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We revisit the problem of classifying topological band structures in non-Hermitian systems. Recently, a
solution has been proposed, which is based on redefining the notion of energy band gap in two different
ways, leading to the so-called “point-gap” and “line-gap” schemes. However, simple Hamiltonians without
band degeneracies can be constructed which correspond to neither of the two schemes. Here, we resolve
this shortcoming of the existing classifications by developing the most general topological characterization of
non-Hermitian bands for systems without a symmetry. Our approach, which is based on homotopy theory, makes
no particular assumptions on the band gap, and predicts significant extensions to the previous classification
frameworks. In particular, we show that the one-dimensional invariant generalizes from Z winding number to
the non-Abelian braid group, and that depending on the braid group invariants, the two-dimensional invariants
can be cyclic groups Zn (rather than Z Chern number). We interpret these results in terms of a correspondence
with gapless systems, and we illustrate them in terms of analogies with other problems in band topology, namely,
the fragile topological invariants in Hermitian systems and the topological defects and textures of nematic liquids.
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I. INTRODUCTION

Topological invariants associated with energy bands in
the reciprocal momentum (k) space have proven useful in
predicting novel physical phenomena [1,2], including robust
unidirectional transport, in both electronic and photonic sys-
tems. Examples of topological invariants include Chern num-
bers [3], which are defined for general systems lacking any
particular symmetry, as well as Z2 invariants [4] and winding
numbers [5], which are defined as long as some symme-
try is preserved. Classification schemes such as the tenfold
way [6–8] and its various extensions [9] provide a unified
approach within the mathematical frameworks of K theory
and homotopy theory and enable a systematic understanding
of the implications of different symmetries for topological
invariants.

Non-Hermitian Hamiltonians have widespread applica-
tions in describing open systems. For example, the ubiquitous
loss and gain in photonic systems [10–32], the finite quasi-
particle lifetimes [33–37], and certain statistical-mechanical
models [38] are naturally described in terms of non-Hermitian
Hamiltonians. Recently, there has been a growing interest
in uncovering novel topological phases in non-Hermitian
systems [39–61]. Although these questions have been par-
tially addressed in theory [42,62,63], a unified mathematical
description of non-Hermitian band topology is still lacking,
even for the most basic setting when no symmetry is as-
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sumed. This is most manifest in the innate dichotomy of the
recently suggested K-theory classification framework, which
distinguishes two schemes, the “line-gap” and the “point-gap”
schemes [25,62]. Within the line-gap scheme, the complex
energy spectrum is assumed to miss a line in the complex
plane. This allows one to deform the Hamiltonian into one
which is Hermitian with no symmetries (class A), implying
integer topological invariant in even spatial dimensions. In
contrast, within the point-gap scheme, the complex energy
spectrum is assumed to miss a point in the complex plane.
This facilitates a continuous deformation into a Hermitian
Hamiltonian with chiral symmetry (class AIII), and implies
integer topological invariants in odd spatial dimensions.

However, there are interesting topologically nontrivial non-
Hermitian Hamiltonians that are not uniquely characterized
by either a point gap or a line gap. A prototypical example
of a such a Hamiltonian is an exceptional ring [54], which
arises when a generic non-Hermitian perturbation is applied
to a Weyl point [27,64]. Although our focus in this paper is on
gapped systems, the gapless exceptional ring provides a vivid
illustration of the difficulty of separately considering point-
and line-gap classifications. The exceptional ring carries both
a one-dimensional (1D) and a two-dimensional (2D) invariant
simultaneously, depending on which type of gap one consid-
ers. Curiously, the two invariants have non-trivial influence
on each other and therefore cannot always be decoupled.
Especially, Ref. [65] showed that in non-Hermitian systems
with exceptional lines, the Chern number of an exceptional
ring ceases to be conserved, but can change sign through
a reciprocal braiding process [65–68]. This observation

2469-9950/2020/101(20)/205417(17) 205417-1 ©2020 American Physical Society

https://orcid.org/0000-0002-2154-8417
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.205417&domain=pdf&date_stamp=2020-05-15
https://doi.org/10.1103/PhysRevB.101.205417


WOJCIK, SUN, BZDUŠEK, AND FAN PHYSICAL REVIEW B 101, 205417 (2020)

suggests the need for a more general classification framework,
which does not make any assumption on the band gap being
globally a point vs a line, and which naturally incorporates the
interaction between the invariants defined on manifolds with
various spatial dimensions.

In this paper, we develop such a unified classification using
homotopy theory. Within a concise mathematical framework,
we revisit the derivation of 1D and 2D topological invariants
of non-Hermitian bands. As opposed to the two K-theory
classification schemes described above, our homotopy theory
approach is also sensitive to unstable topological invariants
[69]. Our derivation significantly extends the previous theo-
retical works [42,62,63] and explicitly captures the interac-
tion of these invariants. Specifically, the theory allows us to
classify non-Hermitian Hamiltonians defined on a periodic
2D k space, with the surprising result that depending on
the braid-group-valued 1D invariants, the Z-valued Chern
numbers can be replaced by Zn-valued invariants, where the
value of n depends on the details of the cycle type of the braids
along the Brillouin zone torus. We note that the interaction
of topological invariants in various dimensions is an intrin-
sically non-Hermitian phenomenon, which is inaccessible in
perturbative approaches which start from Hermitian models.
As we explain, this interaction is captured mathematically by
the action of π1 on π2 [70], a classical piece of homotopy-
theoretic data which is absent in classifications based on the
tenfold way, but crucial in our non-Hermitian classification
scheme.

The paper is organized as follows. The first two sections
present the classification result in a detailed, pedagogical man-
ner. First, in Sec. II, we revisit the derivation of the topological
invariant for two-band Hermitian systems. The goal is to refor-
mulate this simple story using a mathematical language that
is more appropriate for the generalization to non-Hermitian
systems, which constitute the contents of Sec. III. In this
section, we highlight the uniqueness which arises in the non-
Hermitian setting, both in terms of rigorous mathematics and
intuitive pictures. Next, in Sec. IV, we describe the interac-
tion between 1D and 2D invariants as reported for gapless
non-Hermitian systems in Ref. [65], and explain how this
interaction relates to the modified topological classification
of gapped systems. To further extend the intuition for this
classification, we also report on certain relationships with
the physics of nematic liquids [71–73] and with the fragile
topology of real-symmetric Bloch Hamiltonians [66–68,74–
76], which provide a useful analogy for understanding the
topology of non-Hermitian Bloch Hamiltonians. We also pro-
vide a calculation of these invariants in an explicit model.
Finally, in Sec. V, we generalize these results to many bands,
finding braid group and ZN invariants.

II. TOPOLOGICAL CLASSIFICATION OF TWO-BAND
HERMITIAN HAMILTONIANS

The idea of topology has been prominent in the study
of electronic band structures in the last few decades. This
notion emerges naturally from the ultimate task of condensed
matter physics: to classify and discover phases of matter and
study phase transitions. At the phase-transition critical point,
many systems show scale-invariant characteristics, indicating

that there is no finite characteristic length or energy scale at
low energy. For a noninteracting electron problem, this point
corresponds to a gapless band structure. Therefore, a phase
transition corresponds to a gap-closing process. The notion
of topology is essential to describing phases: as long as the
continuous tuning of the Hamiltonian does not result in a
gap closing, the system remains in the same phase. Studying
the equivalence classes of Hamiltonians under continuous
tuning without closing a gap therefore becomes a problem in
topology, or more specifically homotopy theory.

In this section, we review this classification problem using
a two-band example in 2D, in a formalism that can be gener-
alized to non-Hermitian cases. We split our presentation into
four subsections. In the first subsection, we introduce notation
and define the classification problem. The main objects of
interest which we introduce are a topological space X (here
it is the space of Hermitian Hamiltonians with a spectral gap)
and a set [T 2, X ] (equivalence classes of such Hamiltonians
defined on a Brillouin zone torus T 2). In the second sub-
section, we develop a characterization of the space X . The
main result here is that X is homeomorphic to the 2-Bloch
sphere S2, i.e., X ∼ S2. In the third subsection, we compute
the set [T 2, X ] and find [T 2, X ] = Z. This is done in several
steps, the first of which is computing the homotopy groups
πn(X ) (equivalence classes of gapped Hamiltonians defined
on an n-sphere Sn, representing strong topological invariants
of various dimensions). In the final subsection, we define an
action of π1(X ) on π2(X ), which will be of crucial importance
in the non-Hermitian setting.

