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Acoustic and optical properties of a fast-spinning dielectric nanoparticle

Daniel Hümmer , René Lampert, Katja Kustura, Patrick Maurer, Carlos Gonzalez-Ballestero , and Oriol Romero-Isart
Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria

and Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria

(Received 18 December 2019; revised manuscript received 18 April 2020; accepted 23 April 2020;
published 13 May 2020)

Nanoparticles levitated in vacuum can be set to spin at ultimate frequencies, limited only by the tensile strength
of the material. At such high frequencies, drastic changes to the dynamics of solid-state quantum excitations are
to be expected. Here, we theoretically describe the interaction between acoustic phonons and the rotation of a
nanoparticle around its own axis and model how the acoustic and optical properties of the nanoparticle change
when it rotates at a fixed frequency. As an example, we analytically predict the scaling of the shape, the acoustic
eigenmode spectrum, the permittivity, and the polarizability of a spinning dielectric nanosphere. We find that
the changes to these properties at frequencies of a few gigahertz achieved in current experiments should be
measurable with presents technology. Our work aims at exploring solid-state quantum excitations in mesoscopic
matter under extreme rotation, a regime that is now becoming accessible with the advent of precision control
over highly isolated levitated nanoparticles.
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I. INTRODUCTION

Levitated nanoparticles in high vacuum [1–3] have at-
tracted interest due to their excellent isolation from the en-
vironment paired with the ability to optically detect their
position with high precision. Recent advances have rendered
it possible to control the translational motion of such nanopar-
ticles at the level of single quanta [4–10]. At the same
time, there is a growing level of control over their rota-
tional degrees of freedom [11–18]. More recently, attention
has been focused on the solid-state quantum excitations of
nanoparticles [19–21]. The latter is motivated by the fact that
well-isolated nanoparticles can be used to study solids at the
mesoscopic scale, where their quantum excitations can be
highly discretized and long lived [22], and their dynamics
may consequently be radically different from bulk solids and
nonisolated mesoscopic systems. Internal solid-state quantum
excitations (e.g., acoustic phonons, magnons, or plasmons)
should not be confused with the internal degrees of freedom of
nanoparticles embedded with quantum emitters [15,23–27].

In this context, a key advantage of levitated nanoparticles is
the possibility to spin them at the highest frequencies, limited
only by the cohesion of the material [16–18,28]. This situation
offers the unique opportunity to study the mesoscopic internal
physics of a nanoparticle under extreme rotation. In this paper,
we start to address this research direction in the simplest
case of a nanosphere and acoustic vibrations (phonons). To
this end, we model the coupled dynamics of rotational and
vibrational degrees of freedom of a nanoparticle from first
principles. We then analytically study how the linear acous-
tic and optical properties of the nanoparticle are modified
when it is spinning at a fixed frequency. We find that for
dielectric nanospheres rotating at gigahertz (GHz) frequencies
as achieved in current experiments [17,28], rotation-induced
changes should be measurable, for instance in the polariz-

ability of the nanosphere and the phonon frequency spectrum.
Moreover, we find that nonlinear elastic effects could already
be detected at such frequencies. We remark that related studies
and experiments have been performed for levitated droplets of
classical [29–31] and superfluid liquid [32–35] as well as with
graphene nanoplatelets [14].

This paper is structured as follows. In Sec. II, we develop
a general theory to describe the coupling of the rotational
and vibrational degrees of freedom of a linear elastic rotor
of arbitrary shape. In particular, we obtain the Hamiltonian
governing the dynamics of the phonon field of a body spinning
at a fixed frequency. We then use this model to infer how the
shape, the acoustic eigenmode spectrum, and the permittivity
are modified under rotation. For the particular case of a
spherical particle, we also describe the change of the electric
polarizability. In Sec. III, we study the dependence of these
properties on the rotation frequency for the particular case of a
levitated dielectric nanosphere, using parameters correspond-
ing to the experiment reported in Ref. [17]. We conclude and
provide an outlook for further research directions in Sec. IV.
Appendix A contains a review of the core concepts of elas-
todynamics which we use to model acoustic excitations. In
Appendix B, we extend this theory to account for the spinning
of the entire body and sketch how its general Lagrangian can
be justified. In Appendix C, we revise the phonon eigenmode
structure of a resting sphere and provide details on our model
for the particular case of a spinning spherical nanoparticle.
In Appendix D, we describe at which rotation frequencies
nonlinear elastic effects start to appear.

II. THEORETICAL MODELING

We model the spinning nanoparticle as a linear elastic rotor
the vibrations of which can be described using linear elasticity
theory. A brief introduction to linear elastodynamics is given
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in Appendix A. In Sec. II A, we construct the Hamiltonian
of a nanoparticle spinning at a given frequency starting from
the general Lagrangian of a linear elastic rotor of arbitrary
shape. In Sec. II B, we discuss the influence of rotation on the
shape and acoustic properties of the spinning nanoparticle by
analyzing this Hamiltonian. In Sec. II C, we approximate how
rotation modifies the optical properties of the nanoparticle due
to changes in its shape.

A. Spinning nanoparticle

A linear elastic rotor has translational, rotational, and vi-
brational degrees of freedom, described by its center of mass
position rcm(t ), Euler angles �(t ), and displacement field
u(r, t ), respectively. In this work, we focus on nanoparticles
levitated in a harmonic potential. Rotational and vibrational
degrees of freedom then decouple from the center of mass and
their joint evolution can be described by the Lagrangian

L =
∫

B

[
ρ

2
u̇2 − 1

2
Si jCi jkl Skl

]
dr + 1

2
ωiI i j[u]ω j, (1)

which can be justified from first principles; see
Appendix B. The first term is the standard Lagrangian
of linear elastodynamics [36,37]. The displacement field
u(r, t ) indicates the time-dependent displacement of an
infinitesimal volume element of the elastic body B from its
equilibrium position r, relative to a comoving and corotating
body frame. As detailed in Appendix B, comoving implies
that this reference frame has the same linear velocity as
the nanoparticle and corotating means it has the same
angular velocity. Further, ρ(r) is the mass density of the
nanoparticle, Ci jkl are the components of the elasticity tensor
C(r) encoding its elastic properties, and Si j ≡ (∂iu j + ∂ jui )/2
are the components of the strain tensor S(r, t ) that describes
how the nanoparticle is deformed under a displacement field
u(r, t ). Here, the indices i, j, k, and l label the Cartesian
components relative to the orthonormal basis {e1, e2, e3}
spanning the body frame and we use the convention that
repeated indices are implicitly summed over. The second term
in Eq. (1) describes the kinetic energy due to the rotation of
the body around its own axis. The angular velocity vector
ω(t ) in general varies in time via its dependence on the Euler
angles �(t ); see Eq. (B6). As vibrations redistribute the
mass of the rotor, the inertial tensor I is a functional of the
displacement field

I i j[u] ≡
∫

B
ρ[(rk + uk )(rk + uk )δi j − (ri + ui )(r j + u j )]dr,

(2)

where δi j is the Kronecker symbol and ri = r · ei are the
components of the position vector relative to the body frame.
The inertial tensor is symmetric, I i j = I ji.

