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Thermal conductivity of Bi2Se3 from bulk to thin films: Theory and experiment
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We calculate the lattice-driven in-plane (κ‖) and out-of-plane (κ⊥) thermal conductivities of Bi2Se3 bulk, and
of films of different thicknesses, using the Boltzmann equation with phonon scattering times obtained from
anharmonic third order density functional perturbation theory. We compare our results for the lattice component
of the thermal conductivity with published data for κ‖ on bulk samples and with our room-temperature
thermoreflectance measurements of κ⊥ on films of thickness (L) ranging from 18 nm to 191 nm, where the lattice
component has been extracted via the Wiedemann-Franz law. Ab initio theoretical calculations on bulk samples,
including an effective model to account for finite sample thickness and defect scattering, compare favorably both
for the bulk case (from literature) and thin films (new measurements). In the low-T limit the theoretical in-plane
lattice thermal conductivity of bulk Bi2Se3 agrees with previous measurements by assuming the occurrence of
intercalated Bi2 layer defects. The measured thermal conductivity monotonically decreases by reducing L; its
value is κ⊥ ≈ 0.39 ± 0.08 W/m K for L = 18 nm and κ⊥ = 0.68 ± 0.14 W/m K for L = 191 nm. We show
that the decrease of room-temperature κ⊥ in Bi2Se3 thin films as a function of sample thickness can be explained
by the incoherent scattering of out-of-plane momentum phonons with the film surface. Our work outlines the
crucial role of sample thinning in reducing the out-of-plane thermal conductivity.
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I. INTRODUCTION

While the thermoelectric properties of Bi2Te3 have been
widely studied both for bulk and thin films [1], interest in
the isostructural topological insulator Bi2Se3 mostly focused
on its peculiar electronic structure and little is known on its
thermal conductivity. The main reason is that its Seebeck
coefficient is lower than that of Bi2Te3 and its thermal conduc-
tivity is somewhat higher, leading to a worse thermoelectric
figure of merit ZT . Notwithstanding that, the situation could
be different in Bi2Se3 thin films, where thermal conductivity
could be reduced due to scattering with sample borders [2].
Little is known of the thermal conductivity in this case.

Bi2Se3, similarly to Bi2Te3, has a lamellar structure, con-
sisting of sheets of covalently bonded Se-Bi-Se-Bi-Se atoms
that are held together by weak interlayer van-der-Waals
bonds. This highly anisotropic crystal structure is reflected
in anisotropic thermal and electrical conductivity. Thermal
conductivity of bulk Bi2Se3 has been measured by several
authors. Navratil and coworkers [3,4] measured the thermo-
electric properties and the in-plane thermal conductivity in
bulk Bi2Se3 and extracted the lattice contribution to κ‖ (lying
in the plane of the Bi2Se3 layers, perpendicular to the [111]
direction). They find values of the order of 1.33–1.63 W/m K
at room temperature. Furthermore, the authors found a drop
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of κ‖ at low temperatures which they attribute to the presence
of charged Se vacancies.

There is a certain variance in experimental values of κ: In
Ref. [5] and for p-doped samples, the in-plane conductivity
was found to be of the order of 1.25 (W/m K), however the
lattice contribution was not extracted. The room-temperature
total lattice and electronic conductivity were also estimated
in Ref. [6] and found to be 2.83 W/m K and 1.48 W/m K,
respectively. More recently, the total in-plane thermal conduc-
tivity was estimated to be 3.5 W/m K [7].

In this work we present a detailed theoretical and ex-
perimental investigation of the thickness dependence of the
out-of-plane thermal conductivity κ⊥ for thin films grown by
molecular beam epitaxy and having a thickness L between 18
and 191 nm. We find that the out-of-plane thermal conduc-
tivity decreases monotonically with thickness. By using first-
principles electronic structure calculations, we show that this
is mostly due to the suppression of long-wavelength phonon
propagating along the c axis. Moreover, we show that the low
temperature behavior of the lattice component of the thermal
conductivity is mostly due to intercalated Bi2 layers and not
to Se vacancies, as suggested in previous works [3,4].

In Sec. II we present the experimental setup and techniques
used to grow and measure the conductivity in thin films. In
Sec. III we review and extend the theory of phonon-driven
thermal transport in finite crystals. We report in Sec. IV A the
computational details, in Sec. IV B the crystal geometry, and
in Sec. IV C we compute the electronic contribution to thermal
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conductivity via the Franz-Wiedemann law. In Sec. V we
present our results on electronic structure (Sec. V A), phonon
dispersion (Sec. V B), bulk thermal conductivity (Sec. V C),
and thin films (Sec. V D).

II. EXPERIMENT

A. Thermal conductivity measurements

Thermal properties of thin films may be obtained at room
temperature using modulated thermoreflectance microscopy
[8,9]. In this setup the heat diffusion associated with a heat
source created by an intensity modulated pump beam is
measured at the sample surface using the variation in the
coefficient of optical reflection, which is measured by a probe
beam impinging the heated area. The pump beam is a 532 nm
Cobolt laser focused on the sample through a ×50 (0.5 NA)
objective microscope. The pump laser is intensity modulated
in a frequency range 100 Hz–1 M Hz. Since the light penetra-
tion depth is around 10 nm a large amount of heat is released
in the thin film.

Surface temperature is then affected by heat diffusion
carried by thermal waves [8,9]. The setup permits a spatial
measurement of the surface temperature around the pump
beam by a probe 488 nm Oxxius laser that is reflected on
the heated surface. The variations of the reflectivity (ampli-
tude and phase) are directly proportional to the modulated
temperature variation through the refractive index variation
and measured by a lock-in amplifier. To avoid artifacts due to
variations in the optical quality of the surface, the probe beam
is fixed on a small good quality area, while the pump beam is
scanned around the probe beam. Finally, the amplitude and
phase experimental data are fitted according to a standard
Fourier diffusion law to extract the thermal parameters (ther-
mal conductivity k and/or thermal diffusivity D):

D = k/d C , (1)

where d is the sample density and C its specific heat [10–15].