A. Defining the classification problem

For simplicity, we consider a two-band Hamiltonian de-
scribing a 2D lattice model. In momentum space, the Bloch
Hamiltonian is simply a family of 2 × 2 Hermitian matrices
H(k), where k ranges over the wave vectors in the 2D first
Brillouin zone. Because H(k) is periodic in both directions,
we can identify opposite edges of the first Brillouin zone and
consider the wave vector k as a point in a torus T 2. Then,
H(k) defines a continuous map H : T 2 → Herm2(C) from the
momentum-space torus to the set of Hermitian 2 × 2 matrices.
Furthermore, as we motivate from the notion of a topological
phase transition, we are interested in the equivalence classes
of the Hamiltonians upon continuous deformation without gap
closing. Therefore, the space we classfiy is the more restricted
space X , which is the set of gapped 2 × 2 Hermitian matrices,
i.e., those with distinct eigenvalues. This can be equivalently
and concisely formulated by requiring that the discriminant,
defined as Disc(H) = ∏

i< j (λi − λ j )2 [where {λi}dim(H)
i=1 are

the eigenvalues of H], is nonvanishing for the Hamiltonian.
Therefore, we define our target space of gapped Hamiltonians
as

X := {H ∈ Herm2(C) : Disc(H) �= 0}. (1)

Notably, Disc(H) is a polynomial in the coefficients of H,
so X is the complement of a hypersurface inside a four-
dimensional (4D) vector space and can therefore be expected
to be topologically interesting. Then, [T 2, X ] is the set of ho-
motopy classes of Hamiltonians which have distinct energies
at every point in momentum space. Topological classification
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with this choice of X means that topological invariants can
change under continuous deformations of H(k), but specif-
ically only under those which close the spectral gap (which
correspond to phase transitions).

In the Hermitian case, our gap condition agrees with the
standard one in the literature. In the non-Hermitian case in
Sec. III, we will use the same gap condition. There, this
definition will not be equivalent to either the point-gap or line-
gap conditions used in Ref. [62]. It is, however, equivalent to
the definition of separable bands from Ref. [39].

B. Characterizing the target space

We now need to characterize X in a way that makes
its topological structure more apparent. We do this by
parametrizing X in terms of eigenvectors and eigenvalues,
performing an eigendecomposition. This allows us to describe
X in terms of more familiar topological spaces. According to
the spectral theorem, the eigenvectors of a Hermitian matrix H
constitute columns of a unitary matrix U ∈ U(2). The eigen-
values (λ1, λ2) are the diagonal entries of a diagonal matrix �.
Due to the gap condition, we require λ1 �= λ2, therefore, � ∈
Conf2(R) := {(λ1, λ2) ∈ R2 : λ1 �= λ2} [the notation (λ1, λ2)
refers to a pair of ordered points along the real line]. The
eigenvalue decomposition of H is H = U�U −1. Thus, our
parametrization begins with a map p : U(2) × Conf2(R) → X
which is defined by sending a pair (U,�) ∈ U(2) × Conf2(R)
to the Hamiltonian H = U�U −1.

The map p is the starting point for our parametrization, but
there are two forms of redundancy which we must account
for before we have a one-to-one parametrization of X . First,
the eigenvectors are only defined up to multiplicaton by a
unit complex scalar (the gauge invariance). This defines an
action of the group U(1) × U(1) on U(2), namely, multiplying
U on the right by a diagonal unitary matrix. Because H is
invariant under this group action, we can replace U(2) with the
quotient group U(2)/U(1) × U(1). Second, the ordering of
the eigenvalues and eigenvectors is not uniquely determined,
as long as they are reordered simultaneously. To be precise,
if σ is the 2 × 2 matrix representing the swap permutation,
it is easy to verify that (U,�) �→ (Uσ, σ−1�σ ) leaves H
invariant. This defines an action of the group Z2 which we
must also divide out. By removing these two redundancies, the
parametrization of a given Hamiltonian is uniquely defined, so
we have the description of X as

X =
(

U(2)

U(1) × U(1)
× Conf2(R)

)/
Z2. (2)

The equals sign here denotes a homeomorphism of topolog-
ical spaces. Both of the factor spaces are, like X , defined
by systems of equations, but they are much more familiar in
topology. The space U(2)/U(1) × U(1) is a classical example
of a homogeneous space in Lie theory, and the space Conf2(R)
arises in connection with the braid group; both play an impor-
tant role in algebraic topology in the context of classifying
spaces [70,77,78].

The characterization of X we developed is already suf-
ficient for many purposes, but we can simplify it fur-
ther. As a first simplification, we recognize the space
U(2)/U(1) × U(1) as the Bloch sphere CP1 = S2. Another

FIG. 1. The space of eigenvalues in the Hermitian vs non-
Hermitian case; Conf2(R) ∼ Z2 while Conf2(C) ∼ S1.

simplification we can make (cf. Fig. 1) is to deform the
space Conf2(R) = {(λ1, λ2) ∈ R2 : λ1 �= λ2} into the discrete
space Z2 = {+1,−1} (a form of spectral flattening). Because
we can choose the deformation (indicated by the symbol ∼)
in a way that respects the Z2 group action, we can retain
the parametrization throughout the deformation. We therefore
conclude that

X ∼ (S2 × Z2)/Z2 (3)

= S2. (4)

The intuitive interpretation is that the S2 represents one (e.g.,
the lower-energy) eigenvector of the Hamiltonian H on the
Bloch sphere.

C. Computing the topological classification

Now that we understand the target space X , we are ready
to solve the topological classification problem. As shown in
Fig. 2, the torus can be thought of as a rectangle with opposite
sides identified. The boundary of this rectangle is called the
one-skeleton of the torus, and it contains information about
1D invariants, while the interior of the rectangle is known as
the two-cell and contains information about 2D invariants.

The general strategy is as follows. First, we compute the
homotopy groups πn(X ), which describe topological invari-
ants of various dimensions; this is a preliminary step which
provides data we need to compute [T 2, X ]. The homotopy
groups πn(X ) are defined in terms of maps on the n-sphere
rather than on the torus; we will be interested in S1 and
S2 since the torus T 2 has nontrivial cycles in 1D and 2D.
Next, we use these data to compute [T 2

1 , X ], where T 2
1 is

the one-skeleton of the torus. Finally, we study extensions to
the two-cell of the torus; this is the key step. Notationally, if
f ∈ [T 2

1 , X ] is a homotopy class of maps on the one-skeleton,
we write [T 2, X ] f to denote the set of homotopy classes of
extensions of f to the two-cell, i.e., maps in [T 2, X ] which
restrict to f on the one-skeleton. As a technicality which
we elaborate on in Sec. II D, we begin by studying pointed
homotopy sets, denoted [T 2, X ] f

∗ (so that for now, all maps
and homotopies preserve base points).

Following our outlined strategy, we begin by computing
the homotopy groups πn(X ) = [Sn, X ]∗ (considering pointed
homotopies). For X = S2, the first few are well-known [70]:

π1(X ) = 0, (5)

π2(X ) = Z, (6)
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FIG. 2. The torus can be constructed out of a rectangle by gluing
together the two red lines and the two blue lines. These lines become
closed loops on the torus. Taken together, these two loops form the
one-skeleton of the torus, while the cyan interior of the rectangle
forms the two-cell of the torus. The one-skeleton T 2

1 = S1 ∨ S1 con-
sists of two circles joined at a common base point, i.e., the “bouquet”
of two circles; we refer to these circles as a and b following the
mathematical literature.

π3(X ) = Z. (7)

These correspond physically to topological invariants in var-
ious dimensions. We understand π1(X ) = 0 as a statement
of the fact that there are no one-dimensional topological
invariants in Hermitian systems (without additional symmetry
protection). On the other hand, π2(X ) = Z is a statement
about 2D topological insulators. The fact that this integer
invariant is given by the Chern number is slightly subtle, but
can be understood, e.g., in terms of the Chern-Weil theory
[79]. The three-dimensional “Hopf” invariant is unstable,
meaning it does not survive in the presence of additional
bands. Nonetheless, it is still of interest in recent works
[80–83].