The dependence of the inertial tensor on the displacement
field engenders a coupling between the rotation and vibrations
(phonons) of the nanoparticle. Accordingly, the equation of
motion for the displacement field

ρü(r, t ) = Du(r, t ) + ρω2r⊥ + ρω2u⊥(r, t ) (3)

involves the angular velocity ω(t ) ≡ |ω(t )| of the nanopar-
ticle, where we define the differential operator D acting on

the displacement field as [Du]i = ∂ jCi jkl ∂kul . The vectors
r⊥ and u⊥(r, t ) are the projections of the position and dis-
placement vectors onto the plane orthogonal to the rotation
axis along ω. Equation (3) states that the displacement field is
accelerated by different force densities: The first term on the
right-hand side describes the elastic restoring force opposing
the displacement u(r, t ) which deforms the nanoparticle. The
second and third term correspond to the centrifugal forces
that act at each point r + u(r, t ) of the deformed nanoparticle.
There is a second set of equations of motion which describe
the evolution of the Euler angles; see Eq. (B15). Both sets of
dynamical equations are coupled such that vibrations lead to
a dynamical modulation of the rotation and vice versa.

In this work, we focus on the impact that fast spinning has
on the displacement field. To this end, we assume that fluctua-
tions of the rotation frequency and axis can be neglected. This
assumption is supported by recent reports on high frequency
stability already for rotations in the megahertz (MHz) regime
[38]. The frequency ω is then a constant parameter and the
displacement field u(r, t ) is the only remaining degree of free-
dom, governed by the dynamical equation (3). We therefore
base our discussion on the Hamiltonian corresponding to the
Lagrangian (1) in the case of a fixed rotation frequency; see
Eq. (B16). We express the Hamiltonian in terms of the eigen-
modes wγ (r) of a nonrotating nanoparticle. These eigenmodes
are eigenvectors of the differential operator D

Dwγ (r) = −ρω2
γ wγ (r), (4)

where ωγ are the real-valued eigenfrequencies and γ is a
multi-index suitable for labeling all eigenmodes.

Hereafter, we formulate the theory using quantum me-
chanics for the sake of generality; however, to the extent of
results obtained in this paper, the analysis can be performed
in an entirely analogous manner based on the classical Hamil-
tonian (B16).1 After standard canonical quantization based
on the eigenmodes wγ (r) (see Appendix A), the resulting
displacement field operator can be expanded in terms of the
eigenmodes as

û(r) =
∑

γ

Uγ [âγ wγ (r) + H.c.]. (5)

Here, Uγ ≡ √
h̄/(2ρωγ ) is the mode density, âγ are the ladder

operators of the phonon field (corresponding to eigenmodes
of the nonrotating nanoparticle), and H.c. indicates the Her-
mitian conjugate. The ladder operators satisfy the canonical
commutation relations [âγ , â†

γ ′ ] = δγ γ ′ subject to the proper
normalization of the eigenmodes; see Eq. (A6). The quantum
Hamiltonian of an elastic body spinning at a fixed frequency
then takes the form

Ĥ = Ĥ0 + Ĥ1 + Ĥ2. (6)

1In order to obtain a formulation of our analysis based on the
classical theory instead of its quantized counterpart, it is sufficient
to change to the Heisenberg picture and replace all ladder operators
âγ (t ) with complex valued normal variables aγ (t ).
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The first term is the Hamiltonian of the freely evolving phonon
field

Ĥ0 ≡ h̄
∑

γ

ωγ â†
γ âγ . (7)

The second and third terms describe the additional centrifugal
forces:

Ĥ1 ≡ h̄
∑

γ

[eγ âγ + H.c.],

Ĥ2 ≡ h̄
∑
γ γ ′

kγ γ ′ â†
γ âγ ′ + h̄

2

∑
γ γ ′

[gγ γ ′ âγ âγ ′ + H.c.].
(8)

Here, eγ are linear shifts that quantify the static centrifugal
force ρω2r⊥, while the beam-splitter coupling constants kγ γ ′

and two-mode squeezing coupling constants gγ γ ′ quantify the
dynamical centrifugal force ρω2u⊥(r, t ). We assume without
loss of generality that ez ‖ e3 ‖ ω where ez marks the z di-
rection of the laboratory frame. In this case, the constants
appearing in the Hamiltonian are

eγ = −ρUγ ω2

h̄

∫
B

[
wγ · r − w3

γ r3]dr,

gγ γ ′ = −ρUγUγ ′ω2

h̄

∫
B

[
wγ · wγ ′ − w3

γ w3
γ ′

]
dr,

kγ γ ′ = −ρUγUγ ′ω2

h̄

∫
B

[
w∗

γ · wγ ′ − w3 ∗
γ w3

γ ′
]
dr

(9)

where r3 = r · e3 and w3
γ = wγ · e3. Note that the form of the

Hamiltonian and the expressions for the coupling constants
are obtained without needing to specify the geometry of the
particle.

It is possible to obtain explicit expressions for the constants
Eq. (9) in the particular case of a homogeneous and isotropic
sphere. The phononic eigenmode structure of a nonrotating
and freely vibrating sphere is well known; see Appendix C
for a summary. A sphere supports two distinct families f of
modes: torsional modes ( f = T ) and spheroidal modes ( f =
S). Each eigenmode can be labeled with a mode index γ =
( f , l, m, n), where l ∈ N0, m ∈ Z, |m| � l , and n ∈ N. The
radial order n, polar order l , and azimuthal order m count the
number of nodes of the mode function wγ (r) in the direction
of the three spherical coordinates (r, θ, ϕ), respectively, and
we use the terms Tlmn or Slmn to name each eigenmode.
The corresponding displacement modal fields wγ (r) can be
calculated analytically and are given in Table II in Appendix
C. Based on these results we obtain the explicit expressions
for eγ , kγ γ ′ , and gγ γ ′ listed in Table VII which we later use in
the case study in Sec. III.

B. Shape and acoustic properties

The shape and acoustic properties of a spinning nanopar-
ticle can be inferred from the Hamiltonian (6) and are af-
fected in two ways: First, the static centrifugal force ρω2r⊥
changes the equilibrium mass distribution and hence the shape
of the nanoparticle. Second, the dynamical centrifugal force
ρω2u⊥(r, t ) modifies both the spatial profile and the frequen-
cies of the phononic eigenmodes.

The new shape is described by a static contribution u0(r) to
the displacement field u(r, t ) = u0(r) + u(r, t ). The remain-
ing dynamical part u(r, t ) represents vibrations around this
new equilibrium configuration. On the level of the quantum
theory, u0(r) can be determined via a unitary transformation
that cancels the linear Hamiltonian Ĥ1 and displaces the
ladder operators âγ = dγ + âγ by complex numbers dγ .2 The
displacement field operator is then