B. Thin films growth

The growth of Bi2Se3 thin films was conducted by molec-
ular beam epitaxy by following the procedure given in
Ref. [16]. Flat (111)-B GaAs buffer surfaces were prepared
in the III-V chamber and subsequently transferred to a second
chamber where Bi2Se3 thin films were grown with thicknesses
ranging from 18 nm up to 190 nm. The crystalline quality,
epitaxial in-plane orientation, lattice parameter, crystalline
structure of Bi2Se3 films were verified by reflection high-
energy electron diffraction and x-ray diffraction. Surfaces are
very flat (∼5 nm rms roughness) and mirrorlike facilitating
the reflectivity measurements.

III. THEORY

A. Scattering mechanisms in finite crystals

The behavior of lattice-driven thermal conductivity as a
function of temperature has a typical shape which is mostly
independent of the material: At high temperature it decreases
as 1/T , at lower temperature it has a maximum, then going
towards zero temperature it decreases sharply to a finite
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FIG. 1. Possible scattering mechanisms in a slab-shaped crystal.
(1) Normal momentum-conserving scattering (does not limit thermal
transport). (2) Umklapp scattering. Absorption by: (3) point defects
or isotopic disorder, or (4) rough “black” surface, with black-body
emission to maintain thermal equilibrium. (5) Reflection by a rough
“white” surface. (6) Reflection by a smooth surface. (7) Transmission
through an intercalated surface.

value. The behavior of the lattice thermal conductivity at high
temperature is determined by the anharmonic phonon-phonon
interactions [17] with a contribution from defects. In the low
temperature regime, named after Casimir who studied it in the
1930’s [18], thermal conductivity is not a bulk property but it
depends on the sample finite size [18].

Theoretical studies of the Casimir regime predate the pos-
sibility to study thermal conductivity by numerically integrat-
ing the phonon anharmonic properties [18–20]. The standard
approach consists in modeling the sample boundaries as black
bodies that absorb a fraction of the colliding phonons, reflect
the rest, and emit phonons to maintain thermal equilibrium.
These works use geometric calculations, valid in the linear
regime where only the acoustic phonons are taken into ac-
count, to predict the low-temperature thermal conductivity,
usually with a single free parameter: the surface reflectivity.
Invariably they assume a simple geometry for the crystal,
such as a long cylinder or a long square parallelepiped with
a temperature gradient between its opposite faces; in a shorter
cylinder with polished faces the model requires the inclusion
of multiple internal reflections [20].

With the arrival of more powerful numerical techniques, it
has become more effective to model the surface at the phonon
level, as a scattering probability. The probability of scattering
from the boundaries can be combined with the probability
of scattering due to phonon-phonon interaction in accordance
with Matthiessen’s rule [21]. This approach has been used in
more recent literature [22] while keeping the assumptions of
the long cylindrical geometry, not appropriate for application
to thin films, where a temperature gradient can be applied
orthogonally to the film lateral extension.

In Fig. 1 we have schematically depicted the possible
scattering events responsible for limiting lattice-driven energy
flow; we will briefly review them but for detailed discussion
we redirect the reader to Ref. [23]. Mechanisms (1) and (2)
are the intrinsic scattering processes: (1) is the “normal”
(N) scattering, it conserves momentum and does not limit
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thermal conductivity. N scattering is only important at very
low temperature (a few K). (2) The umklapp (U) processes,
that conserve crystal momentum modulus the addition of
a reciprocal lattice vector, are the main limiting factor at
high temperature and the prevalent intrinsic scattering mecha-
nism. When studying thermal conductivity in the single-mode
relaxation-time approximation (SMA), it is assumed that U
scattering is dominant and that the scattered phonons are
thermalized, i.e., that on average they are scattered toward the
equilibrium thermal distribution. This approximation is very
robust and works to within a few percent in a large range of
temperatures and materials [24].

Diagram number (3) depicts the Rayleigh scattering with a
point defect, which could be a vacancy [25], a substitutional
defect, or isotopic disorder [21]. Finally, events (4), (5), (6),
and (7) are possible interactions between a phonon and the
sample boundary: (4) is adsorption and re-emission by the
surface; (5) is inelastic reflection by a “white” surface. We
remark that, as it has been shown in Ref. [20], events (4)
and (5) are equivalent from a thermal-transport point of view,
we will just use (4) from here on. Further on, (6) is elastic
reflection, where the momentum component parallel to the
surface is conserved but the orthogonal component is inverted.
Reflections can limit thermal conductivity in the direction
orthogonal to the surface. Finally, in (7) a phonon can cross
the boundary without scattering; this is of course not possible
if the sample is suspended in vacuum but can be the case if the
sample is composed by multiple mismatched segments or if it
contains stacking defects.

In order to describe the interface, we introduce three di-
mensionless parameters: the absorption fraction fa, the re-
flection fraction fr , and the transmission ft ; these are the
probabilities that a phonon will undergo process (4), (6), or
(7), respectively, when it collides with the boundary. The
condition fa + fr + ft = 1 holds. In general these parameters
may depend on phonon energy and its incidence angle; they
can be computed using molecular dynamics techniques [26].
A special limit case is a very rough surface for which fa = 1.