The classification of maps on the one-skeleton [T 2
1 , X ]∗

is entirely straightforward since T 2
1 = S1 ∨ S1 is the wedge

product (“bouquet”) of two circles, i.e., two circles joined
at a common base point (see Fig. 2). Therefore, [T 2

1 , X ]∗ =
π1(X ) × π1(X ) = π1(X )2. But, we found that π1(X ) = 0, so

[T 2
1 , X ]∗ = 0. (8)

The upshot of the result that [T 2
1 , X ]∗ = 0 is that we can

assume our Hamiltonian H is constant on the one-skeleton of
the torus (by continuously deforming it). In other words, we
can identify the one-skeleton of the torus to a single point. But

then we obtain a sphere, so in this case the extension problem
is trivial, and we have

[T 2, X ]0
∗ = π2(X ) = Z, (9)

where 0 : T 2
1 → X denotes the constant map. We have the

result

[T 2, X ]∗ = Z (10)

which constitutes the solution to the classification problem in
the Hermitian case.

D. Action of π1(X ) on π2(X )

Although the obtained classification is complete, there are
some important issues regarding base points which we have
not yet discussed. More precisely, we have computed the
pointed homotopy set [T 2, X ]∗ rather than the free homotopy
set [T 2, X ]. However, in the considered physical setting there
is no reason to prefer a particular base point, thus it would be
interesting to study how the homotopy class might change as
the base point changes; in other words, we are really interested
in the free homotopy. In this section, we explain why the two
sets could in principle be different, and why the difference
can be described in terms of an action of π1(X ) on π2(X ).
Furthermore, although the extension problem was trivial in
the Hermitian case, it will not be in the non-Hermitian case,
so this is a good time to point out the features which are absent
in the Hermitian case which make the non-Hermitian setting
richer. The action of π1(X ) on π2(X ) will also play a central
role in understanding the general features of this extension
problem.

As a central example, we first describe the nontrivial action
of π1(X ) on π2(X ) for X = RP2 = S2/Z2 (the sphere with
antipodal points identified), which will provide the intuition
for the non-Hermitian case. We represent elements of RP2

interchangeably as lines or as ellipsoids with a single axis
of rotational symmetry, either of which can be thought of
as unit vectors with opposite directions identified (due to
the symmetry the objects possess). We think of an element
of π2(RP2) as a texture of ellipsoids on the sphere. As an
example, a fixed “skyrmion” texture, which is the generator
of π2(RP2) = Z, can be visualized by attaching to x ∈ S2 the
ellipsoid aligned with the vector x.

We now define a continuous deformation of an arbitrary
RP2 texture by continuously rotating each ellipsoid in place up
to π radians around the y axis. This continuous deformation
defines a homotopy H : S2 × [0, 1] → RP2 with H (·, t ) ∈
π2(RP2) for t ∈ [0, 1] (but not necessarily preserving base
points the whole time). The map H (·, 0) �→ H (·, 1) thus
defines an automorphism of π2(RP2) which is specifically
realized via a homotopy on each element. Whether this au-
tomorphism is nontrivial depends on the choice of base point
of RP2. Indeed, for the skyrmion texture as described above,
if we choose the y axis as the base point ∗ ∈ RP2, then H
is a pointed homotopy, and the automorphism of π2(RP2) is
trivial. In this case, when we choose a lift of the base point
to S2, the loop H (∗, ·) lifts to the constant path in S2. On
the other hand, suppose we choose the z axis as the base
point ∗ of RP2. Then, H is a free homotopy since H (∗, t )
for t �= 0, 1 is not kept fixed. Accordingly, when we start
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with H (·, 0) representing 1 ∈ π2(RP2), the class of H (·, 1)
is −1 ∈ π2(RP2), so the “skyrmion” texture is continuously
deformed into its mirror-image “antiskyrmion” texture. Ev-
idently, this could not be done if the target space were S2.
The homotopy H thus defines a nontrivial automorphism of
π2(RP2). In this case, when we lift the loop H (∗, ·) to a
path in S2, the end points of this path will be antipodal
points on S2.

In the example above, we observe that when the loop
H (∗, ·) lifts to a path in S2 whose end points coincide, the
automorphism of π2 is trivial, whereas when the loop lifts to a
path that connects two antipodal points, the automorphism is
nontrivial. Below, we formalize this observation by defining
an action of π1(X ) on π2(X ), where X is an arbitrary space.
In this action, the automorphism of π2(X ) coming from the
action of a loop γ in X can be realized by a free homotopy
H : S2 × [0, 1] → X with H (∗, t ) = γ (t ) [note that γ (t ) is an
element of π1(X )]. The behavior of H at the base point deter-
mines the relationship between H (·, 0) and H (·, 1) in π2(X ).
Given a loop γ in X and a map f : S2 → X , we can produce
a homotopy H : S2 × [0, 1] → X such that H (p, 0) = f (p)
and H (∗, t ) = γ (t ) using the homotopy extension property
[70]. In the example above for the specific case X = RP2,
we provide an explicit construction of such a homotopy by
producing a continuous family of homeomorphisms (namely
rotations) of X restricting to γ on the base point, and using
this to define H at every point on S2.

To more rigorously define the action of π1(X ) on π2(X ),
we use the theory of covering spaces [70]. The main theorem
we need concerns the homotopy groups of a covering space Y
with covering map p : Y → X . It states that the map induces
an isomorphism on all πn for n > 1, and an injection on π1.
Intuitively, the covering space is “unwrapping” some portion
of the π1 while leaving the rest of the homotopy unchanged. In
fact, there is a one-to-one correspondence between connected
covering spaces and subgroups π1(Y ) ⊂ π1(X ). The universal
covering space X̃ is the covering space corresponding to the
trivial subgroup.

There is an action of π1(X ) on any regular covering space
Y [one for which π1(Y ) ⊂ π1(X ) is a normal subgroup] by
deck transformations. To define this action, we must specify
where a loop γ at the base point x0 ∈ X sends a point y ∈ Y .
For the base point y0 ∈ Y , we can lift the loop γ to a path
γ̃ with γ̃ (0) = y0, and send y0 to γ̃ (1). For any other point
y ∈ Y lying over x ∈ X , we must first transport the loop γ

to a loop γ ′ at x by choosing a path from x0 to x. If we
choose a different path, the transported loop is well defined
up to conjugation by the loop formed by composing the
two chosen paths. As before, we lift γ ′ to a path γ̃ ′ with
γ̃ ′(0) = y, and map y to γ̃ ′(1). As long as π1(Y ) is a normal
subgroup of π1(X ), this definition is independent of the choice
of path from x0 to x [70]. Note that the subgroup π1(Y ) acts
trivially on Y .

We define the action of π1(X ) on π2(X ) in terms of the
action of π1(X ) on the universal cover X̃ by deck transfor-
mations. An element γ ∈ π1(X ) acts on X̃ by deck trans-
formations, inducing an automorphism γ∗ of π2(X̃ ) [since
X̃ is simply connected, π2(X̃ ) is independent of base point].
Using the isomorphisms in π2 coming from the covering map
X̃ → X , we get an induced automorphism γ∗ of π2(X ). The

action of π1(X ) on π2(X ) is thus defined as a map

ρ : π1(X ) → Aut(π2(X )). (11)

Now we can see the role of base points in defining [T 2, X ].
We found [T 2, X ]∗ = π2(X ) = Z if one allows only pointed
homotopies. The only difference if one allows free homo-
topies is that a free homotopy could incorporate a nontrivial
action of π1(X ) on π2(X ). Thus, [T 2, X ] is the set of orbits
of [T 2, X ]∗ under the action of π1(X ). In the Hermitian case
X = S2, π1(X ) = 0, so we have

ρ = 0, (12)

[T 2, X ] = Z. (13)

In the nontrivial case X = RP2, we note that S2 → RP2

is a double cover, and π1(RP2) = Z2 acts on S2 via the
antipodal map (the deck transformation in this setting) and
thus on π2(S2) by parity-conditioned negation. The map ρ :
π1(X ) → Aut(π2(X )) thus sends 1 ∈ π1(X ) = Z2 = {0, 1} to
the automorphism of π2(X ) = Z given by multiplication by
−1; we can identify Aut(π2(X )) = Z2 = {1,−1} (as the two
automorphisms of Z are given by multiplication by ±1) and
write

ρ(a) = (−1)a. (14)

We study [T 2,RP2] in Sec. III.

III. CLASSIFICATION OF TWO-BAND
NON-HERMITIAN SYSTEMS

Now that we have seen the structure of the argument ap-
plied to the more familiar Hermitian systems, we can see pre-
cisely what changes when one adapts it to non-Hermitian sys-
tems. Instead of the space of Hermitian matrices Herm2(C),
we start by considering the space of all 2 × 2 matrices M2(C).
In the non-Hermitian case, several different gap conditions
have been considered, leading to differing results [25,62]. The
condition we consider here is natural from a mathematical
perspective and results in a classification theory which unifies
and extends the existing results.