û(r) = u0(r) + û(r), (10)

where the dynamical part û(r) is of the form Eq. (5) but with
displaced ladder operators âγ replacing the ladder operators
âγ . The static part is

u0(r) = 2
∑

γ

Uγ Re[dγ wγ (r)], (11)

where the mode displacements dγ need to satisfy∑
γ ′

[δγ γ ′ωγ ′d∗
γ ′ + k∗

γ γ ′d∗
γ ′ + gγ γ ′dγ ′ ] = −eγ (12)

such that the displaced Hamiltonian

Ĥ = Ĥ0 + Ĥ2 (13)

is purely quadratic. Here, we drop a constant energy term. The
bare Hamiltonian Ĥ0 and hybridization Hamiltonian Ĥ2 are
defined as in Eq. (8) but substituting the ladder operators âγ

with the displaced operators âγ . A priori, there is an infinite
number of coupled conditions (12), precluding the direct
computation of the dγ . However, it is possible to approximate
u0(r) by discarding all but a sufficient number N of low
frequency modes because the constants eγ , kγ γ ′ , and gγ γ ′

tend to zero at high phonon frequencies. In performing this
truncation, N needs to be chosen sufficiently large to ensure
that the most relevant displacements of the lowest-frequency
modes are well approximated; see Sec. III for details. The
truncation reduces Eq. (12) to a system of 2N real-valued
linear equations for the N real parts and N imaginary parts
of the mode displacements dγ that can be solved directly.
Note that the expectation value of the displacement field
in a thermal state 〈û〉th (r) = u0(r) reflects the fact that the
static field describes the new equilibrium shape of the rotating
nanoparticle. By construction, the static field u0(r) balances
the elastic restoring force and the static centrifugal force,
Du0(r) + ρω2r⊥ + ρω2u0⊥(r) = 0 such that the equation of
motion simplifies to ρü(r, t ) = Du(r, t ) + ρω2u⊥(r, t ).

Let us now focus on the acoustic properties of a spin-
ning nanoparticle. The phonon eigenfrequencies are reduced
because the dynamical centrifugal force acts in a direction
opposed to the elastic restoring force. Moreover, the spatial
shape of the vibrational eigenmodes is modified. Since the

2The shift of the ladder operators âγ by complex numbers dγ

corresponds to a unitary transformation with the mode displacement
operator D̂ ≡ ⊗

γ exp(dγ â†
γ − d∗

γ âγ ) such that any operator Ô is
transformed as Ôd ≡ D̂†ÔD̂. Subsequently, we mark operators in the
initial representation with an underline and drop the index d denoting
the new representation.
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coupling constants kγ γ ′ and gγ γ ′ decay with increasing fre-
quency ωγ , we can again focus on the set of N modes γ

of the resting nanoparticle that are lowest in frequency in
order to approximate the N lowest eigenmodes of the spinning
nanoparticle. We construct these new phononic eigenmodes
by diagonalizing the quadratic Hamiltonian Eq. (13) via a Bo-
goliubov transformation [39,40]; see Appendix C for details.
It is possible to diagonalize a finite-dimensional quadratic
Hamiltonian in terms of bosonic modes if and only if it is
linearly stable, that is, if it does not lead to the divergence
of any observable over time; see, e.g., Refs. [19,41]. In the
present situation this is the case provided the dynamical
centrifugal force is not so large as to reduce any phonon
eigenfrequency to zero. In consequence, there is a critical
rotation frequency ωc above which the Hamiltonian Eq. (13)
is linearly unstable. Note however that anharmonic contri-
butions to the interatomic interaction already need to be
accounted for when approaching this critical frequency. In
Appendix D, we derive a criterion that allows us to define a
rotation frequency ωnl < ωc where nonlinear elastic effects
start to become relevant. Hence, for rotational frequencies
ω > ωnl, one should describe the system beyond linear elas-
todynamics, which is an interesting further research direction
that we do not investigate in this manuscript. Within linear
elastodynamics and in the linearly stable regime ω < ωc, we
can express the Hamiltonian in its diagonal normal form

Ĥ = h̄
∑

ξ


ξ b̂†
ξ b̂ξ , (14)

where the index ξ labels the new eigenmodes, b̂ξ are the
corresponding ladder operators, and 
ξ are the new eigen-
frequencies. It is then possible to construct the displacement
modal fields vξ (r) of the new eigenmodes such that the
dynamical part of the displacement field can be expanded as

û(r) =
∑

ξ

Uξ [b̂ξvξ (r) + H.c.] (15)

with the mode density Uξ ≡ √
h̄/(2ρ
ξ ); see Appendix C for

details. By construction, the fields vξ (r) are eigenfunctions
of the differential operator D′ that includes both the restor-
ing force and the dynamical centrifugal force D′u(r, t ) =
Du(r, t ) + ρω2u⊥(r, t ).

C. Optical properties of a subwavelength sphere

We now turn to analyzing the optical properties of a
spinning nanoparticle. The changes in its equilibrium con-
figuration affect the electric permittivity and polarizability
(even in the absence of phonons). In particular, we consider
a nonabsorbing and nonmagnetic dielectric nanoparticle that
is optically homogeneous and isotropic with a real valued
relative permittivity εr while at rest. We assume εr to be
constant over the relevant range of wavelengths of light. A
spinning nanoparticle is no longer homogeneous nor isotropic
due to the photoelastic effect [42,43]: The permittivity is
modulated locally by variations in the mass distribution and
the centrifugal force induces a strain S0(r) that introduces
local optical axes. In consequence, the optical properties need
to be described by a position-dependent permittivity tensor

ε(r). Since a nanoparticle is smaller than the wavelengths
of light, it is useful to consider the effective permittivity ε

obtained from the strain S̄ ≡ ∫
B S0(r)dr/V averaged over the

volume V of the nanoparticle. The permittivity tensor is then
constant and diagonal with diagonal elements

εii = εr

1 + εr�ηii
, (16)

where i ∈ x, y, z. The strain-induced correction �ηi j ≡
Pi jkl S̄kl to the inverse permittivity is quantified heuristically
using the dimensionless photoelasticity tensor P [42,43]. For
isotropic homogeneous solids, the photoelasticity tensor has
only two independent components P1, P2 and

�ηii = P1S̄ii + P2

∑
j 
=i

S̄ j j ; (17)

see Ref. [42] for details. The average strain due to rotation is

S̄ = 2
∑

γ

Uγ Re[dγ s̄γ (r)], (18)

where s̄γ (r) are the averages of the strain modal fields related
to the displacement modal fields wγ (r) analogous to Eq. (A4).

Let us further assume that the nanoparticle is spherical
with radius R such that it is deformed into an oblate spheroid
under rotation around the z axis; compare Sec. III. The polar-
izability of a homogeneous and isotropic sphere is given by
α = 3ε0V (εr − 1)/(εr + 2) within the dipole approximation
[44,45]. If the nanoparticle is spinning, its permittivity, aspect
ratio, and volume change. In consequence, its optical response
is no longer isotropic. However, the response field can still
be calculated analytically for the case of a homogeneous
ellipsoid and a tensor-valued polarizability α can be defined.
The polarizability tensor is diagonal with elements [44,45]

αii = 3ε0Ve
εii − 1

3 + 3Li(εii − 1)
. (19)

Here, Ve = 4πaxayaz/3 is the volume of the ellipsoid and ai

are the lengths of its half axes. For an oblate spheroid, the
geometric factors Li are [44,45]

Lx = Ly = g(e)

2e2

[π

2
− arctan g(e)

]
− g2(e)

2
,

Lz = 1 − 2Lx,

(20)

where g(e) ≡
√

(1 − e2)/e2 is a function of the eccentricity
e ≡ √

1 − a2
z /a2

x . The lengths of the half axes ai are obtained
by adding the static displacement (11) on the surface to the
nanosphere radius. By using the permittivity (16) in Eq. 19,
one thus obtains the polarizability for a spinning nanosphere.