B. Thermal transport in the single-mode approximation

In the single mode approximation (SMA) the thermal
conductivity matrix is:

καβ = h̄2

N0�kBT 2

∑
j

vα, jvβ, jω
2
j n j (n j + 1)τ j (2)

where j is a composite index running over the phonon wave
vectors q in reciprocal space and the phonon bands ν; N0

are the number of q points used to sample the Brillouin
zone, � is the unit-cell volume, kB is the Boltzmann constant,
and T is temperature. Inside the sum, the composite index
j stands for the band index ν and the wave vector q; then
ω j = ων (q) is the phonon frequency, v j = ∇qων (q) is the
phonon group velocity, α and β are cartesian directions,
(x, y, z) nj = n(ων (q)) is the Bose-Einstein distribution, and
τ j is the phonon relaxation time, or inverse full width at half
maximum [27].

The SMA is accurate when Umklapp or dissipative scat-
tering is dominant over “normal” and elastic scattering; we

have checked that this is always the case in Bi2Se3 above 1 K:
Above this temperature the exact solution of the Boltzmann
transport equation (BTE) [23] only increases k by a couple
percent. As the SMA equation is much cheaper to compute,
easier to manipulate, and has a more straightforward interpre-
tation, we will use it exclusively in the rest of the paper.

C. Thermal transport in thin film crystals

In order to progress further we have to take into account the
real geometry of our sample. In this paper we will consider
two cases: (i) a thin film of Bi2Se3 of thickness L along
direction z and virtually infinite in the other two directions
with two very rough opposing surfaces; (ii) bulk Bi2Se3

intercalated with partial planes of Bi2, which is a common
kind of crystal defect [16,28], at an average distance L.

In case (i) we consider a phonon emitted from a surface
that moves toward the opposite surface with a z component
of its group velocity vz. After a time L/vz, the phonon will
reach the other surface and be absorbed with probability fa,
giving the first phonon scattering rate γ (1)

a and the relaxation
time (τ (0)

a )−1 = fa
vz

L . If it is not absorbed (probability fr =
1 − fa), the phonon will be reflected back toward the initial
surface with identical speed and it will undergo a second
absorption/reflection process. The probability of a third re-
flection is f 2

r , for the nth reflection is is f (n−1)
r . After summing

the geometric series, the total effective lifetime is:

(τa)−1 = 2γa = fa
vz

L

∑
i=1,n

f i−1
r = vz

L

(
fa

1 − fr

)
. (3)

For boundary scattering, fa = 1 − fr conveniently cancels out
giving τa = L

vz
, but we prefer to leave Eq. (3) in a general

form to consider more general cases. Furthermore, if a phonon
is reflected, its velocity component that is orthogonal to the
surface will be inverted. We can account for this possibility
in Eq. (2) renormalizing vz in the following way: A fraction
fr of the phonons will change the sign of vz, a fraction of
them will hit the opposite boundary, be reflected a second time
and change sign again, and so on. The material is traversed
in a “flying” time τ f = L/vz. During this time phonons are
scattered at a rate Px = τ/τ f , resetting the process, with τ

being its total (intrinsic and extrinsic) relaxation time. This
can be expressed as:

ṽz =
∑

i=0,∞

(
− τ f

τ
fr

)i

vz = vz

(
1 + τ

τ f
fr

)−1

. (4)

Again, we do not replace τ f with 1 − τa because we want to
keep this equation as general as possible. In case (ii), a bulk
material intercalated with planes, the reasoning is very similar,
with the caveat that 1 − fa = fr + ft , although for an atom-
thin intercalated layer we can safely assume that fr is almost
zero.

The final formula for κ becomes:

καβ = h̄2

N0�kBT 2

∑
j

ṽα, j ṽβ, jω
2
j n j (n j + 1)τ tot

j (5)
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with ṽ from Eq. (4), and τ comprises all the scattering terms,
summed with the Matthiessen’s rule:

τ tot = (
τ−1

ph-ph + τ−1
a + ...

)−1
(6)

where additional scattering terms like point-defect scatter-
ing can be added. In the case of Bi2Se3 we will see in
Sec. V D the impact that internally reflected phonon have on
the conductivity. We also underline that while our samples are
not freestanding in the experiment, we assume that, on the
timescale of the measurements, the transmission of heat from
Bi2Se3 to the GaAs substrate can be ignored.

IV. TECHNICAL DETAILS OF FIRST-PRINCIPLES
SIMULATIONS

A. Computational method

All calculations have been performed using the QUANTUM-
ESPRESSO suite of codes [29,30], and in particular PH [31] and
D3Q [27] modules. D3Q efficiently computes three-body an-
harmonic force constants from density functional perturbation
theory [32–34] and the “2n + 1” theorem [35,36]. We also
used the related THERMAL2 codes [23,27] to compute intrinsic
phonon lifetime, scattering with isotopic defects [21] and bor-
der effects and to compute lattice-driven thermal conductivity
in the single-mode relaxation time approximation (RTA) and
by solving iteratively the full Peierls-Boltzmann [17] transport
equation via a functional minimization [23].

We used the generalized gradient approximation with the
PBE [37] parametrization. We employed norm-conserving
pseudopotentials from the SG15-ONCV library [38–40],
which include scalar-relativistic effects, and custom made
pseudopotentials based on the SG15-ONCV pseudisation pa-
rameters, but including full-relativistic spin-orbit coupling
(SOC). The PH code includes SOC effects [41], but the D3Q

code does not, hence we always used scalar-relativistic pseu-
dopotentials for the third order calculations.

We used a kinetic energy cutoff of 40 Ry for the plane
wave basis set, and we integrated the electronic states of
the Brillouin zone (BZ) using a regular Monkhorst-Pack grid
of 8 × 8 × 8 k points, except when computing the effective
charges and static dielectric constant via linear response,

which only converged with a much finer grid of 32 × 32 × 32
points.

