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Ensemble averaged Madelung energies of finite volumes and surfaces
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Exact expressions for ensemble averaged Madelung energies of finite volumes are derived. The extrapolation
to the thermodynamic limit converges unconditionally and can be used as a parameter-free real-space summation
method of Madelung constants. In the large volume limit, the surface term of the ensemble averaged Madelung
energy has a universal form, independent of the crystal structure. The scaling of the Madelung energy with
system size provides a simple explanation for the structural phase transition observed in cesium halide clusters.
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I. INTRODUCTION

The cohesive energy of ionic crystals is dominated by the
electrostatic energy between ionic point charges, known as the
Madelung energy. The calculation of Madelung energies is a
mathematically nontrivial problem because of the long-range
nature of the Coulomb interaction. The Madelung constant
of basic crystal structures was first successfully calculated by
Ewald [1]. In the Ewald method, the Coulomb interaction is
divided into a short-range part for which the Madelung sum
converges fast in real space and a long-range part which can
be summed in reciprocal space. The Ewald method is very
accurate and widely used, but it is numerically rather involved
and relies on periodic boundary conditions. Alternatively, the
Madelung energy can be calculated through direct summation
in real space, which is numerically simpler and can be used
in finite systems [2] and nonperiodic structures. However, the
lattice sums are only conditionally convergent, i.e., the result
depends on the summation order. This reflects the physical
fact that in a finite crystal, the potential at an inner site can be
changed at will by choosing particular surface terminations
[3]. In three dimensions, the Madelung sums diverge for the
most natural, shell-like summation order [4]. Divergence can
be avoided in two ways. In the first type of methods, the lattice
is divided into neutral cells of vanishing dipole moment [5].
The sum over these cells converges absolutely because the
quadrupole-quadrupole interaction decays as 1/r5. However,
dipole moment free cells generally involve fractional ions at
the corners and edges, and can be difficult to construct for
low-symmetry systems [6]. In the second type of method,
the summation is done in the natural order of increasing
distance but the system is neutralized at each step by adding a
background or surrounding sphere [7,8]. An example is the
Wolf method [7] which keeps only the short-range part of
the Ewald method but compensates each charge inside the
summation sphere by an opposite charge at the cut-off radius.

Here, we consider ensemble averaged quantities in finite
subvolumes of a macroscopic system, especially the mean
electrostatic potential at the sites of a given ionic species.
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This leads to an alternative definition of Madelung energies
which converges unconditionally as a function of system size
for any subvolume shape. We derive an exact expression of
the Madelung constants in finite spheres. The leading term in
the expansion over inverse size is found to be independent
of the crystal structure. As a consequence, the Madelung
contribution to the surface energy, averaged over surface
orientations, is the same for all crystal structures, and provides
a universal first-order approximation of the surface energy of
ionic systems. We apply the theory to the relative stability of
CsCl and NaCl ionic structures as a function of system size.
Under the assumption of equal nearest-neighbor distance we
find that the stable structure switches from NaCl to CsCl when
the system size exceeds a few hundred ions, which explains
the phase transition observed in cesium halide clusters.

II. AVERAGE MADELUNG ENERGY
OF FINITE VOLUMES

We consider a collection of N point charges at positions
rα

i , where α labels the different species with charge qα . The
electrostatic energy is given by

U = 1

2

∑
jβ �=iα

qαqβ∣∣rα
i − rβ

j

∣∣ = 1

2

∑
α

qα

∑
i

φ
(
rα

i

)
, (1)

where

φ
(
rα

i

) =
∑

jβ( �=iα)

qβ∣∣rα
i − rβ

j

∣∣ (2)

is the electrostatic potential at site rα
i . For crystals we take

each ion in the unit cell as a different species α and i is the
cell index. In the infinite crystal, φ(rα

i ) is independent of i.
The Madelung constant of the species α is commonly defined
as

Mα = −φ
(
rα

i

)
d/qα, (3)

where d is the nearest-neighbor distance. In a practical real-
space summation, one computes the potential φ(rα

i ) at some
site i of a finite cluster (usually the central site), and lets the
cluster size N go to infinity. The problem with this approach
is that the series in Eq. (2) converges only conditionally for

2469-9950/2020/101(20)/205423(6) 205423-1 ©2020 American Physical Society

https://orcid.org/0000-0002-1247-9886
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.205423&domain=pdf&date_stamp=2020-05-21
https://doi.org/10.1103/PhysRevB.101.205423


PETER KRÜGER PHYSICAL REVIEW B 101, 205423 (2020)

N → ∞. This means that the sum, i.e., the potential at site i,
depends on the summation order and may diverge.