III. RESULTS FOR A DIELECTRIC NANOSPHERE

We now explicitly consider a homogeneous and isotropic
silica nanosphere of radius R = 100 nm with parameters spec-
ified in Table I. The rotation of such nanoparticles at GHz
frequencies has recently been reported in Ref. [17]. The linear
acoustic properties of the nanoparticle are described by the
elastic constants λ and μ together with the mass density ρ;
see Appendix A. The optical properties are determined by
the relative permittivity εr and the components P1, P2 of the
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TABLE I. Physical parameters used in the case study based on
the experiment on optically levitated silica nanospheres reported in
Ref. [17]. The elastic constants λ and μ together with the mass
density ρ of the nanoparticle describe its linear acoustic properties.
In particular, they determine the Poisson ratio ν ≡ λ/[2(λ + μ)] that
relates the elasticities under compression and shear [49], as well as
the longitudinal and transverse sound speeds cl and ct ; see Eq. (A2).
The optical properties are determined by the relative permittivity εr

and the components P1, P2 of the photoelasticity tensor.

Independent parameters
R = 100 nm Sphere radius [17]
ρ = 2.20 g/cm3 Mass density [46]
λ = 15.2 GPa Linear elastic constants [46]
μ = 31.2 GPa
A = −44 GPa Nonlinear elastic constants [47]
B = 93 GPa
C = 28 GPa
εr = 2.1 Relative permittivity [46]
P1 = 0.100 Photoelasticity coefficients [48]
P2 = 0.285

Derived parameters
cl = 5.94 × 103 m/s Longitudinal sound speed
ct = 3.76 × 103 m/s Transverse sound speed
ν = 0.164 Poisson ratio

photoelasticity tensor. In the following analysis, we consider
all phonon modes with polar order l � 3 and radial order
n � 3. We choose this truncation limit because it is sufficient
to ensure convergence to the third relevant digit in quantities
like the size of the nanoparticle. Including higher order modes
is straightforward but only leads to negligible corrections for
the results presented here.3

A spinning nanosphere is deformed into an oblate
spheroid.4 Fig. 1 shows the predicted change in the shape
of the nanosphere. The solid lines indicate the length of the
equatorial half axes ax = ay and the axial half axis az as a

3It is convenient to include only phonon modes with polar order l �
lmax and radial order n � nmax which amounts to N = 2nmax(lmax +
1)2 − 3 modes. The results presented in Sec. III were obtained for
(lmax, nmax, N ) = (3, 3, 93). Including higher order phonon modes
has no relevant impact on our findings. First of all, the displacements
drop quickly with n. For instance, the displacements of the S003

and S203 modes are more than two orders of magnitude smaller
than the displacements of the S001 and S201 modes. The static field
u0(r) as well as the optical properties we infer from it are therefore
numerically stable vis-à-vis the trunctation of Eq. (12): Including
higher order modes up to (lmax, nmax, N ) = (5, 5, 357), for example,
modifies the prediction for the change of the half axis ax − R by
only 0.4 % at ω = 2π × 5 GHz. Similarly, the part of the phonon
spectrum of the spinning particle shown in Fig. 2 converges quickly
when increasing the number of modes included. Indicative is that
the constant χc characterizing the linear stability the Hamiltonian
Eq. (13) only changes by about 0.5 % when extending the analysis
to 357 phonon modes.

4The spheroidal shape of a spinning nanosphere can for instance
be verified numerically by checking that the size R + u0(r) of the
nanoparticle obeys the equation of an ellipsoid.

FIG. 1. Change of shape of a spinning silica nanosphere of radius
R = 100 nm with elastic properties specified in Table I. The solid
lines are obtained from Eqs. (11) and (12) and indicate the increase
of the half axes ax = ay in the equatorial plane and the decrease
of the half axis az in axial direction. In the regime ω � cl/R, the
change in shape is proportional to ω2R3/c2

l as indicated by the
dashed-dotted lines. The light gray area indicates the regime ω � ωnl

where anharmonic corrections to the linear elastic theory used here
become increasingly relevant; see Appendix D. The dark gray area
indicates the linearly unstable region ω � ωc.

function of the rotation frequency ω. They are obtained by
evaluating the static displacement field u0(r) defined in Eq.
(11). For reasons of symmetry, only the S00n and S20n modes
have nonzero displacements dγ and contribute to u0(r). In
the weak hybridization limit ω � cl/R, the change in shape
follows a power law. The eigenfrequencies of the phonon
modes of a nanosphere scale as ωγ ∝ cl/R and the coupling
frequencies as kγ γ ′ , gγ γ ′ ∝ ω2R/cl , where cl = √

(2μ + λ)/ρ
is the longitudinal sound speed; see Appendix C. Therefore
kγ γ ′ , gγ γ ′ � ωγ at low rotation frequencies and the Eqs. (12)
decouple. The mode displacements are then dγ � −e∗

γ /ωγ

and the change in shape scales as

u0(r) ∝ ω2R3/c2
l . (21)

This power-law dependence is indicated by the dashed-dotted
lines in Fig. 1. Beyond rotation frequencies of ω � cl/R, the
mode hybridization starts to become relevant and the linear
elastic theory predicts deviations from this power law. For the
particular case of fused silica, we expect anharmonicities in
the interatomic interaction potential to appear at similar fre-
quencies: in Appendix D, we define the rotational frequency
ωnl at which anharmonic contributions increase the elastic
energy of the displaced S001 mode by 25 %. For fused silica,
ωnl = 2π × 5.1 GHz. In the regime ω � ωnl, indicated by the
light gray area in Fig. 1, nonlinear corrections to the linear
elastic theory presented in this work may thus become sizable
and increasing deviations from the shape predicted by the
linear theory are to be expected in practice. Finally, the dark
gray area marks the region at rotation frequencies greater
than ωc for which the Hamiltonian (6) is linearly unstable
and linearized elasticity theory is no longer applicable as we
discuss in Sec. II. For a spherical nanoparticle, the critical
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FIG. 2. Phononic eigenfrequency spectrum of a spinning silica nanosphere as a function of its rotation frequency. (a) shows the spectrum
of torsional modes and (b) the spectrum of spheroidal modes. The parameters of the nanosphere are specified in Table I. The labels Tlmn and
Slmn and the line colors indicate from which bare mode γ of the resting sphere each hybridized mode ξ of the spinning sphere originates. While
there is a degeneracy in the azimuthal order m at rest, the degeneracy is partially lifted by the rotation. At rotation frequencies ω � cl/R, the
shift in eigenfrequencies scales as ωγ − 
ξ ∝ ω2R/cl as indicated by the dashed-dotted lines. Elastic nonlinearities will first affect the S001 and
S201 modes at frequencies ω � ωnl and can modify the entire spectrum at frequencies starting around ω � cl/R. Note that there are crossings of
eigenfrequencies without leading to strong hybridization between the modes. The linearly unstable region ω � ωc begins where the calculated
frequency of the fundamental mode originating from the T201 mode drops to zero.

frequency scales as ω2
c R2/c2

l = χc where χc is a constant that
depends only on the Poisson ratio ν ≡ λ/[2(λ + μ)]. In the
case of fused silica, χc = 2.5 such that ωc = 2π × 15 GHz in
this case study. At a rotation frequency of ω = 2π × 5 GHz,
our linear elastic theory predicts the equatorial diameters to
change by 2(ax − R) � 12 nm and 2(R − az ) � 8 nm. Such
frequencies can for instance be achieved with levitated nan-
odumbbells consisting of two silica nanospheres [28].