The phonon-phonon interaction was integrated using a
very fine grid of 31 × 31 × 31 q points, when computing
the linewidth along high-symmetry direction or the phonon
spectral weight. A coarser grid of 19 × 19 × 19 points was
used when computing the thermal conductivity. The SMA
thermal Boltzmann equation was itself integrated over a grid
19 × 19 × 19 q points. All the grids in this paragraph were
shifted by a random amount in order to improve convergence
avoiding symmetry-equivalent points. The finite size effects
of section III C where included in the calculation of κ using
an in-house Octave [42] code available upon request.

B. Simulated crystal structure

Bi2Se3 belongs to the tetradymite-type crystal with a rhom-
bohedral structure (point group R3̄m, Wyckoff number 166).
In the rhombohedral unit cell there are three Se and two Bi
atoms. One Se atom is at the (1a) site (0,0,0); the remaining
Se and Bi atoms are at the twofold (2c) sites of coordinates
(u, u, u) and (−u,−u,−u), with one free parameter for each
species, which we indicate as uSe and uBi, respectively. Struc-
tural parameters obtained from experimental measurement
and from ab initio simulations are shown in Table I. Both the
scalar relativistic and the fully relativistic PBE calculations
give substantially expanded structures, both in a and c, as is
customary in this approximation. As the electronic band gap
is quite sensitive to the geometry, we also calculated the band
gap for the experimental volume. In all fully relativistic cal-
culations the gap is substantially overestimated, in agreement
with previous theoretical calculations.

Bi2Se3 thin films measured here had thicknesses between
18 nm and 191 nm. The stack of 2 Bi and 3 Se atoms (one
Q layer) is 0.984 nm thick, which means that even for the
thinnest slab we have 18 or 19 Q layers.

C. Electronic contribution to thermal conductivity

Commercially available bulk Bi2Se3 samples, and our
epitaxial Bi2Se3 thin film samples, are always doped to a

TABLE I. Structural parameters of bulk Bi2Se3: lattice parameters, a, c, unit cell volume V , lattice positions of Se and Bi, uSe, uBi, and the
bulk band gap. Experimental data (Ref. [44]) is given and compared with the scalar relativistic (SR) and fully relativistic (SOC) calculations
of this work where theoretically determined or experimentally determined lattice parameters were used as model input. Last row: results from
literature DFT simulation.

Structure a (Å) c (Å) V (Å3) uSe uBi gap (meV)

Experimental: 4.138 28.64 422.8 200 ± 5
Approximation structure a (Å) c (Å) V (Å3) uSe uBi gap (meV)

This paper:

SR theoretical 4.198 30.12 459.6 0.217 0.398 471
SOC theoretical 4.211 29.76 457.0 0.215 0.399 373
SR experimentala 4.138 28.64 422.8 0.211 0.400 183
SOC experimentala 4.138 28.64 422.8 0.209 0.401 333/444b

DFT simulations in literature:
SOC/VASP experimental [43] 4.138 28.64 422.8 320

a Lattice parameters from Ref. [45] as in Ref. [43], also compatible with Ref. [46]
bIndirect/direct gap.
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certain extent by the presence of vacancies and imperfect
stoichiometry. For this reason, even if the perfect material is a
small gap insulator, we expect to measure a certain amount of
electron/hole driven thermal and electric transport. Although
there is no simple way to isolate the electronic contribution to
thermal transport (ke), we can estimate it from electric con-
ductivity. Mobility (μ), doping, and electrical resistivity (ρ‖)
of most of the thin films have been measured by conventional
Hall bar measurements performed in the plane perpendicular
to the trigonal axis, c, of Bi2Se3 thin films.

It turns out that, at 300 K our thin films are n doped
and present a metallic behavior with a carrier concentration
between 1–2 × 1019 cm−3, μ ∼ 300–400 cm2/V s, and ρ‖ ∼
1–1.5 m� cm. A coarse evaluation of the electronic contribu-
tion to the in-plane thermal conductivity, ke,‖, can be given
by using the Wiedemann-Franz law ke,‖ = LT/ρ‖, with L
ranging between 2 and 2.2 × 10−8 V2 K−2 [3]. Consequently,
ke,‖ at 300 K ranges between 0.4–0.7 W/m� K.

Concerning the out-of-plane resistivity term, ρ⊥, a rough
estimation can be given by ρ⊥ ∼ 3.5ρ‖ since such a ra-
tio is found in bulk Bi2Se3 [47] leading to ke,⊥ between
0.1–0.2 W/m K. It is worthwhile to underline that ρ‖ mea-
surements performed in very thin Bi2Se3 samples (9 QL) give
a slight lowering of the resistivity (0.7 m2 cm), which may be
caused by ke,⊥ slightly increasing at very low thickness.

V. RESULTS AND DISCUSSION

A. Electronic structure

Before delving in the calculation of the vibrational proper-
ties, we have taken care to verify that the approximations used
to deal with the ab initio problem are valid. A few potential

difficulties have to be accounted for: the first is that Bi2Se3

is a small gap semiconductor, and special care is needed in
order to prevent the gap from closing. The gap magnitude
depends both on the kind of local- or semilocal-exchange and
correlation kernels and on the lattice geometry used. In any
case, the Kohn-Sham single particle gap is not guaranteed
to be correct, as it is not a ground-state property. However,
if its character is different from the experimental one it can
indicate that the employed approximation is not appropriate.
The optical gap has been measured experimentally as being
direct and 200 ± 5 meV wide [44].

Another difficulty is treating the interlayer Van der Waals
bond; the interlayer distances are usually overestimated by
standard local density approaches. However it is possible
to improve the agreement with experiment of vibrational
frequencies using the experimental lattice parameters. For
this reason, we have simulated the electronic structure us-
ing both the experimentally measured lattice parameter and
the theoretically calculated values. In both cases we op-
timize the internal degrees of freedom to avoid unstable
phonons.