Instead of the potential at a given site i, we consider the
average potential at the sites of the α ions,

φ̄α = 1

Nα

i �= j∑
i jβ

qβ∣∣rα
i − rβ

j

∣∣ , (4)

where Nα is the number of α ions in the cluster. The electro-
static energy in Eq. (1) can be rewritten as

U = 1

2

∑
α

Nαqαφ̄α. (5)

Equations (1) and (5) are equivalent and hold for finite and
infinite systems. For an infinite crystal, we obviously have
φ̄α = φ(rα

i ). This suggests a redefinition of the Madelung
constants as

Mα = −φ̄αd/qα. (6)

Of course, as with Eqs. (2) and (3), the true Madelung
constants are obtained in the limit N → ∞. The advantage of
definition (6) is that the electrostatic energy can be expressed
simply in terms of Mα as

U = − 1

2d

∑
α

NαMαq2
α, (7)

which holds for any system, finite or infinite.
We introduce the particle density of species α,

ρα (r) =
〈∑

i

δ
(
r − rα

i

)〉
, (8)

where 〈. . . 〉 denotes a statistical ensemble average. The pair
distribution function is defined as

gαβ (r, r′) = 1

ρα (r)ρβ (r′)

〈
i �= j∑
i j

δ
(
r − rα

i

)
δ
(
r′ − rβ

j

)〉
. (9)

With these functions, we can rewrite the ensemble average of
Eq. (4), as

〈φ̄α〉 = 1

Nα

∑
β

qβ

∫
dr ρα (r)

∫
dr′ρβ (r′)

gαβ (r, r′)
|r − r′| . (10)

Now, we consider a finite subvolume V of an infinite ionic
solid and average over all possible positions and orientations
of V . Equivalently, we can keep the subvolume fixed in space
and perform statistical averaging in an ensemble of crystals of
random position and orientation, which is realized in a powder
sample. This ensemble is homogeneous and isotropic, i.e., it
has the symmetry of a fluid, where the density ρα is a constant,
and the pair distribution function gαβ (r) depends only on the
distance r = |rα

i − rβ
j | [9]. As a result, and using ρα = Nα/V ,

Eq. (10) simplifies to

〈φ̄α〉 = 1

V

∑
β

ρβqβ

∫
V

dr
∫

V
dr′ gαβ (|r − r′|)

|r − r′| . (11)

This expression holds for a finite subvolume V of any ho-
mogeneous and isotropic ensemble, in particular, for a fluid
or powder sample. Further, as explained above, statistical

FIG. 1. Illustration of the difference between a standard real-
space summation method (a), and the present, ensemble averaged
method (b). Red and blue dots are positive and negative point charges
and the black lines indicate the boundary of the finite cluster volume
V . In (a) the center and orientation of the volume V is fixed. In (b) an
average is done over all possible positions and orientations of V .

averaging in such an ensemble is equivalent to considering a
single crystal and averaging over the position and orientation
of the subvolume V . Hence, Eq. (11) also holds in this sense.
In standard direct space lattice summation methods, a finite
cluster size corresponds to a subvolume of the infinite crystal
with fixed center and orientation as illustrated in Fig. 1(a).
In the present method, an average is done over all possible
positions and orientations [Fig. 1(b)]. In the special case of a
spherical subvolume considered in the numerical applications
below, only positional averaging is meaningful. However, the
main results and conclusions are independent of the subvol-
ume shape.

For stability, any ionic system must be globally charge
neutral, i.e., ∑

α

ραqα = 0. (12)

We do not assume any form of local charge neutrality. Averag-
ing is done over all configurations in the ensemble, including
those where the finite volume V has a net charge. By virtue of
Eq. (12), we may add to the integrand in Eq. (11) any function
f (r, r′) that is independent of α, without changing the value
of the expression. We shall add −1/|r − r′|, i.e., we replace
gαβ (r) by the pair correlation function hαβ (r) ≡ gαβ (r) − 1
and obtain

〈φ̄α〉 =
∑

β

ρβqβHV
αβ, (13)

where

HV
αβ = 1

V

∫
V

dr
∫

V
dr′hαβ (|r − r′|)v(|r − r′|) (14)

with v(r) = 1/r. For V → ∞, this simplifies to

H∞
αβ =

∫ ∞

0
hαβ (r)v(r)4πr2dr. (15)

While we focus on the bare Coulomb potential v(r) = 1/r,
the present theory can in principle be applied to any potential
form v(r). For the special case v = 1, H∞