In Fig. 2, we plot the dependence of the phonon eigen-
frequency spectrum 
ξ on the rotation frequency. The labels
Tlmn and Slmn indicate from which bare eigenmode γ of the
resting sphere each hybridized eigenmode ξ of the spinning
sphere originates. For reference, the eigenfrequencies ωγ of a
resting sphere are shown in Fig. 4 in Appendix C. At rest,
the spectrum is degenerate in the azimuthal order m. This
degeneracy is partially lifted at ω > 0, leaving only modes
±m degenerate. The color of each spectrum line indicates
the magnitude |m| of the polar order of the bare mode from
which it originates. In the limit ω � cl/R of a slowly spinning
nanoparticle, the spatial shape of every hybridized mode ξ

closely resembles the shape of a bare mode γ of the rest-
ing nanoparticle vξ (r) � wγ (r). We can then approximate
the change of the eigenfrequency of each mode ξ ∼ γ by
considering the direct frequency shifts in the Hamiltonian
(13) only (in first-order perturbation): 
ξ � ωγ + kγ γ . The
constants kγ γ are negative, consistent with a reduction of the
eigenfrequencies 
γ < ωγ and the shift in eigenfrequencies
scales as

ωγ − 
ξ ∝ ω2R

cl
. (22)

Moreover, since the constants kγ γ tend to zero at high fre-
quencies ωγ , modes of lower frequencies are more strongly af-

fected. Nonlinear effects become relevant for the S00n and S20n

modes displaced by the static centrifugal force at ω � ωnl; see
Appendix D. Other modes are affected once they hybridize
with the displaced modes at frequencies beyond ω � cl/R.
The onset of linear instability is marked by the reduction
of the eigenfrequency of the lowest-frequency phonon mode
originating from the T201 mode to zero.

At a rotation frequency of ω = 2π × 5 GHz, the fre-
quency of the S221 mode is reduced by (ωγ − 
ξ )/2π �
0.4 GHz. In experimental studies of Brillouin scattering off
silica nanospheres on a substrate, this mode was found to be
optically active with a linewidth on the order of few GHz
[50]. Since the phonon linewidths in levitated nanospheres
are expected to be lower, the rotation-induced shift in the
phonon spectrum and possibly even nonlinear corrections to
the predictions presented in Fig. 2 should be measurable.

Let us now discuss the optical properties. Fig. 3 shows the
permittivity ε and polarizability α of the spinning nanosphere
as functions of the rotation frequency. Both tensors are di-
agonal as discussed in Sec. II C. In panel (a) of Fig. 3, we
plot the diagonal elements εii of the permittivity tensor. The
solid lines correspond to the values predicted by Eq. (16) with
the average strain of the relevant S00n and S20n modes given
in Eqs. (C10) and (C11). The permittivity is decreasing with
increasing rotation frequency, and there is an increasing bire-
fringence εzz 
= εxx = εyy between the axial direction and the
equatorial plane. In the limit ω � cl/R of a slowly spinning
nanoparticle, the change in the permittivity scales as

εr − εii ∝ ε2
r

ω2R2

c2
l

, (23)
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FIG. 3. Optical properties of a spinning silica nanosphere depending on its rotation frequency. The parameters of the nanosphere are
specified in Table I. The solid lines in panel (a) represent the components of the permittivity tensor obtained from Eq. (16) and demonstrate
that the rotation causes birefringence εzz 
= εxx = εyy. At low rotation frequencies ω � cl/R, the change in the permittivity is proportional to
ε2

r ω
2R2/c2

l as indicated by the dashed-dotted lines. (b) shows the components of the polarizability tensor calculated using Eq. (19). Here, α is
the polarizability of the resting sphere. Note that in the regime ω � ωnl (see Appendix D) indicated by the light gray area, nonlinear effects are
increasingly relevant for the actual shape of the nanoparticle and deviations from the predictions of our linear elastic theory are to be expected
in practice.

indicated by the dashed-dotted lines in Fig. 3. In panel (b) of
Fig. 3, we plot the diagonal elements αii of the polarizabil-
ity tensor calculated according to Eq. (19). The frequency-
dependence of the polarizability is caused by the changes
in the permittivity, the aspect ratio, and the volume of the
nanoparticle. The increase of the polarizability in equatorial
direction and its decrease in axial direction are driven by the
increasing aspect ratio. The subsequent drop in εxx and εyy

is due to the decreasing volume of a fast spinning ellipsoidal
nanoparticle with a large aspect ratio. Note that for the case
of fused silica, this behavior is observed in the regime ω �
ωnl where nonlinear elastic effects need to be accounted for.
However, more elastic materials like polymers or even liquid
helium could still exhibit such a behavior in the linear elastic
regime.

At a rotation frequency of ω = 2π × 5 GHz, the calculated
permittivity is εxx = εyy � 2.04 in the equatorial plane and
εzz = 1.98 along the rotation axis. The polarizability is in-
creased by about 4.9% in the equatorial plane and reduced
by 2.3% in the axial direction. Since the trap frequencies of
nanoparticles levitated with optical tweezers scale with the
square root of the polarizability [2,3], these values correspond
to an increase in the trap frequency along the x and y directions
by about 2.5% and a decrease of the trap frequency along the
z direction by about 1.1%. These changes are in the kilohertz
(kHz) range in typical setups and large enough to be detected
[6,8–10].

IV. CONCLUSION

To summarize, we provide a general theory of the inter-
action between the rotational degrees of freedom and the
acoustic internal phonons of a nanoparticle within linear elas-
todynamics. We are able to model how the shape, the phonon
spectrum, the permittivity, and the electric polarizability of

a nanoparticle are affected when it is spinning at a fixed
frequency. By way of example, we explicitly calculate the
dependence of these properties on the rotation frequency in
the particular case of a dielectric nanosphere and show that its
effects should be measurable at rotational frequencies recently
achieved experimentally.

The theory and results presented in this paper can be gen-
eralized to include anisotropic and inhomogeneous nanoparti-
cles in orientation-dependent potentials, which is useful for
other shapes such as nanorods [51] or nanoplatelets [14].
Beyond the purely classical effects discussed here, the quan-
tum theory employed in the paper can also be extended to
address genuine quantum effects such as the phonon-induced
decoherence of elastic rotors in macroscopic quantum super-
positions [52,53]. While we characterize at which rotation
frequencies nonlinear elastic effects become relevant, our
study is restricted to the linear elastic regime. Accounting
for anharmonic corrections to the atom-atom interaction be-
yond the linear elastic approximation is an interesting future
research direction which could for instance unveil tunable
phonon-phonon interactions and provide richer phonon dy-
namics [54]. Further research directions (some of which we
currently investigate) include: (i) using whispering gallery
modes or evanescent coupling to photonic structures to mea-
sure changes in the nanoparticle geometry [32,35,55]; (ii)
studying Brillouin scattering off a levitated rotating nanoparti-
cle [50]; (iii) studying the complex coupled dynamics between
rotation, translation, and vibrations caused by the rotation-
dependent polarizability and birefringence which modify the
optical potential; (iv) studying more complex internal degrees
of freedom such as spin waves (magnons) or electrons [21];
and (v) understanding the origin of the linewidths of such ex-
citations [22] as well as their dependence on rotation-induced
strain. We hope that this work will stimulate experiments ex-
ploring the internal mesoscopic quantum physics of levitated
nanoparticles.
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APPENDIX A: REVIEW OF ELASTODYNAMICS