In Fig. 2 we plot the electronic band structure, in a range
of a few eV around the Fermi energy. We note that the band
structure is very similar except for the case where relativistic
effects are included in conjunction with the experimental
lattice parameter [Fig. 2(b)]. When using the theoretical lattice
parameter, (values give in Table I) the gap is of 471 meV
in the scalar relativistic case and it decreases to 373 meV
in the fully relativistic calculation. Conversely, if we use
the experimental volume and optimize the internal coordi-
nates, the gap is smaller for the scalar relativistic calculation
183 meV [Fig. 2(c)] while in the fully relativistic case the

Theoretical lattice parameter:

-4

-2

 0

 2

  M4 Γ T   FB Γ L

(a) SR - 471 meV

-4

-2

 0
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  M4 Γ T   FB Γ L

(b) SOC - 373 meV

-1

0

1

M4 Γ T FB Γ L
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SOC

(c) Gap detail

Experimental lattice parameter:

-4
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(d) SR - 183 meV
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  M4 Γ T   FB Γ L

(e) SOC - 333 meV
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(f) Gap detail

FIG. 2. Calculated electronic band structure of bulk Bi2Se3. In the first row: using each method’s respective calculated theoretical lattice
parameter; second row: experimental lattice parameter. First column: scalar relativistic (SR), second column: fully relativistic (SOC), third
column: comparison SR/SOC close to the Fermi energy.
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FIG. 3. Detail of the longitudinal-acoustic phonon dispersion
along the [111] direction (parallel to the c axis) showing the effect of
the lattice parameter. We plot four cases: at the experimental lattice
parameter without SOC (black solid) and with SOC (blue dash) and
at the relaxed theoretical lattice parameter without SOC (green dot)
and with SOC (orange dash-dot).

indirect gap is at 333 meV and the direct gap at 444 meV
[Fig. 2(d)].

B. Phonon dispersion

The phonon dispersion does not change dramatically with
the different choices of SOC treatment, however we do ob-
serve a global, relatively constant, rescaling of the frequencies
which can be associated with the difference in the unit cell
volume. When not including SOC, if the theoretical lattice
parameter is used, the phonon dispersion exhibits negative
frequencies. However, when using the experimental lattice pa-
rameters, which correspond to a 5% smaller unit cell volume,
this instability is removed. Furthermore, if SOC is included,
both theoretical and experimental lattice parameters yield
stable phonons, as long as the internal degrees of freedom
are properly relaxed. Because interplanes binding is mediated
by Van der Waals forces, which usually leads to an overes-
timation of the bond length in the PBE approximation, we
expect that the modes changing the interlayer distance will be
too soft. For this reason, we show in Fig. 3 the phonon band
that is more sensitive to a change in lattice parameter; it is
the longitudinal acoustic (LA) mode along the [111] direction
which, in the trigonal geometry, is orthogonal to the planes of
Bi or Se.

We have compared the phonon frequencies at the � point
with available data from infrared and Raman spectroscopy,
in order to establish which method gives a closer match to
the phonon frequencies. These comparisons are summarized
in Fig. 4 and Table II. We note that using the experimental
lattice parameter gives a consistently better match for the
Raman active modes than using the theoretical one, hence
we will focus on the former. The SR calculations slightly
underestimate the phonon frequencies, while with the inclu-
sion of SOC the theoretical frequencies tend to overestimate
the measured ones. SOC is more accurate for the highest
optical bands but less so for the low-energy bands; as the
latter are more important for thermal transport, due to the
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FIG. 4. Experimental [16] Raman spectrum compared with
theoretical calculations. The vertical lines indicate the theoretical
harmonic phonon frequencies SR (orange) or with SOC (blue) at the
experimental lattice parameter.

Bose-Einstein factor of Eq. (2), we expect that not including
SOC may give a better match for the value of κ . We verified
that our calculations at the theoretical lattice parameter agree
with those of Ref. [48].

1. Effective charges and LO-TO splitting

Even high-quality Bi2Se3 single crystals are doped by a
relatively large amount (1018–1019 e/cm3) of lattice defects.
Below we will see that this doping has no significant effect on
the electronic structure nor on the geometry of the crystal, but
it is sufficient to effectively screen long-range/small-wave-
vector splitting of longitudinal and transverse optical modes
(LO-TO splitting). In Fig. 5 we have plotted the phonon
dispersion with and without the LO-TO splitting. We can see
that a couple of modes are particularly affected. If we number
the modes in order of increasing energy, these are the modes
8 and 9 where the atoms move in the plane perpendicular
to [111] with Se ions going in the direction opposite to that
of Bi ions. These modes are degenerate without LO-TO at
an energy of 87 cm−1, but the mode which is aligned with
the q vector jumps to 130 cm−1 when long-range effects are
included. When coming from the [111] direction itself, along
the �-T line, the two modes remain degenerate, because the
q wave vector is parallel to the polarization. In Fig. 6 we
show the phonon dispersion used in the thermal transport
calculations, with the lines enlarged proportionally to their
intrinsic linewidth.

C. Thermal transport in bulk

We have initially studied the phonon-driven thermal con-
ductivity in the bulk phase as experimental data are available
with good precision over a wide range of temperature. In
particular we have taken as reference the data of Navratil
and coworkers [3], where they estimate the fraction of lattice-
driven and electron-driven transport.

In Fig. 7 we plot the experimental data of the in-plane
thermal conductivity κ‖ measured in Ref. [3], side by side
with calculations from 2 K up to 400 K, in the RTA (we
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TABLE II. Phonons frequency at �, comparison of experimental data and calculations.