We define our target space of gapped non-Hermitian
Hamiltonians as

X = {H ∈ M2(C) : Disc(H) �= 0}, (15)

i.e., the space of 2 × 2 matrices with nondegenerate eigen-
values. To make clear the relationship to the point-gap and
line-gap classifications that have previously been studied, note
that we are considering independently at each wave vector
k whether or not the complex eigenvalues of H coincide as
points in the complex plane. This is a weaker constraint than
used by the point-gap scheme, which considers Hamiltonians
whose spectrum misses a point (such as 0) in the complex
plane. It is also very different from the line-gap scheme, which
considers Hamiltonians whose spectrum misses a line (such
as the imaginary axis) in the complex plane. Under these two
schemes, it has been found [62] that non-Hermitian Hamilto-
nians with a point gap have a Z invariant in dimension one
and none in dimension two, while those with a line gap have
a Z invariant in dimension two and none in dimension one.
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Our gap condition is, however, equivalent to the definition of
separable bands from Ref. [39].

A. Characterizing the target space

With our definition of X in terms of the local gap condition,
we need to parametrize X as before in order to compute
[T 2, X ]. The structure of the argument is the same as before;
here, we highlight only the relevant differences.

Note that we can again perform an eigendecomposition,
just as we did in the Hermitian case. Indeed, a non-Hermitian
matrix with nondegenerate eigenvalues is diagonalizable (e.g..
from the theory of the Jordan normal form [84]). We only
have two modifications to consider. First, the eigenvectors
are no longer orthogonal, so our matrix of eigenvectors is
G ∈ GL2(C) instead of U ∈ U(2). Second, the eigenvalues
can be complex, so the space Conf2(R) is replaced with the
space Conf2(C), i.e., the configuration space of ordered pairs
of distinct points in the complex plane.

In the Hermitian case, we have argued that the description
has a U(1) × U(1) redundancy as well as a Z2 redundancy. In
the non-Hermitian case, the U(1) × U(1) redundancy in the
definition of the eigenvectors becomes a GL1(C) × GL1(C)
redundancy [recall GL1(C) = C×, i.e., the complex plane
without the origin]. The Z2 redundancy remains unchanged.
Therefore, we have a first description of our target space

X =
(

GL2(C)

GL1(C) × GL1(C)
× Conf2(C)

)/
Z2. (16)

As before, while this expression is sufficient for many
calculations, we can simplify it to make a clearer picture
of the novelties in the non-Hermitian setting. The first fac-
tor GL2(C)/GL1(C) × GL1(C), corresponding to the eigen-
vectors, is homotopy equivalent to U(2)/U(1) × U(1) = S2.
This is expected because of the well-known Gram-Schmidt
procedure which deforms GL2(C) into U(2), but the actual
proof is more complicated (see Ref. [85]). The second factor,
Conf2(C), is evidently more interesting than the Conf2(R)
encountered in the Hermitian case. As we see in Fig. 1,
Conf2(C) ∼ S1, where a single loop around S1 corresponds
to the pair of eigenvalues winding around each other once
before returning to their original positions (with the same
ordering). Thus, we can already see the combination of one-
and two-dimensional structure in our characterization

X = (S2 × S1)/Z2. (17)

This is a key result and will guide our understanding in later
sections.

B. Computing the topological classification

Now that we have a simple characterization of the space
X , we can begin to study the topological classification. The
homotopy groups are easily obtained from the description
X = (S2 × S1)/Z2. Indeed, X has a double cover Y = S2 × S1

which has π1(Y ) = Z and π2(Y ) = Z. From general proper-
ties of double covers (Sec. II D), the covering map Y → X
induces an isomorphism in π2 and “unwraps” π1 to some
extent. To be precise, π1(Y ) = Z ⊂ π1(X ), and the quotient

is π1(X )/π1(Y ) = Z2. This is consistent with π1(X ) = Z,
which we verify in Appendix [and π1(Y ) sits inside as the
even integers]. To gain some insight here, we consider the
projections �2 : X → S2/Z2 = RP2 and �1 : X → S1/Z2 =
S1. The map �2 selects the unordered eigenvectors and the
map �1 selects the unordered eigenvalues (after deforma-
tions) of H. As we verify in Appendix, �1 induces an
isomorphism on π1, so π1(X ) = Z. On the other hand, �2

induces an isomorphism on π2 and reduction mod two on
π1 [π1(RP2) = Z2]. So we have the homotopy groups πn(X ),
namely,

π1(X ) = Z, (18)

π2(X ) = Z (19)

and all the higher homotopy groups agree with those of the
sphere S2. We see that all the uniqueness in the non-Hermitian
case originates in the eigenvalue winding in 1D. However,
as we discuss below, this drastically changes the topological
classification in the higher dimensions as well.

The calculation of the homotopy groups also gives some
insight into their nature. The space Conf2(C)/Z2 is also
known as the unordered configuration space UConf2(C). The
one-dimensional invariant is given by the winding of the
eigenvalues in UConf2(C) (so they are allowed to swap af-
ter a complete cycle). The two-dimensional invariant of X
comes from the unordered eigenvectors as an element of RP2.
Moreover, since S2 → RP2 induces an isomorphism in π2, we
see that any map S2 → RP2 can be lifted to a map S2 → S2.
In other words, for a family of Hamiltonians parametrized
by a sphere, one can consistently choose a global ordering
of the complex eigenenergies. Then, the two-dimensional Z
invariant is just the ordinary Chern number.

As an additional conceptual simplification, it is convenient
to think of X as a “proxy” space which closely resembles
RP2. Formally, this is because the map X → RP2 induces
isomorphisms on πm for m > 1 and is the reduction modulo 2
(Z → Z2) on π1, and therefore for our purposes remembers
all important homotopy-theoretic data. This analogy facili-
tates visualization of the following calculation, and leads to
particular physical insights outlined in Sec. IV E below.

Now, we are ready to study [T 2, X ]∗. We use the same
approach as in the Hermitian case. First, we find for the
one-skeleton that

[T 2
1 , X ]∗ = Z2. (20)

This is an intuitive result since we have a pair of integers
describing the eigenvalue winding in each direction on the
torus. Now fixing f : T 2

1 → X , we need to compute [T 2, X ] f
∗ .

We identify f with (a, b) ∈ Z2 describing its winding in both
directions, and write f = (a, b). Recall that in the Hermitian
case, because the map f was trivial on the one-skeleton, we
could replace extensions with elements of π2(X ). Here, be-
cause f is nontrivial, we need a more sophisticated approach.
Our approach is inspired by obstruction theory [78], but we
present it in elementary terms.

Our approach is to compute [T 2, X ] f
∗ by defining an action

of π2(X ) on [T 2, X ] f
∗ . For the purpose of these constructions,

it is most helpful to visualize elements of [M, X ] as RP2
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FIG. 3. A texture on the sphere is merged with a texture on the
torus to form a new texture on the torus. Two configurations are
shown, a skyrmion and an antiskyrmion.

textures on M. The action is defined as in Fig. 3 by gluing
a small sphere onto the torus. In this figure, we show two
configurations, a skyrmion and an antiskyrmion, on S2; later,
we will discuss how one can continuously go from one to the
other, but for now, we just compare the two textures. Starting
with a sphere, one can puncture the sphere and the torus at a
point, inflate these points, and glue the resulting boundaries
together, resulting in a flattened out version of the texture
from the sphere now residing on the torus. This gluing process
works as long as the ellipsoid on the sphere and the torus at the
point of contact have the same orientation. In this way, π2(X )
acts on [T 2, X ] f

∗ , modifying any given texture on the torus to
produce a new texture on the torus with the same behavior
on the one-skeleton. The action can be shown to be transitive;
for proofs of these claims using cohomology in the context of
obstruction theory, see [78,86,87].

We have a transitive group action of π2(X ) on [T 2, X ] f
∗ ; by

the orbit-stabilizer theorem, [T 2, X ] f
∗ = π2(X )/Stabπ2(X )(φ)

(as sets), where Stabπ2(X )(φ) is the stabilizer of some chosen
φ ∈ [T 2, X ] f

∗ [84]. The stabilizer consists of textures on the
sphere which are not homotopic but which become homotopic
once glued onto the torus. It turns out that the only way this
can occur arises from the action ρ : π1(X ) → Aut(π2(X ))

FIG. 4. An RP2 texture on a sphere and a torus, drawn as a field
of ellipsoids; the figure illustrates the mechanism by which the action
of π1(X ) on π2(X ) leads to a reduction from a Z invariant to a Z2

invariant on the torus. The texture on the torus has nontrivial winding
in the x direction, while the texture on the sphere has nontrivial
“Chern number.” The sphere is moved around a complete cycle in
the x direction, and meanwhile each ellipsoid undergoes a π rotation
around the y axis. In the end, the texture on the sphere is equivalent to
the texture on the xz mirror of the original sphere. The color indicates
the angle of rotation around the y axis.