Linear elasticity theory describes small deformations of
a three-dimensional elastic body from its equilibrium shape
[36,37,49]. The displacement field u(r, t ) indicates how far
and in which direction each point r of the body is displaced at
a time t . The elastic properties of the body are described by the
mass density ρ(r) and the elasticity tensor C(r). The elasticity
tensor is of fourth order, with symmetries Ci jkl = C jikl =
Ci jlk = Ckli j [49]. In case of a homogeneous and isotropic
elastic body, ρ and C are constant in space, and the latter has
only two independent coefficients [36,49]:

Ci jkl = μ[δikδ jl + δilδ jk] + λδi jδkl . (A1)

Here, the two real-valued constants λ and μ are called Lamé
parameters. The elastic properties of a homogeneous and
isotropic body are thus described by three numbers: ρ, λ, and
μ. Excitations of the displacement field can be both transverse
and longitudinal and there are two distinct sound speeds for
transverse and longitudinal waves,

ct =
√

μ

ρ
, cl =

√
2μ + λ

ρ
, (A2)

respectively [36]. In consequence, μ needs to be positive
while λ � −2μ. The equation of motion of the freely evolving
displacement is

ρü = Du, (A3)

where D is a second-order differential operator acting as
[Du]i = Ci jkl∂ j ∂kul . A suitable set of boundary conditions is
required to obtain a unique solution of the equation of motion
given initial conditions. In case of a freely vibrating body, the
boundary conditions are of Neumann type and state that the
surface of the body is force free: T i jn j = 0 on the surface
[49]. Here, ni are the components of the exterior surface
normal vector field and T is the stress tensor. The stress tensor
describes the forces required to cause a deformation given by
the strain tensor S:

Si j ≡ 1
2 (∂iu

j + ∂ ju
i ),

T i j ≡ Ci jkl Skl .
(A4)

The vibrational eigenmodes wγ (r) of a linear elastic body
and their spectrum of frequencies ωγ are obtained as solutions
of the eigenvalue equation

Dwγ (r) = −ρω2
γ wγ (r) (A5)

with the appropriate boundary conditions. Different eigen-
modes are orthogonal and we take them to be normalized
according to ∫

B
w∗

γ (r) · wγ ′ (r) dr = δγ γ ′ . (A6)

Since (−D) with the boundary conditions of a force-free
body is a self-adjoint operator [56], the frequencies ωγ are
real-valued and the eigenmode solutions form a basis for the
space of displacement fields. Any solution to the equation of
motion Eq. (A3) can then be expressed as a linear combina-
tion of eigenmodes, u(r, t ) = ∑

γ Uγ [aγ e−iωγ twγ (r) + c.c.],
where the normal variables aγ ∈ C are determined by the
initial conditions and we define Uγ ≡ √

h̄/2ρωγ .
Canonical quantization in terms of the eigenmodes can

now be performed in the usual manner [57] starting from the
Hamiltonian density

H0 ≡ π2

2ρ
− 1

2
u · Du, (A7)

of a free elastic body obtained from the standard Lagrangian
introduced in Eq. (1), where π ≡ ρu̇ is the conjugate momen-
tum of the displacement. Quantization amounts to replacing
the normal variables aγ with ladder operators âγ that satisfy
the canonical commutation relations [âγ , â†

γ ′ ] = δγ γ ′ due to
the normalization Eq. (A6). Hence, the displacement field
operator is

û(r) =
∑

γ

Uγ [âγ wγ (r) + H.c.], (A8)

and the resulting quantum Hamiltonian

Ĥ0 = h̄
∑

γ

ωγ â†
γ âγ . (A9)

APPENDIX B: LINEAR ELASTIC ROTOR

In this Appendix, we justify the Lagrangian (1) serving as
the cornerstone of this work. It describes the joint dynamical
evolution of the rotation and vibration of an elastic body
and can be obtained from a standard microscopic model of
an elastic solid [58]. To this end, we consider the body as
a system of a finite number of constituent point masses mτ

(atoms) with positions r′
τ relative to an inertial Cartesian labo-

ratory frame RL ≡ {r0; ex, ey, ez} that has an arbitrary origin
r0 and an orientation determined by the orthonormal basis
{ex, ey, ez}. The masses interact pairwise through a common
potential V which only depends on the relative position of
each pair of masses. A Lagrangian describing the dynamics
of such a system is

L = 1

2

∑
τ

mτ (ṙ′
τ )2 − 1

2

∑
τ,τ ′ 
=τ

V (r′
τ − r′

τ ′ ). (B1)

A series of changes of variables allows us to describe the
mechanics of the body in terms of its center of mass position
rcm, its overall orientation �, and the displacement of each
mass from its equilibrium position within the body. The
dynamics of these displacements can in turn be modeled by
the displacement field u(r, t ) of linear elasticity theory by
making suitable approximations.

The first step is to describe the position of the con-
stituent masses relative to the center of mass position rcm ≡∑

τ mτ rτ /M where M ≡ ∑
τ mτ is the total mass of the body:

rτ ≡ r′
τ − rcm. (B2)
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This change of variables corresponds to introducing a comov-
ing reference frame {rcm; ex, ey, ez} which originates at rcm and
moves with velocity ṙcm with respect to the laboratory frame.
The defining property of a comoving reference frame is that
the total linear momentum vanishes relative to such a frame,
that is,

∑
τ mτ ṙτ = 0.

Next, we describe the relative positions rτ with respect
to a body frame RB ≡ {rcm; e1, e2, e3} that has an orienta-
tion determined by the time-dependent orthonormal basis
{e1, e2, e3} and rotates with respect to the laboratory frame
with an angular velocity ω. The two reference frames are
connected by a time-dependent rotation matrix D such that
the components rη

τ ≡ rτ · eη relative to the comoving frame
are related to the components ri

τ ≡ rτ · ei relative to the body
frame by [59]

ri
τ = Diνrν

τ . (B3)

In this Appendix, we use Greek indices to indicate compo-
nents with respect to {ex, ey, ez} and Latin indices to indicate
components with respect to {e1, e2, e3}. Repeated indices are
summed over. The rotation matrix can be parametrized in the
zyz convention [59] as D(�) ≡ Dz(γ )Dy(β )Dz(α) using three
Euler angles � ≡ (α, β, γ )t and

Dy(a) ≡
⎛
⎝cos a 0 − sin a

0 1 0

sin a 0 cos a

⎞
⎠, (B4)

Dz(a) ≡
⎛
⎝ cos a sin a 0

− sin a cos a 0

0 0 1

⎞
⎠. (B5)

The rotation frequency of the body frame is related to the
Euler angles through

ω = α̇eα + β̇eβ + γ̇ eγ , (B6)

where eα , eβ , and eγ are the unit vectors along the time-
dependent rotation axes with respect to which the Euler angles
are defined. The rotation axes are [59]

eα = ez,

eβ = − sin αex + cos αey,

eγ = cos α sin βex + sin α sin βey + cos βez.