IR active (E ‖ c) Raman active

Symmetry Eu Eu A2u A2u Eg A1g Eg A1g

Experiments:
Ref. [49] (50 K)a 61 134
Ref. [49] (300 K)a 65 129 72 131.5 174.5
Ref. [16] 39 74 135 177

Simulations harmonic level:
SR theo. 76.2–123.8 129.7 143.4 161.2 38.3 61.8 130.5 171.5
SOC theo. 64.7–111.2 123.6 135.6 154.7 38.7 63.3 121.6 166.3
SR exp.b 87.8–129.8 134.2 145.2 166.4 45.6 75.6 139.7 180.1
SOC exp.b 78.0–123.0 128.5 138.0 162.3 40.2 73.6 132.2 173.6

aInfrared peak position are at 50 K and 300 K respectively.
bLattice parameters from Ref. [45].

checked that the exact inversion of the Boltzmann transport
equation yields practically identical values). As it can be seen,
the room temperature behavior of the lattice contribution to
κ‖ is in perfect agreement with our calculation of the intrinsic
thermal conductivity. This agreement is possible thanks to the
inclusion of lattice defects in the model, as explained in the
rest of this section.

Below 20 K, κ‖ is limited by extrinsic scattering processes
such as the scattering with sample borders, with the isotopes
or/and with lattice defects. As Navratil et al. used a large
monocrystal, and isotopical effects are negligible in Bi2Se3

[50], only lattice defects can explain the low temperature
behavior.

According to literature [28], two kind of defects are com-
mon in Bi2Se3 crystals: point-defect vacancies of Se and Bi2

partial-layer intercalation. Each selenium vacancy contributes
around two charges to the total doping, which means that
at a doping concentration of around 1018–1019 e/cm3 the
fraction of missing Se atoms is of order 100–1000 ppm. We
have simulated this defect concentration using an effective
Rayleigh point-scattering model, assigning to each vacancy an
effective mass as in Ref. [25]. We found that it is far too low
to explain the low-temperature drop in thermal conductivity.
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FIG. 5. Phonon dispersion with (orange full line) and without
(blue dash-dot line) long-range LO-TO splitting mediated by effec-
tive charges. These simulations use the experimental lattice parame-
ters, PBE, SR.

Even taking an unrealistically high point-defect concentration,
such as 50 000 ppm (5%), the correct curve shape at low
temperature is not reproduced. Finally, we remark that using a
more accurate, i.e., ab initio, estimate of the defect cross sec-
tion would be equivalent to a change in defect concentration
but would not change the shape of the curve.

On the other hand, if we assume the presence of Bi2 partial
layers, we can include it in the simulation using Sparavigna-
Casimir scattering theory, i.e., using an effective model that
includes a scattering time which is proportional to the ratio
between the phonon mean free path and the sample size. We
tuned the average interdefect distance to fit the temperature
of maximum κ , around 10 K. The theoretical position of the
maximum is a better fitting parameter than its absolute value,
as the latter is very difficult to converge at low temperature in
simulations. Notwithstanding that, the calculation reproduces
the absolute value quite well, which strengthens the validity
of our assumption. In Fig. 8, the best agreement is found
when the average distance between Bi2 planes is fixed at
5 μm. Comparing this value to the size of the unit cell along
c gives a concentration of excess bismuth of around 100
ppm, and considering that each additional Bi atom provides
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after the phonon gap to improve readability: 2 for the first six bands,
6 for the following nine bands.
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converging the conductivity in the zero temperature limit.

three charges, this is compatible with the measured doping
concentration.

We note that the effect of selenium vacancies and bismuth
partial layer intercalation is qualitatively different: An in-
creasing concentration of selenium vacancies causes a global
reduction of κ; on the other hand increasing the frequency
of bismuth partial layer intercalation moves the maximum of
κ toward higher temperatures, without changing its high-T
value. If we combine the two types of defects, we observe
that selenium vacancies have virtually no effect until their
concentration is greater than 100 ppm, after which scattering
from vacancies lead to a considerable reduction in κ at higher
T . As a consequence, the best match remains a concentration
of around 100 ppm bismuth partial layer intercalation with
100 ppm or less selenium vacancy. This is compatible with the
high n-type concentration (�1019 cm−3) of the bulk material
measured.

D. Thermal transport in thin films

Thermoreflectance measurements provide the total out-
of-plane (κ⊥) thermal conductivity which is the sum of the
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FIG. 8. Our b of the thermal conductivity with Ref. [3] is ob-
tained assuming around 100 ppm of Bi2 partial layers and 100 ppm
of selenium vacancies.

electronic and lattice contributions. As described in Sec. IV C,
we estimate the lattice contribution after measuring the in-
plane electronic conductivity in thin films and estimating
the out-of-plane electronic conductivity from the measured
conductance anisotropy of bulk Bi2Se3.

Transport measurements performed attest that our thin
films are n doped and present a metallic behavior with a
carrier’s concentration bracketed by 1–2 × 1019 cm−3, μ ∼
300–400 cm2/V s, and ρ‖ ∼ 1–1.15 m� cm at room temper-
ature.

Thus a coarse evaluation of the electronic contribution
to the in-plane conductivity kel,‖ can be given using the
Wiedmann-Franz law kel,‖ = LT/ρ‖ with L the Lorentz num-
ber, ranging between 2 and 2.2 × 10−8 V2 K−2. Consequently
kel,‖ is bracketed between 0.4–0.7 W/m K.

In Table III we report the measured values for the total
and lattice thermal conductivity, obtained by subtraction of
the estimated electronic contribution. In Fig. 9, we compare
the measured lattice thermal conductivity with the simula-
tions. The agreement is within the experimental error bar.
Including internal reflection effects (dashed line in the figure)
does improve the agreement but is not sufficient to explain
completely the discrepancy for the smallest slab. This may
indicate that a simple Casimir model is not sufficient for such
a thin sample; a more detailed description of the interaction
of phonon with the surface, including q and ω dependence,
could improve the agreement. Finally, the laser penetration
depth in the sample (around 10 nm) could play a role for the

TABLE III. Out-of-plane thermal conductivity of Bi2Se3, the
experimental error bar can be evaluated to 20%.