αβ are the Kirkwood-
Buff integrals (KBI, usually denoted G rather than H) of
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solution theory [10]. Previously, we have extended KBI theory
to finite volumes [11]. We showed that the bad convergence of
the usual, truncated integrals can be avoided by an exact trans-
formation from double volume integrals to one-dimensional
radial integrals. Using this formalism [12,13], we rewrite
Eq. (14) as

HV
αβ =

∫ ∞

0
hαβ (r)v(r)wV (r)dr, (16)

where

wV (r) = 1

V

∫
V

dr1

∫
V

dr2δ(r − |r1 − r2|) (17)

is a weight function. Note that Eq. (16) is actually a fi-
nite integral since wV (r) = 0 for r > Lmax where Lmax is
the maximum distance in V . Equations (6), (13), (16), and
(17) provide an exact expression for the ensemble averaged
Madelung potential in finite volumes. The weight function is
conveniently expressed as

wV (r) = 4πr2y(r/L), (18)

where L = 6V/A and A is the surface area. The function y(x)
only depends on the shape of the volume [13]. For a sphere of
diameter L, the exact expression is [11]

ys(x) = (1 − 3x/2 + x3/2)θ (1 − x), (19)

where θ (x) is the unit step function (θ = 0 for x < 0 and
θ = 1 for x > 0). Analytic expressions of y(r) are also known
for cube and cuboid [13]. For any other shape, the function can
be easily computed numerically [14]. In order to accelerate
convergence to the thermodynamic limit, several extrapola-
tions from the finite volume integrals have been proposed
[11,13,15]. Here, we focus on the second-order expression of
Ref. [13], with weight function u2(r) = 4πr2y2(r/L), where

y2(x) = (1 − 23x3/8 + 3x4/4 + 9x5/8)θ (1 − x). (20)

For further reference, we also define

y0(x) = θ (1 − x) (21)

which corresponds to simple truncation of radial integrals or
lattice sums at r = L.

III. APPLICATION TO CRYSTALS

In the following, we consider a crystal with unit cell of
volume Vc containing m point charges qα , α = 1, . . . , m, at
positions rα . We take each atom in the unit cell as a different
species α, such that ρα = 1/Vc for all α. The spherically
averaged pair distribution function, appropriate for powder
samples, is given by

gαβ (r) = Vc

4πr2

′∑
T

δ(r − |rα − rβ + T|), (22)

where T are lattice vectors and the primed sum indicates that
the term T = 0 is excluded for α = β. Equivalently, Eq. (22)
may be written as a sum over shells,

gαβ (r) = Vc

4πr2

∑
k

nαβ

k δ
(
r − Rαβ

k

)
, (23)

FIG. 2. Relative error |M(L)/M∞ − 1| of the Madelung constant
of NaCl computed as function of sphere diameter L. Finite volume
result (ys, blue circles), y2 extrapolation (blue squares), and the same
with charge neutralization (red symbols, ys-N and y2-N), truncated
sum with charge neutralization (y0-N, up triangles), and the Wolf
method [7] with damping parameter α = 0.5 (filled down triangles)
are compared. The solid lines are power-law fits of the maximum
error and the dotted line is a guide to the eye.

where nαβ

k is the number of β ions on shell number k of radius
Rαβ

k = |rα − rβ + T| > 0 around an α ion. Inserting Eq. (23)
into Eq. (16) we obtain

HV
αβ = Vc

∑
k

nαβ

k v
(
Rαβ

k

)
y
(
Rαβ

k /L
) − BV , (24)

where

BV =
∫ ∞

0
v(r)y(r/L)4πr2dr. (25)

The term BV comes from the constant 1 which was subtracted
when going from gαβ to hαβ in Eqs (11) and (13). By virtue
of Eq. (12), the BV terms cancel upon summing over β in
Eq. (13). While BV has no direct physical meaning, it is
important for the convergence of the individual terms Hαβ

in Eq. (24). For a sphere of diameter L, we obtain BV =
4πL3

∫ 1
0 v(xL)ys(x)x2dx with ys given in Eq. (19). For the

Coulomb interaction, v(r) = 1/r, this yields BV = 2πL2/5 =
(12/5)V/L. For v = 1 (KBI), we have BV = πL3/6 = V .