[87]. In Fig. 4, we see the mechanism by which this occurs:
a sphere with a skyrmion texture can be moved around a
nontrivial cycle on the torus such that it ends up with an
antiskyrmion texture. If two spheres with skyrmion textures
are glued onto the torus and only one is moved around, then
we are left with a skyrmion and an antiskyrmion, which can
annihilate. Thus, 1 + 1 = 2 ∈ π2(X ) generates Stabπ2(X )(φ),
as once glued to the torus, 1 + 1 can become 1 + (−1) = 0.
One way to understand this is that although π2(X ) is defined in
terms of pointed homotopies, a pointed homotopy on the torus
can be realized which results in a free homotopy on glued
spheres [making it impossible to consistently choose a lift
in π2(S2)]. However, not all free homotopies can be realized
by moving the sphere around on the torus. The only ones
which can be realized are those coming from [T 2

1 , X ]∗ [via
the action of π1(X ) on π2(X )]. Generalizing the observation
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that 1 = −1 in the quotient and thus 1 − (−1) ∈ Stabπ2(X )(φ),
we see that Stabπ2(X )(φ) is generated by elements of the form
s − ρ( f (γ ))s, where s ∈ π2(X ) and γ ∈ π1(T 2). In other
words,

[T 2, X ](a,b)
∗ = π2(X )/〈1 − ρ(a), 1 − ρ(b)〉. (21)

The angle brackets denote the subgroup generated by a collec-
tion of elements; the statement is that the elements of π2(X )
which become trivial on T 2 are precisely those which can be
written as linear combinations of the two elements which are
obtained by comparing a texture with that obtained by moving
it around either the a or b direction.

We know from the preceding discussion that [T 2, X ] f
∗ =

π2(X )/〈1 − ρ(a), 1 − ρ(b)〉, but we have not yet computed
the action of π1(X ) on π2(X ). Fortunately, this is straight-
forward from our description X = (S2 × S1)/Z2. The even
subgroup of π1(X ) corresponding to the double cover S2 × S1

clearly acts trivially on π2(X ). The odd subgroup acts via deck
transformations on S2 × S1, which restrict to the antipodal
map on S2. Because this map is orientation reversing, we
see that odd elements of π1(X ) act by negation on π2(X ).
Compare this with Fig. 4, where we illustrate this claim for
RP2. Altogether, we find that π1(X ) acts on π2(X ) by parity-
conditioned negation [65]:

ρ(a) = (−1)a. (22)

We observe that 1 − (−1)a is 0 for a even and 2 for a odd.
There are four cases for the parity of a and b to consider; in
each case, the stabilizer subgroup in π2(X ) = Z is either 0 or
2Z. Therefore,

[T 2, X ](a,b)
∗ =

{
Z if a, b are both even,
Z2 otherwise. (23)

This concludes the calculation of the topological classifi-
cation in the non-Hermitian setting. To summarize, we have

[T 2, X ]∗ =
⋃

(a,b)∈Z×Z

{
Z if a, b are both even,
Z2 otherwise. (24)

This should be compared with

[T 2,RP2]∗ =
⋃

(a,b)∈Z2×Z2

{
Z if a, b are both zero,
Z2 otherwise (25)

obtained for the “proxy” simpler space visualized in Figs. 3
and 4. Finally, we have

[T 2, X ] =
⋃

(a,b)∈Z×Z

{
N if a, b are both even,
Z2 otherwise, (26)

where N is the set of natural numbers. We can compare this
with

[T 2,RP2] =
⋃

(a,b)∈Z2×Z2

{
N if a, b are both zero,
Z2 otherwise. (27)

The Z2 invariants in Eq. (24) can be understood in terms
of the gluing procedure of Fig. 3, which creates a localized
positive charge on one band and a localized negative charge
on the other. The Z2 nature of the invariant can be understood
in terms of the procedure of Fig. 4, which inverts the localized
skyrmion texture, i.e., swaps the positive and negative charges

TABLE I. A process demonstrating that the Z2 invariant is un-
stable under the addition of trivial bands. The total charge across all
three bands satisfies a local triviality condition (summing to zero)
throughout the process; we ensure this by handling the charges in
pairs (one positive and one negative). Stage 1 describes a three-band
system where the first two bands have a nontrivial (odd) winding and
a nontrivial Z2 invariant. The notation indicates a localized positive
charge on band 1 and negative charge on band 2. This configuration
is equivalent to that shown in stage 2, where we have created a
superposed positive and negative charge on band 3 and then separated
the four charges into two pairs, one between band 1 and band 3 and
one between band 2 and band 3. We apply the odd winding to the first
pair to get to stage 3, and then annihilate the two pairs of opposite
chirality to get the trivial stage 4 configuration.

Stage 1 Stage 2 Stage 3 Stage 4

Band 1 + +
Band 2 − − +−
Band 3 −+ −+

between the two bands. A consequence of this is that one
can start with a pair of skyrmions (total charge 2), move one
around the torus in a direction of odd winding to obtain a
skyrmion and an antiskyrmion, and then annihilate these to
obtain a trivial configuration.

Additionally, the invariants are evidently related to Chern
numbers. However, the Z2 case is somewhat subtle because
Chern number is not defined when a global ordering of the
bands is absent. One could attempt to integrate over the double
cover of the torus to remedy this, but the result of such
integration is always zero because the contributions from the
two sheets cancel each other. Finally, one could simply just
integrate over the single torus, ignoring the discontinuity at
the boundary. However, such a procedure does not produce a
quantized result, and hence such integration does not represent
a topological invariant. We discuss the proper way to compute
the Z2 invariant later in Sec. IV E, where we also apply the
method to study a simple toy Hamiltonian.

In contrast with topological classifications based on K the-
ory, our homotopy approach predicts both stable and unstable
invariants. Here, an invariant is said to be stable if it survives
in the presence of additional topologically trivial bands [69].
The Z Chern number and Z winding numbers are known to
be stable since they are predicted using K theory [62]. The Z2

invariant we predict using homotopy theory is unstable. This
is best seen in an example, so in Table I we describe an explicit
procedure by which an additional trivial band can trivialize the
Z2 invariant.

IV. PHYSICAL INTERPRETATION OF
CLASSIFICATION RESULTS

In this section, we develop a physical framework for
understanding the classification result obtained in Sec. III.
First, in Sec. IV A we describe a well-known relation-
ship between gapped systems and gapless systems, namely,
how a Chern number can be described in terms of Weyl
points. Then, in Sec. IV B, we extend this correspon-
dence to the non-Hermitian setting using Weyl points and
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exceptional rings, and use this correspondence to interpret the
Z2 invariants.

To strengthen our intuition about the reduced topological
classification on a torus, we discuss in Sec. IV C an analogy
with the classification of topological defects and textures in
nematic liquids [71–73], where a closely related phenomenon
has been known for a long time [71]. Similar phenomena
have been studied more recently in the context of the fragile
topology of real-symmetric Hamiltonians [68,74], which we
briefly review in Sec. IV D.

A. Correspondence betwen Chern number and Weyl points in
Hermitian systems

We revisit in this section certain elementary aspects of
band topology in Hermitian systems, before shifting our focus
in Sec. IV B to non-Hermitian systems. The prototypical
example of a topological invariant in Hermitian band theory is
the (first) Chern number, which is an integer number assigned
to any 2D closed manifold inside the momentum space [1]. It
is defined as the integral of Berry curvature over the manifold,
divided by 2π . Importantly, there is an exact mathematical
correspondence which allows us to interpret the Chern num-
ber on a given manifold in terms of the Weyl points enclosed
inside that manifold. To be more precise, recall that Weyl
points are pointlike degeneracies of a pair of bands inside
the three-dimensional (3D) k space [64]. Depending on their
chiral charge χ = ±1, each Weyl point (WP) acts as either
a source or a sink of a 2π quantum of Berry curvature [88].
Since Berry curvature has vanishing divergence away from
band degeneracies, it follows from Stokes’ theorem that the
integral of the Berry curvature on the boundary M = ∂D of
any region (domain) D is quantized to integer multiples of 2π ,
and the Chern number c is exactly equal to the total charge of
the Weyl points in D.