Thermal conductivity:

Thickness Total (measured) Lattice (estimated)
(nm) (W/m K) (W/m K)

18 0.39 0.19
30 0.52 0.32
53 0.53 0.33
105 0.56 0.36
191 0.68 0.48
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use the method of cutting-off phonons of Ref. [51].

thinnest slabs, although there is no simple way to include it in
the simulation.

We have also tested the approach of Ref. [51] (red lines
of Fig. 9), which consists of cutting off completely the con-
tribution of phonons that have mean free path τv larger than
the sample dimension. The behavior is relatively similar, but
the predicted value of κ is considerably larger for the smaller
samples.

VI. CONCLUSIONS

We calculate the phonon-component in-plane (κ‖) and out-
of-plane (κ⊥) thermal conductivity of Bi2Se3 bulk and films
with different thicknesses by using the Boltzmann equation
with phonon scattering times obtained from anharmonic third
order density functional perturbation theory. Our results agree
with existing measurements on bulk samples [3,4] and with
our room-temperature thermoreflectance measurements of κ⊥
on films of thickness ranging from 18 nm to 191 nm.

The calculated thermal conductivity of bulk Bi2Se3 is in
excellent agreement with the experimental data of Ref. [3] at
all temperatures. While the high temperature limit (e.g., room
temperature) is essentially determined by the intrinsic thermal
conductivity, the low temperature regime, in the past attributed
to Se vacancy, can be very well accounted for by assuming
≈100 ppm bismuth insertion and ≈100 ppm of Se vacancies.
In contrast, Se vacancies alone do not explain the low-T
behavior of the conductivity.

In thin films, we find that the thermal conductivity mea-
sured at room temperature monotonically decreases with
reducing film thickness L. We can attribute this reduction
to incoherent scattering of out-of-plane momentum phonons
with the film upper and lower surfaces. Our work outlines the
crucial role of sample thinning in reducing the out-of-plane
thermal conductivity.
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[4] J. Navrátil, T. Plecháček, J. Hork, S. Karamazov, P. Lošt’ák, J.
Dyck, W. Chen, and C. Uher, J. Solid State Chem. 160, 474
(2001).

[5] Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky,
A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, Phys. Rev.
B 79, 195208 (2009).

[6] C. Uhrer and D. Morelli, Thermal Conductivity 25/Thermal
Expansion 13 (Technomic Publishing, Boca Raton, Florida,
1999).

[7] D. Fournier, M. Marangolo, M. Eddrief, N. N. Kolesnikov, and
C. Fretigny, J. Phys.: Condens. Matter 30, 115701 (2018).

[8] A. Rosencwaig, J. Opsal, W. L. Smith, and D. L. Willenborg,
Appl. Phys. Lett. 46, 1013 (1985).

[9] L. Pottier, Appl. Phys. Lett. 64, 1618 (1994).

[10] L. Fabbri, D. Fournier, L. Pottier, and L. Esposito, J. Mater. Sci.
31, 5429 (1996).

[11] B. Li, L. Pottier, J. Roger, D. Fournier, K. Watari,
and K. Hirao, J. Eur. Ceram. Soc. 19, 1631
(1999).

[12] K. Plamann, D. Fournier, B. C. Forget, and A. Boccara, Diam.
Relat. Mater. 5, 699 (1996).

[13] B. Li, J. P. Roger, L. Pottier, and D. Fournier, J. Appl. Phys. 86,
5314 (1999).

[14] C. Pélissonnier-Grosjean, D. Fournier, and A. Thorel, J. Phys.
IV (France) 09, 201 (1999).

[15] C. Frétigny, J.-Y. Duquesne, D. Fournier, and F. Xu, J. Appl.
Phys. 111, 084313 (2012).

[16] M. Eddrief, P. Atkinson, V. Etgens, and B. Jusserand,
Nanotechnology 25, 245701 (2014).

[17] R. S. Peierls, Quantum Theory of Solids (Oxford University
Press, Oxford, UK, 1955).

[18] H. Casimir, Physica 5, 495 (1938).
[19] R. Berman, F. E. Simon, and J. S. Ziman, Proc. R. Soc. London

A 220, 171 (1953).
[20] R. Berman, E. L. Foster, and J. S. Ziman, Proc. R. Soc. London

A 231, 130 (1955).