In the following, we consider a sphere of diameter L and
calculate, with y = ys [Eq. (19)], the exact finite volume inte-
grals HV

αβ [Eq. (24)] and the corresponding ensemble averaged
Madelung constants [Eqs. (6) and (13)]. We also compute
extrapolations of HV

αβ to infinite volume, obtained with y = y2

[Eq. (20)] as well as the usual, unweighted sums truncated
at r = L, obtained with y = y0 [Eq. (21)]. The convergence
of the Madelung constant of the NaCl structure is shown in
Fig. 2. The exact, infinite lattice value is M∞ = 1.747 564 6.
The relative error |M(L)/M∞ − 1| is plotted as a function of
system size L. The exact finite volume result (ys) converges
very smoothly as 1/L while the y2 extrapolation (y2) con-
verges as 1/L2. The truncated sum with y = y0 corresponds
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to the most simple summation order over spherical shells. As
it is well known, this summation order strongly diverges for
the NaCl structure [4] and the result is not shown in Fig. 2.

We have examined the effect of charge neutralization us-
ing the shifted potential method by Wolf et al. [7], which
consists in replacing the true Coulomb interaction qiq j/ri j

by qiq j (1/ri j − 1/L). For the usual, truncated sum (y0), this
is equivalent to adding a term −Q/L to the potential, where
Q is the total charge in the sphere of radius L [7,8]. Charge
neutralization makes the truncated sum converge, roughly as
as 1/L, as seen from the curve y0-N in Fig. 2. Interestingly, for
the exact finite volume integrals (ys), charge neutralization has
almost no effect. Indeed, the curve with charge neutralization
(ys-N) is almost identical to that without (ys). This indicates
that the positional averaging (see Fig. 1), which is implicit
in ys, largely cancels charge imbalances and makes explicit
charge neutralization unnecessary. For the y2 extrapolation,
however, charge neutralization speeds up convergence con-
siderably and the charge-neutralized sums (y2-N) converge as
1/L3, in the same way as y2-extrapolated, proper KBI integrals
[13]. For comparison, the Wolf method [7] is also shown
with an Ewald damping parameter α = 0.5. Because of the
erfc(αr)-like damping term used in this scheme, the lattice
sum converges exponentially fast and thus outperforms any
method with power-law convergence, such as the present one.
However, the Wolf method requires an empirical parameter
(α), whose optimum value depends on the problem at hand. As
seen from Fig. 2, with the present scheme y2-N, a practically
reasonable error of 10−3 is achieved with a very moderate
cutoff L = 10d , which is comparable to L = 6d needed with
the Wolf method. In conclusion of this section we have shown
that ensemble averaged Madelung constants [Eqs. (6) and
(11)] converge unconditionally even without charge compen-
sation or damping factors. The y2 extrapolation with charge
neutralization converges as 1/L3, which is quite fast, albeit
slower than the Wolf method.

IV. SIZE DEPENDENCE OF MADELUNG ENERGIES

A. Universal surface term

Finite volume integrals like HV in Eq. (16) can be ex-
panded in powers of 1/L as [13]

Hαβ (L) = H∞
αβ + F∞

αβ /L + O(L−2), (26)

where F∞
αβ is the surface term in the large volume limit,

given by

F∞
αβ = −3

2

∫ ∞

0
rhαβ (r)v(r)4πr2dr. (27)

For the Coulomb potential v(r) = 1/r, this simplifies to
F∞

αβ = −3G∞
αβ/2, where

G∞
αβ =

∫ ∞

0
hαβ (r)4πr2dr (28)

is a proper KBI. The latter is directly related to the particle-
number fluctuations in the volume V as [16]

ραG∞
αβ = 〈NαNβ〉 − 〈Nα〉〈Nβ〉

〈Nβ〉 − δαβ. (29)

FIG. 3. Ensemble averaged Madelung constant of a sphere of
diameter L, for NaCl, CsCl, ZnS, and ReO3 structures with nearest-
neighbor distance d . The lines are M∞

α − 1.5d/L, where M∞
α is the

infinite crystal value.

Here, we are interested in a solid at low temperature where the
fluctuations are negligible, i.e., ραG∞

αβ = −δαβ and so

F∞
αβ = (3/2)δαβ/ρα. (30)

Using Eqs. (13), (26), and (30), the size dependence of the
ensemble averaged Madelung constants (6) is found to be

Mα (L) = M∞
α − (3/2)d/L + O(L−2), (31)

which holds for all ionic species and for any structure. This
is exemplified with a few crystal structures types in Fig. 3. It
can be seen that all Madelung constants approach the infinite
volume limit with the same slope − 3

2 , confirming the general
validity of Eq. (31).