Reformulating the statements mathematically, it follows
from the definition of the Chern number

cα = 1

2π

∮
M

Fα (k) · d2k ∈ Z (28a)

that

cα =
∑

WPα∈D
χα

WP. (28b)

In Eqs. (28), Fα (k) = i〈∇uα
k | × |∇uα

k 〉 is the Berry curvature
on energy band α, |uα

k 〉 is the corresponding cell-periodic part
of the Bloch wave function, and ∇ is the gradient operator
in k space. Note that we have fixed one band (labeled α),
and we consider only the Weyl points formed by this band.
Furthermore, as WPs are degeneracies of pairs of bands, it
can be shown [88] that

χα
WP = −χ

β
WP for WP formed by bands α and β, (28c)

meaning that each WP acts as a sink on one of the two bands,
and as a source on the other band. Two Weyl points which
are both formed by bands α and β can annihilate only if their
chirality is opposite.

B. Interpreting the Z2 invariant in terms of braiding of Weyl
points around exceptional rings

The correspondence between topological insulator and
band nodes becomes more subtle in a non-Hermitian set-
ting. Although the (first) Chern number has been previously
considered in non-Hermitian systems [39,40], as it is mean-
ingful for some 2D closed manifolds, non-Hermitian Bloch
Hamiltonians have an additional 1D invariant [39]. This 1D
invariant interacts nontrivially with the Chern number in the
sense that the Chern number can be reduced from Z to
Z2 depending on the 1D invariant (Sec. III). As discussed
above, the complication stems from the complex-valued band
energies, which allow for the permutation of two energy bands
along a closed trajectory without forming a band degeneracy
on the way. The presence of such a trajectory inside the 2D
Brillouin zone makes it impossible to globally assign each
band a unique band index, and therefore Eq. (28a) cannot be
readily applied to compute the first Chern number. Here, we
briefly discuss the reduction mod 2 of the Chern number in
terms of a braiding of Weyl points around exceptional rings
reported in Ref. [65].

To get an insight into the nature of the non-Hermitian
counterpart of the Chern number, we find it useful to consider
again the correspondence with Weyl points. In non-Hermitian
systems, it has been found that Weyl points generically turn
into one-dimensional ringlike degeneracies known as excep-
tional rings [27,64]. These exceptional rings have been found
to have nontrivial one-dimensional invariant associated with
the winding on a circle threaded by the ring (associated with
the point-gap classification scheme) as well as a nontrivial
Chern number on a sphere large enough to enclose the entire
ring (associated with the line-gap scheme). Inside a torus,
a small exceptional ring may be considered effectively as a
Weyl point, with the understanding that it will generically
have some small but nonzero radius. However, one can con-
sider large exceptional rings which thread through the torus,
in either direction (inside or outside).

For simplicity, we consider a two-band model on a torus
[see Fig. 5(b)]. We assume that the two bands are nontriv-
ially permuted along the φ direction of the torus, and that
originally there are no band degeneracies inside the torus.
The nontrivial band permutation is realized by an exceptional
nodal line threaded through the torus. Let us now consider
the following process: through a local band inversion, we
produce a pair of Weyl points of opposite chirality. By appro-
priately adjusting the Hamiltonian parameters, we transport
one of the Weyl points along the φ direction, while keeping
the other Weyl point fixed. Along the path, the transported
Weyl point flips upside down. According to Eq. (28c), the
flip implies that the Weyl point has effectively reversed the
chirality. As a consequence, the two Weyl points now (lo-
cally) carry the same chirality, and are not able to annihilate
anymore.

Conversely, any pair of Weyl points can be annihilated
in a model that exhibits a nontrivial band twist along some
direction of a 3D region D. If the two Weyl points locally
have the same chirality, one can still annihilate them by
transporting one of the Weyl points along the nontrivial path.
We thus observe that the right-hand side of Eq. (28b) is no
longer an integer invariant in a non-Hermitian system if there
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(a) (b)

FIG. 5. (a) Comparison of the three physical settings discussed in Secs. IV B, IV C, and IV D. Although the terminology differs, the
description of their singularities (topological defects) is very similar. All three systems exhibit topologically protected line and point defects
in 3D, mathematically described respectively by π1 and π2 of the order-parameter space. In each instance, the 1D and 2D invariants interact
nontrivially, meaning that the π2 charge describing a point node flips sign if it is carried along a closed path with nontrivial π1 charge. This
interaction leads to Z −→ Z2 lowering of the topological invariant on the torus, if there is a nontrivial π1 charge in some direction. (b) A 2D
torus embedded in 3D, with a green curve indicating an exceptional line, and red and blue points indicating Weyl points of opposite chirality.
The two angular coordinates on the torus are denoted θ and φ. Since the φ direction links with the exceptional line, the torus has nontrivial 1D
invariant in the φ direction. By moving one of the Weyl points around the exceptional line, we can change its chirality and obtain a configuration
with total charge 2 from this initial configuration of total charge 0; thus, total charge 2 represents a topologically trivial configuration, as we
understand in terms of braiding Weyl points around an exceptional line.

is a nontrivial band flip in some direction of the region D. On
the other hand, the parity (even vs odd) of the total number
of Weyl points inside D remains invariant, as long as no Weyl
points are allowed to move across the boundary ∂D, i.e., as
long as ∂D does not exhibit a gap closing. This change of
parity is the manifestation of our Z2 invariant in terms of
the correspondence between gapped and gapless systems. For
more details on this procedure, see Ref. [65].

Thus, we understand the classification result (24) in terms
of Weyl points and exceptional lines and rings inside the
torus. While the system is gapped on the torus, it has band
degeneracies inside the torus. Exceptional lines and rings
which link with the torus are responsible for the 1D part
of the classification, i.e., the winding numbers on the one-
skeleton; Weyl points are responsible for the 2D part, i.e., the
extension to the two-cell. The construction from Sec. III of a
group action of π2(X ) on [T 2, X ] f

∗ can be understood as the
insertion of a Weyl point into the interior of the solid torus.
The reduction mod 2 of the Z invariant under conditions of
nontrivial winding is understood in terms of parity flip of Weyl
points (see also Fig. 4).

C. Insights from the physics of nematic liquids

Nematic liquids [73] are the archetypal example of an
ordered phase considered in the context of topological defects
and textures [72]. This phase of matter is built up from approx-
imately rodlike molecules, which are randomly positioned
(resembling a liquid) but with a frozen orientation (resembling
a crystalline solid). The order parameter of a liquid crystal
is the so-called director, which is an unioriented axis that
describes the local orientation of the molecules. The order-
parameter space of such “uniaxial” nematics is therefore

X = S2/Z2 = RP2, (29)

where S2 represents a unit vector n aligned with the orienta-
tion of the molecules, and the quotient identifies n ∼ −n to

produce the “headless” director. This is exactly the “proxy”
space considered in detail in Sec. III.

The order-parameter field of a nematic liquid in 3D may
exhibit topological defects, which can be explained using
homotopy groups. On the one hand, the first homotopy group
π1(RP2) = Z2 describes a nontrivial twist of the order pa-
rameter along a closed path (S1). More precisely, this is a
π rotation of the director, and the corresponding defect is
described as a disclination line [71]. On the other hand,
the second homotopy group π2(RP2) describes a nontrivial
texture of the director on a sphere (S2), which is colloquially
called hedgehog.

Naively, by recalling the correspondence between Chern
number and Weyl points from Sec. IV A, one might think
that nematic textures on a closed surface ∂D would be char-
acterized by an integer topological invariant that is in corre-
spondence with the number of hedgehogs in D. However, this
conclusion is wrong. It has been recognized by Volovik and
Mineev [71] that moving a hedgehog around a disclination
line flips its integer topological charge. As a consequence, any
pair of hedgehog defects can pairwise annihilate if brought
together along a nontrivial trajectory. This is very similar
to the way Weyl point chirality in non-Hermitian system
is reversed when it is moved around an exceptional line.
Therefore, one can draw the following analogy between non-
Hermitian systems and nematic liquids:

exceptional lines ←→ disclination lines, (30a)

Weyl points ←→ hedgehogs. (30b)

For nematic liquids, it has been found [87] that the in-
teraction between the 1D and the 2D invariants reduces the
topological classification of textures on torus from Z to Z2

whenever there is a nontrivial 1D invariant of the director
along some direction of the torus. The Z2 invariant is in
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one-to-one correspondence with the parity of the number of
hedgehogs inside the torus [cf. Fig. 5(b)].