205419-9

https://doi.org/10.1002/adma.200600527
https://doi.org/10.1002/adma.200600527
https://doi.org/10.1002/adma.200600527
https://doi.org/10.1002/adma.200600527
https://doi.org/10.1016/j.jssc.2003.12.031
https://doi.org/10.1016/j.jssc.2003.12.031
https://doi.org/10.1016/j.jssc.2003.12.031
https://doi.org/10.1016/j.jssc.2003.12.031
https://doi.org/10.1006/jssc.2001.9323
https://doi.org/10.1006/jssc.2001.9323
https://doi.org/10.1006/jssc.2001.9323
https://doi.org/10.1006/jssc.2001.9323
https://doi.org/10.1103/PhysRevB.79.195208
https://doi.org/10.1103/PhysRevB.79.195208
https://doi.org/10.1103/PhysRevB.79.195208
https://doi.org/10.1103/PhysRevB.79.195208
https://doi.org/10.1088/1361-648X/aaad3c
https://doi.org/10.1088/1361-648X/aaad3c
https://doi.org/10.1088/1361-648X/aaad3c
https://doi.org/10.1088/1361-648X/aaad3c
https://doi.org/10.1063/1.95794
https://doi.org/10.1063/1.95794
https://doi.org/10.1063/1.95794
https://doi.org/10.1063/1.95794
https://doi.org/10.1063/1.111856
https://doi.org/10.1063/1.111856
https://doi.org/10.1063/1.111856
https://doi.org/10.1063/1.111856
https://doi.org/10.1007/BF01159313
https://doi.org/10.1007/BF01159313
https://doi.org/10.1007/BF01159313
https://doi.org/10.1007/BF01159313
https://doi.org/10.1016/S0955-2219(98)00258-1
https://doi.org/10.1016/S0955-2219(98)00258-1
https://doi.org/10.1016/S0955-2219(98)00258-1
https://doi.org/10.1016/S0955-2219(98)00258-1
https://doi.org/10.1016/0925-9635(95)00414-9
https://doi.org/10.1016/0925-9635(95)00414-9
https://doi.org/10.1016/0925-9635(95)00414-9
https://doi.org/10.1016/0925-9635(95)00414-9
https://doi.org/10.1063/1.371520
https://doi.org/10.1063/1.371520
https://doi.org/10.1063/1.371520
https://doi.org/10.1063/1.371520
https://doi.org/10.1051/jp4:1999426
https://doi.org/10.1051/jp4:1999426
https://doi.org/10.1051/jp4:1999426
https://doi.org/10.1051/jp4:1999426
https://doi.org/10.1063/1.3702823
https://doi.org/10.1063/1.3702823
https://doi.org/10.1063/1.3702823
https://doi.org/10.1063/1.3702823
https://doi.org/10.1088/0957-4484/25/24/245701
https://doi.org/10.1088/0957-4484/25/24/245701
https://doi.org/10.1088/0957-4484/25/24/245701
https://doi.org/10.1088/0957-4484/25/24/245701
https://doi.org/10.1016/S0031-8914(38)80162-2
https://doi.org/10.1016/S0031-8914(38)80162-2
https://doi.org/10.1016/S0031-8914(38)80162-2
https://doi.org/10.1016/S0031-8914(38)80162-2
https://doi.org/10.1098/rspa.1953.0180
https://doi.org/10.1098/rspa.1953.0180
https://doi.org/10.1098/rspa.1953.0180
https://doi.org/10.1098/rspa.1953.0180
https://doi.org/10.1098/rspa.1955.0161
https://doi.org/10.1098/rspa.1955.0161
https://doi.org/10.1098/rspa.1955.0161
https://doi.org/10.1098/rspa.1955.0161


LORENZO PAULATTO et al. PHYSICAL REVIEW B 101, 205419 (2020)

[21] M. Omini and A. Sparavigna, Physica B: Condensed Matter
212, 101 (1995).

[22] A. Sparavigna, Phys. Rev. B 65, 064305 (2002).
[23] G. Fugallo, M. Lazzeri, L. Paulatto, and F. Mauri, Phys. Rev. B

88, 045430 (2013).
[24] G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari,

and F. Mauri, Nano Lett. 14, 6109 (2014).
[25] C. A. Ratsifaritana and P. G. Klemens, Int. J. Thermophys. 8,

737 (1987).
[26] A. Alkurdi, S. Pailhès, and S. Merabia, Appl. Phys. Lett. 111,

093101 (2017).
[27] L. Paulatto, F. Mauri, and M. Lazzeri, Phys. Rev. B 87, 214303

(2013).
[28] F.-T. Huang, M.-W. Chu, H. H. Kung, W. L. Lee, R. Sankar,

S.-C. Liou, K. K. Wu, Y. K. Kuo, and F. C. Chou, Phys. Rev. B
86, 081104(R) (2012).

[29] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. Chiarotti, M. Cococcioni, I.
Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R.
Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S.
Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo,
G. Sclauzero, A. Seitsonen, A. Smogunov, P. Umari, and R.
Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009).

[30] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B.
Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M.
Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de
Gironcoli, P. Delugas, R. A. D. J. A. Ferretti, A. Floris, G.
Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino,
T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E.
Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L.
Nguyen, H.-V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Poncé,
D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A.
Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu,
and S. Baroni, J. Phys.: Condens. Matter 29, 465901 (2017).

[31] A. Dal Corso, S. Baroni, R. Resta, and S. de Gironcoli, Phys.
Rev. B 47, 3588 (1993).

[32] S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861
(1987).

[33] P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Phys.
Rev. B 43, 7231 (1991).

[34] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev.
Mod. Phys. 73, 515 (2001).

[35] X. Gonze and J.-P. Vigneron, Phys. Rev. B 39, 13120 (1989).
[36] A. Debernardi and S. Baroni, Solid State Commun. 91, 813

(1994).
[37] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[38] D. R. Hamann, Phys. Rev. B 88, 085117 (2013).
[39] M. Schlipf and F. Gygi, Comput. Phys. Commun. 196, 36

(2015).
[40] P. Scherpelz, M. Govoni, I. Hamada, and G. Galli, J. Chem.

Theory Comput. 12, 3523 (2016).
[41] A. Dal Corso, Phys. Rev. B 76, 054308 (2007).
[42] J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, GNU

Octave Version 5.1.0 Manual: A High-Level Interactive Lan-
guage for Numerical Computations (2019), https://www.gnu.
org/software/octave/doc/v5.2.0/.

[43] J.-M. Zhang, W. Zhu, Y. Zhang, D. Xiao, and Y. Yao, Phys. Rev.
Lett. 109, 266405 (2012).

[44] G. Martinez, B. A. Piot, M. Hakl, M. Potemski, Y. S. Hor,
A. Materna, S. G. Strzelecka, A. Hruban, O. Caha, J. Novák,
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