From Eqs (7) and (31) and L = 6V/A, the surface contri-
bution to the Madelung energy, per area A, is given by

U S = ρ〈q2〉/8, (32)

where ρ = ∑
α ρα is the total particle density and

〈q2〉 =
∑

α

Nαq2
α/N (33)

is the mean-square charge of the ions. We stress that Eq. (32)
corresponds to the spherical average over all surface orien-
tations. As we have made no assumption about the crystal
structure, this result is universal, i.e., it holds for any crystal
and amorphous structure. For binary systems, it simplifies to
U S = ρq2/8.

The ensemble averaged surface energy of Eq. (32) can
be considerably larger than the surface energies found in
real ionic crystals. For NaCl, for example, Eq. (32) gives
1.28 J/m2, which is several times larger than the experimental
values reported for the low index surfaces (100) and (110),
which are 0.15–0.18 J/m2 and 0.35–0.45 J/m2, respectively
[17]. The main reason for this discrepancy is that U S is
an average over all surface orientations, which includes all
kinds of vicinal surfaces as well as highly unstable polar
faces. Real crystals, however, are faceted, and only the most
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stable, low index surfaces are actually present in crystallites.
Second, ionic and electronic relaxation and reconstruction,
not considered here, make the surface energy decrease further,
especially for stepped and polar terminations.

B. Relative stability of finite clusters

Despite the fact that Eq. (32) overestimates the surface
energy of ionic crystals, the present findings, which are valid
for all ionic systems, provide important insight into the size
dependence of the Madelung energy. In particular, we can
understand trends in the relative stability of different struc-
tures as a function of system size. From Eqs. (7) and (31) the
ensemble averaged Madelung energy of a subvolume V with
an average of N = ρV ions is given, to first order in 1/L, by

U = − N

2d

∑
α

cαq2
α

(
M∞

α − 3d

2L

)
, (34)

where cα = Nα/N is the concentration of α ions. Using
Eq. (34), the ensemble averaged Madelung energy of finite
clusters of different crystal structures can be compared. We
write d/L = χ/N1/3, where χ is a geometrical factor that
only depends on the crystal structure and the shape of the
subvolume. In the following, we consider binary structures,
where c+ = c− = 1

2 , q+ = −q−, and M+ = M−. As the most
simple example, we compare two ionic structures with the
same nearest-neighbor distance d , which is a reasonable as-
sumption when cations and anions have about the same ionic
radius. From Eq. (34), we then find the energy difference
between the two clusters


U = −Nq2

2d

(

M∞ − 3
χ

2N1/3

)
, (35)

where 
X = X1 − X2 (X = U, M∞, χ ). We label the two
structures such that 
M∞ > 0, i.e., structure 1 is the stable
phase in the bulk. If 
χ > 0, then 
U changes sign at the
cluster size

N0 =
(

3
χ

2
M∞

)3

. (36)

Then, structure 1 is stable for N > N0 and structure 2 for
N < N0. As an example, we compare CsCl (structure 1) and
NaCl (structure 2). We have M∞

1 = 1.762 675 (CsCl), M∞
2 =

1.747 565 (NaCl), and so 
M∞ = 0.015 110. We consider
spherical volumes. It is easy to see from simple geomet-
rical relations that χ1 = √

3/2 × (π/3)1/3 (CsCl) and χ2 =
(π/6)1/3 (NaCl), which gives 
χ = 0.073 445. From Eq. (36)
we then obtain N0 = 388. So, the model predicts a phase
transition from the NaCl structure to the CsCl structure when
the cluster size exceeds about 400 atoms. The model may
be applied to CsBr, CsCl, and CsI, where the ionic radius of
cation and anion is about the same (Cs = 1.81 Å, Cl = 1.67 Å,
Br = 1.82 Å, I = 2.06 Å). In the bulk, these compounds
crystallize in the CsCl structure. For small clusters, however,
the NaCl structure has been observed in experiment [18,19]
and found to be more stable in first-principles calculations
[20,21]. According to a recent experiment on neutral CsBr
clusters, the transition from the NaCl to the CsCl structure
occurs for a cluster size of about 160 atoms [19], in good
agreement with our simple model.

V. CONCLUSIONS

In summary, we have developed a theory of ensemble
averaged Madelung energies in finite volumes. The Madelung
constants approach the thermodynamic limit in a universal
way, independent of the structure, may it be crystalline or
amorphous. A simple, general expression has been derived for
the Madelung part of the termination averaged surface energy.
The size dependence of the Madelung energies helps to un-
derstand the relative stability of different ionic structures as a
function of system size, and provides a simple explanation for
the phase transition from the rocksalt to the cesium chloride
structure, which is observed in CsX clusters (X = Cl, Br, I).
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