D. Fragile topology of real Hermitian models

Very recently, the observation that topological invariant on
a 1D subspace can reduce the topological classification on a
2D manifold has also been made in the context of topological
band theory. More specifically, this phenomenon was reported
[68,74] for fragile topological invariants [89] of models with
real-symmetric Hamiltonians. Such condition arises either in
the presence of C2T symmetry (composition of π rotation
with time reversal) or PT symetry (composition of spatial
inversion with time reversal) [67,76,90].

Let us first summarize the so-called “stable” topology of
such real-symmetric Hermitian models, which correspond to
nodal class AI of Ref. [91]. The generic band degeneracy
of such Hamiltonians in 3D is a nodal line, protected by
a Z2-valued (quantized) Berry phase on closed paths (S1).
Furthermore, nodal lines can be folded to produce closed
nodal-line rings, which were reported to carry a Z2-valued
monopole charge [92] on the enclosing sphere (S2). This pair
of Z2 invariants mathematically correspond to so-called first
and second Stiefel-Whitney class [75,79]. By fine tuning the
Hamiltonian parameters, nodal-line rings with a monopole
charge can be shrunk to a pointlike degeneracy known as “real
Dirac point” [93], resembling the way we considered shrink-
ing exceptional nodal-line rings to Weyl points in Sec. IV B.

In systems with a small number of bands, the groups de-
scribing the band nodes of real-symmetric Hamiltonians may
be enriched. This phenomenon is called fragile topology, and
its presence for real-symmetric Hamiltonians has been linked
[89,94,95] to the physics of twisted bilayer graphene near
the magic angle [96–98]. Especially, when such Hamiltonian
exhibits two occupied and an arbitrary (but larger than two)
number of unoccupied bands, the monopole charge becomes
an integer [91,93] called a Euler class [66,74,75]. It has been
reported [68] that the Euler class of a nodal-line ring flips
sign when it is carried along a closed path with nontrivial
Berry phase. As a consequence, the topological classification
of real-symmetric 2D Hamiltonians with two occupied bands
reduces from Z to Z2 whenever there is a nontrivial Berry
phase along some direction of the torus [cf. Fig. 5(b)]. The Z2

invariant that remains from the integer Euler class is again the
second Stiefel-Whitney class, which we mentioned above in
the context of the stable topology. One thus finds the following
analogy between the non-Hermitian two-band Hamiltonians
and the fragile topology of real-symmetric Hamiltonians:

exceptional lines (EL) ←→ nodal lines (NL), (31a)

Weyl points ←→ real Dirac points, (31b)

(EL-rings) (NL-rings). (31c)

The comparison between the various systems considered
in Secs. IV B, IV C, and IV D is summarized by the table in
Fig. 5(a).

E. Wilson-loop spectra interpretation of the Z2 invariant

Apart from understanding the Z2 topology in terms of
Weyl points in 3D (Sec. IV B), it is also desirable to have
an intrinsic 2D algorithm to determine the Z2 invariant de-
rived in Sec. III B in Eq. (23). Here, we describe such an
algorithm. Recall that many Hermitian 2D topological invari-
ants, including the Chern number, appear in the Wilson loop
eigenvalue flow [99,100], so this is a natural place to look
for features of the Z2 invariant, which we understand as a
mod 2 reduction of the Chern number. To define the Wilson
loop eigenvalue flow, we slice the torus into loops and study
the change of Wilson loop eigenvalues along the family of
loops.

Of the many possible loop directions we could choose on
the 2D torus, only some of them exhibit the familiar and
essential gauge invariance; however, we can always choose
a loop direction with this property. The condition for gauge
invariance is that the eigenvalues not interchange along the
loop direction. Indeed, the two eigenvectors have independent
gauge (phase) degrees of freedom, and so if they interchange,
the eigenvalue is no longer gauge invariant. However, it is
always possible to choose such a loop direction with no eigen-
value interchange (even winding number); if both winding
numbers are odd, one can choose the diagonal as the loop
direction [101]. In the following discussion, we write k1 and
k2 to denote the two directions on the torus, and we assume
that the winding along the k1 direction is even.

Under this assumption, we consider a family of parallel
loops covering the torus, where each loop is directed along
the k1 direction. For each loop, the energy order is well
defined and we can compute Wilson-loop eigenvalues (Berry
phases) for both bands. We use biorthogonal left and right
eigenvectors to compute the Berry phases, as is standard for
non-Hermitian systems [27]. We consider two cases, depend-
ing on whether the winding in the k2 direction is even or odd.

In the first case, the winding in the k2 direction is even,
and we expect a Z invariant which is the usual Chern number.
The Chern number is equal to the winding number say of φ1

as one varies k2 (which is well defined because φ1 and φ2 do
not swap). Because the two eigenvalues eiφ1 and eiφ2 satisfy
φ1 + φ2 = 0 mod 2π , an alternative characterization of the
Chern number is as the number of times φ1 and φ2 cross, taken
with sign, either at φ1 = φ2 = 0 or at φ1 = φ2 = π (the two
crossing numbers are equal).

In the second case, the winding in the k2 direction is odd,
and we expect a Z2 invariant. The odd winding along the
k2 direction requires the two eigenvalues to have odd total
crossing and swap as we vary k2 from −π to π . Because
the two bands swap, there is no consistent notion of band
ordering and therefore no notion of a signed number of
crossings of Wilson loop eigenvalues. However, the crossing
number at φ1 = φ2 = 0 or φ1 = φ2 = π can still be taken
mod 2, without needing to account for sign, and the sum
will be odd. On physical grounds, the crossing number mod
2 at φ1 = φ2 = π must be our Z2 invariant since a model
with a single crossing at φ1 = φ2 = 0 can be deformed to a
model with both φ1 and φ2 constant at 0, which is clearly
trivial.

In Fig. 6, we illustrate the case where we have a Z2

invariant. We first construct a 3D lattice model [65] with Weyl
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FIG. 6. The Wilson loop eigenvalue flow for the Z2 invariant. (a),
(c) Show nontrivial Z2 invariant, while (b) and (d) show trivial Z2

invariant. We construct 2D models starting with a 3D model, and
restricting to a 2D surface inside 3D k space. The 3D model has
four Weyl points (red) located at kz = 0 plane as shown in (a) and
(b). We choose two different cylinders (topologically, toruses) whose
projections are shown as orange loops in (a) and (b) for the Wilson
loop calculation in (c) and (d). (c) Shows the flow of Wilson loop
eigenvalues when the center of the cylinder lies at (kx, ky ) = (0, 0).
The cylinder encloses one Weyl point and the invariant is nontrivial.
We see one crossing (odd) at π and two crossings (even) at 0.
(d) Shows the flow of Wilson loop eigenvalues when the center of the
cylinder lies at (kx, ky ) = (1.2, 1.2). The cylinder encloses no Weyl
points and the invariant is trivial. We see zero crossing (even) at π

and three crossings (odd) at 0.

points and nontrivial winding along one momentum direction:

H(k; m) = ei kz
2

[
cos

(
kz

2
− π

3

)
sin kxσx

+ cos

(
kz

2
+ π

3

)
sin kyσy

+
(

sin kz cos
kz

2
− 2m sin

kz

2

)
σz

]
. (32)

The construction is inspired by the correspondence de-
scribed in Sec. IV B. For m > 1, there are four Weyl points
at (kx, ky, kz ) = (0, 0, 0), (π, 0, 0), (0, π, 0), and (π, π, 0).
Here, we take m = 2 and kr = 1. Now we can take a cylinder
(more precisely a torus) centered at kx = ky = 0 with certain
radius kr , small compared to the separation of the Weyl points.
This 2D torus embedded in the 3D space of kx, ky, and kz will
define our 2D model, taking the polar direction on the cylinder
to be k1 (since there is clearly no winding along this direction)
and the kz direction to be k2 (since there is odd winding in
this direction). For this choice of cylinder, the total parity of
the enclosed Weyl points is 1. On the other hand, if we shift

the center of the cylinder away from kx = ky = 0 to move
the Weyl point outside of the cylinder, the total parity of the
Weyl points is 0. We choose our loop direction to be k1 (the
polar direction on the cylinder) and calculate the Wilson loop
eigenvalue flow as we vary k2 (kz). The results for the two
choices of cylinder are shown in Fig. 6.

V. GENERAL CLASSIFICATION OF N-BAND MODELS

We have by now developed a solid understanding of topo-
logical invariants in non-Hermitian systems with two bands.
Here, we generalize the result to N bands. The structure is
even richer, with Z- and Z2-valued invariants replaced with
braid group (BN ) and cyclic groups (Zk) valued invariants.
Nevertheless, the overall logic behind the derivation of these
results is the same as before.