(B7)

In order to express the Lagrangian in terms of these new vari-
ables, we use that rotations preserve inner products, rη

τ rη

τ ′ =
ri
τ ri

τ ′ and that the inverse (transpose) of the rotation matrix
is given by Diη(α, β, γ ) = Dηi(−γ ,−β,−α). Furthermore,
the time derivative of the rotation matrix can be expressed in
terms of the rotation frequency ω as

Ḋiηrη
τ = −Diηεηνμωνrμ

τ (B8)

where ε is the Levi-Civita symbol. In order for ω to represent
the rotation frequency of the elastic body as a whole, we need
to choose it such that the total angular momentum vanishes
relative to the body frame RB:∑

τ

mτ ε
i jkr j

τ ṙk
τ = 0. (B9)

The body frame is then both a comoving and corotating
reference frame.

Finally, we describe vibrations as displacements uτ of
each mass from its equilibrium position Rτ (i.e., the posi-
tion minimizing the potential energy) relative to the body
frame RB:

uτ ≡ rτ − Rτ . (B10)

After applying the changes of variables Eqs. (B2), (B3), and
(B10), the Lagrangian Eq. (B1) takes the form

L = 1

2
M ṙ2

cm + 1

2
ωiI i jω j +

∑
τ

mτ u̇2
τ

− 1

2

∑
τ,τ ′ 
=τ

V (Rτ + uτ − Rτ ′ − uτ ′ ). (B11)

Here, I is the time-dependent inertial tensor of the body with
components

I i j ≡
∑

τ

mτ

[(
Ri

τ + ui
τ

)2
δi j − (

Ri
τ + ui

τ

)(
R j

τ + u j
τ

)]
, (B12)

relative to the body frame RB. The inertial tensor accounts for
the actual mass distribution of the elastic body modified by
vibrations around its equilibrium shape.

We can now pass from a point-mass model to a continuum
description of the body in the usual manner [58]. This transi-
tion hinges on several approximations. (i) The displacements
are considered to be small, which allows us to approximate
the interaction potential V as harmonic around the equilibrium
shape of the body. (ii) The wavelength of elastic waves is
assumed to be large compared to the distance of the individual
masses forming the solid such that neighboring masses are
subject to almost the same displacement. (iii) We take the
continuum limit, which amounts to replacing the point mass
distribution with a mass density distribution ρ(r) and the
individual displacements uτ with the continuous displacement
field u(r, t ). By extending this standard procedure to the case
of a rotating body Eq. (B11) considered here, we obtain a
Lagrangian generating the translational, rotational, and vibra-
tional dynamics of a free linear elastic rotor:

L = M

2
ṙ2

cm +
∫

B

[
ρ

2
u̇2 − 1

2
Si jCi jkl Skl

]
dr + 1

2
ωiI i j[u]ω j .

(B13)

The dynamical variables are now the center of mass rcm(t ),
the orientation �(t ) [appearing in the angular velocity ω],
and the displacement field u(r, t ). The first term in Eq. (B13)
represents the kinetic energy of the center of mass. The second
term is the standard Lagrangian of linear elasticity theory
[36,37]. However, the displacement field u(r, t ) now describes
vibrations relative to the comoving and corotating body frame
RB in contrast to the linear elasticity theory of resting bodies.
The third term is the kinetic energy of the rotation of the body
around its own axis. The inertial tensor is a functional of the
displacement field:

I i j[u] ≡
∫

B
ρ[(rk + uk )(rk + uk )δi j − (ri + ui )(r j + u j )]dr.

(B14)

The inertial tensor is symmetric, I i j = I ji and the case of a
rigid rotor is recovered by setting u = 0. The equations of
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motion of the displacement field and the Euler angles a ∈
{α, β, γ }

ρüi = [Du]i + ρ[(ri + ui )ω jω j − (r j + u j )ωiω j],

ėi
aI i j[u]ω j + ei

aI i j[u]ω̇ j = ∂ωi

∂a
Ii j[u]ω j − ei

aİ i j[u]ω j
(B15)

are coupled while the center of mass decouples from the
other degrees of freedom, ṙcm = 0. The displacement field
in particular is subject to centrifugal forces as discussed in
Sec. II; In contrast, it does not experience Euler or Coriolis
forces due to the manner in which we define the corotating
frame in Eq. (B9). The familiar equation of motion of linear
elastodynamics in the absence of any rotation is recovered in
the case ω = 0.

The Lagrangian (B13) can easily be extended to describe
nanoparticles which are levitated or whose orientation is
externally controlled by subtracting an external potential
Vext(rcm,�) that is quadratic and hence does not couple the
translational to rotational and vibrational degrees of freedom.
Moreover, one can perform canonical quantization of the
corresponding Hamiltonian in order to obtain a full quantum
description of the translational, rotational, and vibrational
degrees of freedom of a linear elastic rotor [53,60,61].

In the body of this paper, we study the effect rotation
has on vibrations of an elastic body in a regime where the
modulation of the rotational frequency ω of the rotor due to
vibrations can be neglected. To this end, we assume that the
rotation frequency is constant and that the body is levitated
in a quadratic potential Vext(rcm). Hence, the displacement
field is the only remaining dynamical variable. The classical
Hamilton functional resulting from Eq. (B13) in this case is of
the form

H =
∫

B
[H0 + H1 + H2]dr. (B16)

The first term is the Hamiltonian of linear elastodynamics
(A7). The second and third terms derive from the corrections
to the inertial tensor (B14) and are of first and second order in
the displacement field, respectively,

H1 ≡ −ρ

2
ωi[2ukrkδi j − (uir j + riu j )]ω j,

H2 ≡ −ρ

2
ωi[ukukδi j − uiu j]ω j .

(B17)

They describe the centrifugal forces acting on the displace-
ment field.5 Canonical quantization of this Hamiltonian leads
to the quantum Hamiltonian Eq. (6) used throughout this
paper.

APPENDIX C: ELASTIC SPHERE

In this Appendix, we summarize results for the particular
case of a spherical particle. In Appendix C 1, we revise the
known mode structure of a resting linear elastic sphere. In
Appendix C 2, we list our results for a spinning elastic sphere
that we use in the case study in Sec. III.

5Note that these terms would also be present in the full Hamiltonian
corresponding to Eq. (B13), but with opposite sign.

TABLE II. Displacement modal field of the phonon eigenmodes
of a sphere. The radial partial waves WY , W� , and W� contain
spherical Bessel functions jl of the first kind and have amplitudes
Aγ , Bγ , and Cγ . The amplitudes are determined by the boundary
conditions and listed explicitly in Table V. All other parameters are
defined in Table III.

wγ (r) = R−3/2[WY
l,m(r/R)Y m

l (θ, ϕ)

+W�
l,m(r/R)�m

l (θ, ϕ) + W�
l,m(r/R)�m

l (θ, ϕ)]

WY
γ (x) = Aγ [l jl (αx)/x − α jl+1(αx)] + Cγ [l (l + 1)] jl (βx)/x

W�
γ (x) = Aγ jl (αx)/x + Cγ [(l + 1) jl (βx)/x − β jl+1(βx)]

W�
γ (x) = Bγ jl (βx)

1. Eigenmodes of a resting sphere

The elastic eigenmodes and frequency spectrum of a homo-
geneous and isotropic sphere of radius R centered at the origin
of the coordinate system can be obtained by solving Eq. (A5)
with the appropriate boundary conditions and are well known
[36,37]. We summarize the relevant results in a form suitable
for this paper, using spherical coordinates (r, θ, ϕ) such that
r1 = r sin θ cos ϕ, r2 = r sin θ sin ϕ, and r3 = r cos θ . Here,
ri are the Cartesian components of the position vector in the
body frame; see Appendix B. All solutions of the eigenmode
equation (A5) for a given phonon frequency ω can conve-
niently be expressed in spherical coordinates and in terms of
a set of vector spherical harmonics [62]

