ) − dN (t = 0) for the in-plane and out-
of-plane dynamics. For the in-plane dynamics of �dN (t ), a
fast initial increase and a much slower increase after about
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FIG. 5. Average energy per phonon mode for phonons in as-
cending frequency ranges. In each frequency range, indicated by the
coloring of the phonon dispersion in the inset, we have included 104
phonon modes. The width corresponds to the errors. Note that we
excluded the SCOPs from the analysis.

100 fs can be seen. The out-of-plane dynamics shows an
oscillatory behavior and a general monotonic increase of
�dN (t ) during the analyzed time period. The out-of-plane
oscillation is induced by the fast increase of the electronic
temperature. This oscillation is not related to the genera-
tion of SCOPs because they also appear without considering
electron-phonon coupling. Furthermore, the out-of-plane part
of �dN (t ) exhibits a greater amplitude than the in-plane part.
This can be explained by the restoring forces, which are
considerably larger for the in-plane motion of the atoms than
for the out-of-plane motion.

E. Decay channels in graphene

To analyze the dynamics of graphene in more detail and to
infer the pathways during the equilibration process, we have
calculated the time evolution of the energies per phonon mode
after laser excitation. For the calculation of the energies per
phonon mode, we use the formalism described in Ref. [45].
Since the equilibrium positions in graphene are not constant,
as can be seen in Figs. 4(a) and 4(b), we calculate the energy
of a phonon ν as 2E ν

kin. Note that the kinetic energy of a single
phonon mode is averaged over the used 20 runs, which have
different starting positions and velocities. Thus, on average,
the kinetic and potential energy of a single phonon mode
fulfills the equipartition theorem. After the calculation of
the single phonon energies, we average over sets of phonon
modes. For the used sets, we group the 104 phonon modes
exhibiting the lowest frequencies together, then the next 104
phonon modes, and so on. In this way, we have generated five
sets of phonon modes. Note that we have excluded the SCOPs
from this analysis. The time evolution of the averaged energy
per phonon mode and per set is shown in Fig. 5. In the inset,
the phonon dispersion at the ground state and the frequency
ranges of the five sets are shown. The time evolution of the av-
erage energies shows different slopes. In particular, the energy
of midfrequency phonon modes increases the most and the en-
ergy of low-frequency phonon modes increases the least. All
other sets of phonon modes have essentially the same slope
for the time-dependent energy per phonon mode. From this
analysis, we can conclude that the initial drop of the intensity
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FIG. 6. Time-averaged changes of the energy (a) and phonon
occupation number (b) with respect to their initial values for phonon
sets containing 26 phonons.

in Figs. 3(a) and 3(c) is due to the generation of SCOPs rather
than a fast decay into other phonon modes as suggested in
Ref. [46]. From this coarse-grained analysis, it is not possible
to see the dominant decay paths. Therefore, we increase the
number of sets so each set contains 26 phonons. Furthermore,
we take a time average over the whole simulation time of
4 ps. The average change of the energy with respect to the
energy at t = 0 ps is shown in Fig. 6(a). The frequency ranges
of the sets and the average change of the energy are shown
as the colored areas incorporated into the phonon density of
states. Additional information can be gained by calculating
the average change of the phonon occupation numbers during
the simulation, which is shown in Fig. 6(b). Note that the
maximum error for the energy is about 0.06 mHa. The errors
for the phonon occupation numbers are about 50% for the two
lowest sets and about 10–30% for the other ones. From the
analysis shown in Figs. 6(a) and 6(b), it is evident that many
different phonons couple to the SCOPs. In particular, mainly
phonons in the range from 10 to about 32 THz couple to the
SCOPs. This range of phonons is consistent with the results
for the third-order coupling of Ref. [25]. In particular, it was
found that the SCOPs near the � point couple to phonons in
the range from 18 to 30 THz and the SCOPs near the K (K’)
point couple to phonons in the region from 12 to 27 THz.
However, it was also claimed that for the SCOPs near the
K and K’ points, the dominant third-order scattering involves
phonons near 3 and 37 THz. In this regions, we obtain no
indications for a dominant coupling of this kind. There are
several possible reasons for this discrepancy. First, we analyze
laser-excited graphene in our simulations. Thus, the potential
energy surfaces, and with that the coupling strengths between
the phonon modes might be different. Second, scattering
events after the scattering from the SCOPs to the other phonon
modes will influence the decay of the SCOPs. Third, our
supercell might not contain the phonons to which the SCOPs
near the K and K’ points couple dominantly. Additionally,
to the decay channels discussed above, we can also see that
phonons between 40 and 50 THz gain a considerable amount
of energy. This decay path was not reported in Ref. [25]. Since
all third-order scattering processes were analyzed in Ref. [25],
we have to assume that the increase of the energy in this
frequency region is due to fourth-order scattering processes.
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IV. CONCLUSIONS

In conclusion, we have used ab initio MD simulations
and a modified TTM-MD model to simulate the time evolu-
tion of laser-excited graphene. For that, we have calculated
the electron-phonon coupling constants for various electronic
and ionic temperatures. Our results show that not only the
SCOPs at the � point and K (K’) point are important for
the electron-phonon coupling in the laser-excited case but
also the phonons in the near vicinity of these points. This
is due to the smearing of the Fermi function caused by the
high electronic temperature in the laser-excited case. Based
on the obtained electron-phonon coupling constants, we have
performed ab initio MD simulations. With our simulations, we
are able to simulate the time evolution of the (100) and (110)
families of Bragg peaks after laser excitation. In particular, we
obtain a biexponential decay for the analyzed Bragg peaks.
The short decay time is below 100 fs and the long decay is
in the order of several ps, which is consistent with ultrafast

pump-probe experiments on graphene and graphite. Further-
more, we can show that that the SCOPs are mainly decaying
into phonons with phonon frequencies between 10 to 32 THz
and to a smaller extent into phonons in the 40 to 50 THz
range. The former frequency region fits well to the dominant
third-order scattering events reported in Ref. [25]. We account
the other frequency range to fourth-order scattering events.
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