To start, we use the same gap condition

X = {H ∈ MN (C) : Disc(H) �= 0}. (33)

This means that we only consider “fully gapped” Hamil-
tonians in which all the complex eigenvalues are distinct.
The deformations and redundancies from before generalize
directly to this scenario, giving

X =
(

U(N )

U(1) × · · · × U(1)
× ConfN (C)

)/
SN , (34)

where the unitary quotient space U(N )/U(1) × · · · × U(1) is
known as the complex flag manifold, and SN is the symmetric
group, acting via N × N permutation matrices. In this case,
we will not simplify the presentation of X further. Instead, we
use well-known results [70,77,78] concerning the homotopy
groups of the factors, namely,

π1(ConfN (C)) = PN , (35)

πm(ConfN (C)) = 0, m > 1 (36)

π1(UConfN (C)) = BN , (37)

πm(UConfN (C)) = 0, m > 1 (38)

π1

(
U(N )

U(1) × · · · × U(1)

)
= 0, (39)

π2

(
U(N )

U(1) × · · · × U(1)

)
= ZN−1. (40)

Here, PN is the pure (ordered) braid group, BN is the full braid
group, and ConfN (C) [UConfN (C)] is the ordered (unordered)
configuration space of N points in the complex plane. The
first equations are understood in terms of N-ordered points
in the plane braiding around each other. The last equation
describes a Chern number associated to each band, subject to
the constraint that the sum over the Chern numbers of all the
bands must be zero.

We can compute the homotopy groups of X as before.
Since X has a covering space with deck transformation
group SN whose homotopy groups we understand, we ob-
tain immediately π2(X ) = ZN−1. We use the projection X →
ConfN (C)/SN = UConfN (C) with simply connected fiber to
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obtain π1(X ) = BN . The interpretation of these invariants is a
straightforward extension of the two-band case.

Now, we can study [T 2, X ]∗. On the one-skeleton, we
have [T 2

1 , X ]∗ = B2
N . Now, π1(X ) = BN acts on π2(X ) =

ZN−1 by permutations in the standard representation; this is
evident from the SN -covering space and the interpretation
of π2(U(N )/U(1) × · · · × U(1)) as N Chern numbers whose
sum is zero.

Let f : T 2
1 → X be given by a pair of braids (b1, b2), and

let (σ1, σ2) be the corresponding pair of permutations. We
will study extensions of f to the two-cell of the torus by
computing the stabilizer for the action of π2(X ) on the set
of extensions. The relations on π2(X ) = ZN−1 are generated
by the columns of 1 − σ1 and 1 − σ2 as matrices in the
standard matrix representation. As an example, we study the
case σ1 = (1, . . . , N ) is a single N cycle, and σ2 = 1 trivial.
The notation σ1 = (1, . . . , N ) means that band 1 goes to band
2, band 2 goes to band 3, etc., and band N goes back to band
1. We choose a basis {ei − ei+1} for ZN−1. With respect to this
basis, we have

1 − σ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0 1

−1 1 0 . . . 0 0 1

0 −1 1 . . . 0 0 1
...

...
...

. . .
...

...
...

0 0 0 . . . 1 0 1

0 0 0 . . . −1 1 1

0 0 0 . . . 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)

Multiplying on the left by the determinant 1 matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0 0

1 1 0 . . . 0 0 0

1 1 1 . . . 0 0 0
...

...
...

. . .
...

...
...

1 1 1 . . . 1 0 0

1 1 1 . . . 1 1 0

1 1 1 . . . 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (42)

we obtain ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0 1

0 1 0 . . . 0 0 2

0 0 1 . . . 0 0 3
...

...
...

. . .
...

...
...

0 0 0 . . . 1 0 N − 3

0 0 0 . . . 0 1 N − 2

0 0 0 . . . 0 0 N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(43)

whose column space is an index N sublattice of ZN−1. It
follows that instead of N − 1 Chern numbers, the invariant of
these N bands reduces to a single ZN invariant. The intuition
is similar to the two-band case. The row vector (1, . . . , 1)
provides the map ZN−1 → ZN , so we can interpret the ZN

invariant as the total number of Weyl points
∑

i ei − ei+1 mod
N (see Sec. IV E). The result for general permutations is more

complicated, but can be worked out on a case-by-case basis
by computing the Smith normal form [102].

VI. CONCLUSION

We have presented a topological classification scheme for
gapped non-Hermitian systems, which generalizes existing
schemes and finds different types of topological invariants. In
particular, we find 1D invariants with values in braid groups,
and 2D invariants with values in ZN instead of the expected
collection of N − 1 independent Chern numbers. We provided
a detailed pedagogical explanation of how this arises from
the mathematical phenomenon of the action of π1 on π2. We
interpreted these classification results in terms of Weyl points
and exceptional rings, and connected them to a previously re-
ported nodal braiding in non-Hermitian systems. We illustrate
these results using the familiar physics of nematic liquids, and
also describe connections to fragile topology of real Hermitian
models. Finally, we describe how these invariants are com-
puted, and we illustrate this in a simple computational model.

As we have explained, models representing any of the
reported classes can easily be constructed using Weyl points
and exceptional rings. This would allow the creation of lattice
models in order to experimentally probe edge-state phenom-
ena associated with these invariants, e.g., in optical lattices or
synthetic dimension lattices [103]. Then, one could extend the
bulk-edge correspondence to this generalized classification
and invariants, providing a clearer understanding of the bulk-
edge correspondence in non-Hermitian systems.

Note added. Recently, a similar work was brought to our
attention (Ref. [104]) which arrives at the same classification
result; our paper in addition provides a pedagogical derivation
and many intuitive ways to understand the classification result,
in addition to an algorithm for computing the invariants.
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APPENDIX: HOMOTOPY GROUPS OF (S2 × S1)/Z2

In this Appendix, we study the maps �1 and �2 introduced
in Sec. III B and use them to formalize some claims about the
homotopy groups of X = (S2 × S1)/Z2. In particular, we can
gain some intuition about the homotopy groups by relating X
to S1 and to RP2. Furthermore, the covering space structure
alone is insufficient to completely determine π1(X ), whereas
these calculations do determine π1(X ).
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Recall that �1 : X → S1 and �2 : X → RP2 are the nat-
ural projections from X . Both S1 and RP2 have necessarily
forgotten the ordering of the eigenvalues and eigenvectors.
Note that once one fixes an ordering on the eigenvectors,
an ordering is also determined on the eigenvalues (and vice
versa). Thus, the map �2 is a fiber bundle with fiber S1, and
the map �1 is a fiber bundle with fiber S2. We can formally
write this as

S2 −−−−−−−> X
�1−−−−−−−> S1,

S1 −−−−−−−> X
�2−−−−−−−> RP2. (A1)

From a general property of fiber bundles, we obtain the long
exact sequences [70]

· · · −−−−−−−> πm(S2) −−−−−−−> πm(X ) −−−−−−−> πm(S1)

−−−−−−−> πm−1(S2) −−−−−−−> · · · , (A2)

· · · −−−−−−−> πm(S1) −−−−−−−> πm(X ) −−−−−−−> πm(RP2)

−−−−−−−> πm−1(S1) −−−−−−−> · · · . (A3)

It follows from the exactness of the sequence in Eq. (A2) and
from π1(S2) = 0 = π0(S2) that πm(X ) → πm(S1) is an iso-
morphism for m = 1, therefore, the one-dimensional invariant
is given by the winding of the eigenvalues in UConf2(C).
Furthermore, we find using the exact sequence in Eq. (A3) and
using π2,3,...(S1) = 0 that πm(X ) → πm(RP2) is an isomor-
phism for m > 2. For m = 2, this map is still an isomorphism
because the map π1(S1) = Z → π1(X ) = Z is the inclusion
of the even integers. This observation also implies that for
m = 1, the map is a reduction modulo 2, i.e., π1(RP2) =
Z2 remembers the parity of the winding of the unordered
eigenvalues.

We remark that a covering space is a special case of a
fiber bundle, one whose fiber is discrete. Applying the long
exact sequence to S2 × S1 → (S2 × S1)/Z2 reproduces the
result that the covering map induces an isomorphism in π2

and an inclusion in π1, and in fact tells us that π1(X ) surjects
onto Z2 with kernel π1(S2 × S1) = Z. However, one is unable
to determine the extension type from this information alone,
which is one reason it is beneficial to study the fiber bundles
�1 and �2.
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