Y m
l (θ, ϕ) ≡ erY

m
l (θ, ϕ),

�m
l (θ, ϕ) ≡ r∇Y m

l (θ, ϕ),

�m
l (θ, ϕ) ≡ r × ∇Y m

l (θ, ϕ),

(C1)

where we follow the convention of Ref. [63] in the definition
of the spherical harmonics Y m

l . The vector field Y m
l is purely

radial while �m
l and �m

l have only polar and azimuthal
components. The space of solutions that are finite in the
volume of the sphere is spanned by displacement modal fields
wγ (r) that are of the from given in Table II, with a mode
index γ containing the polar order l ∈ N0 and the azimuthal
order m ∈ Z, |m| � l . We express the modal fields in terms
of dimensionless quantities defined in Table III. The radial
constants a and b in particular determine how rapidly the
displacement modal field oscillates in the radial direction.

In order to obtain the eigenmodes of a freely vibrating
sphere, we need to impose as boundary condition that the
stress in radial direction vanishes on the sphere surface, see
Appendix A. The relevant components of the stress tensor
modal field tγ (r) corresponding to a displacement wγ (r)

TABLE III. Definitions of the longitudinal and the transverse
sound velocity cl and ct , as well as the radial constants a and b, and
the dimensionless quantities appearing in the phonon modal fields.
The definitions are given in terms of the density ρ, Lamé constants
λ, μ, fiber radius R, and radial position r.

cl = √
(2μ + λ)/ρ ct = √

μ/ρ

a = ω/cl b = ω/ct

α = aR β = bR x = r/R
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TABLE IV. Radial components of the stress modal fields related
to displacement modal fields in Table II by Eq. (A4).

t rr
γ (r) = μ/(r2

√
R)[Aγ M11(r/R) − iBγ M12(r/R)

+Cγ M13(r/R)]Pm
l (cos θ )eimϕ

t rθ
γ (r) = μ/(r2

√
R)[Aγ M21(r/R)∂θ − iBγ M22(r/R)m/ sin θ

+Cγ M23(r/R)∂θ ]Pm
l (cos θ )eimϕ

t rϕ
γ (r) = iμ/(r2

√
R)[Aγ M31(r/R)m/ sin θ − iBγ M32(r/R)∂θ

+Cγ M33(r/R)m/ sin θ ]Pm
l (cos θ )eimϕ

M11(x) = [2l (l − 1) − β2x2] jl (αx) + 4αx jl+1(αx)

M12(x) = 0

M13(x) = 2l (l + 1)[(l − 1) jl (βx) − βx jl+1(βx)]

M21(x) = 2(l − 1) jl (αx) − 2αx jl+1(αx)

M22(x) = (l − 1)x jl (βx) − βx2 jl+1(βx)

M23(x) = [2(l2 − 1) − β2x2] jl (βx) + 2βx jl+1(βx)

M31(x) = M21(x)

M32(x) = M22(x)

M33(x) = M23(x)

result from Eq. (A4) and are given in Table IV. The boundary
conditions are then equivalent to a set of linear equations for
the amplitudes Aγ , Bγ ,Cγ of the displacement modal field
(see Table II):

Aγ M11 + Cγ M13 = 0,

Aγ M21 + Cγ M23 = 0,

Bγ M22 = 0

(C2)

where we abbreviate the coefficients Mi j ≡ Mi j (1) of the
stress modal fields defined in Table IV. The amplitudes Aγ ,
Cγ on one hand and Bγ on the other are not coupled by the

boundary conditions, resulting in two distinct mode families
f : torsional modes ( f = T ) and spheroidal modes ( f = S).

a. Torsional modes

Torsional eigenmodes are characterized by Aγ = Cγ = 0
and are purely transverse (that is, they feature a divergence-
free displacement modal field). The displacement due to
torsional modes is normal to the radial direction and changes
neither the outward shape nor the density of the nanoparticle
(to first order). The boundary conditions Eq. (C2) then require
M22 = 0, that is, they impose the condition

(l − 1) jl (β ) − β jl+1(β ) = 0 (C3)

on the dimensionless radial constant β defined in Table III.
The roots βγ = ωγ R/ct of this frequency equation determine
the discrete spectrum of frequencies ωγ of the torsional eigen-
modes, see panel (a) in Fig. 4. For a given set (l, m), we
label the roots by n ∈ N starting with n = 1 for the lowest
frequency. We refer to n as the radial order since it counts the
number of nodes of the modal field w(r)γ in r direction. There
are no torsional modes for l = 0 and m = 0 because �0

0 = 0.
All torsional eigenmodes can therefore be labeled by mode
indices γ = ( f , l, m, n) where

f = T, l ∈ N, m ∈ Z, |m| � l, n ∈ N. (C4)

Each torsional mode can thus uniquely be identified by a term
of the form Tlmn.

The frequency equation Eq. (C3) is independent of m.
In consequence, all modes Tlmn, Tlm′n are degenerate in fre-
quency. Moreover, the dimensionless roots βγ of the fre-
quency equation are universal in the sense that they are
independent of the radius and the elastic properties of the
sphere. The torsional eigenfrequencies hence scale with radius
and sound speeds as

ωγ = ct

R
βγ . (C5)

FIG. 4. Frequency spectrum of the phonon eigenmodes of a resting nanosphere with properties specified in Table I. (a) shows the spectrum
of the torsional modes as a function of the polar order l , (b) shows the spectrum of the spheroidal modes. The eigenfrequencies are indicated
by dots while the lines serve as a guide to the eye. The order of magnitude of the lowest phonon frequency is determined by cl/R. In units of
this fundamental frequency, the eigenfrequencies of the torsional modes are independent of any system parameters and the eigenfrequencies
of the spheroidal modes depend only on the Poisson ratio ν.
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TABLE V. Amplitudes Aγ , Bγ , and Cγ of the displacement modal fields listed in Table II. The functions jl are spherical Bessel functions,
pF q are generalized hypergeometric functions, and � is the gamma function; all other quantities are defined in Table III. The amplitudes listed
for the case of spheroidal modes with polar order l � 1 are valid in the generic case that all coefficients Mi j in the frequency equation Eq. (C9)
are nonzero. If this is not the case, the amplitudes need to be recalculated using the boundary conditions Eq. (C2).

Case Amplitudes

Torsional modes Aγ = 0 Bγ = √
2/

√
l (l + 1)[ j2

l (βγ ) − jl−1(βγ ) jl+1(βγ )] Cγ = 0

Spheroidal modes, l = 0 Aγ = 1/
√

α2
γ I2(1, α) Bγ = 0 Cγ = 0

Spheroidal modes, l � 1 Aγ = [αγ jl (αγ ) j ′l (αγ ) + c2
γ l (l + 1)βγ jl (βγ ) j ′l (βγ ) + 2cγ l (l + 1) jl (αγ ) jl (βγ ) + α2

γ I2(l, αγ )

+c2
γ l (l + 1)(2l + 1)I1(l, βγ ) + c2

γ l (l + 1)β2
γ I2(l, βγ ) − 2c2

γ l (l + 1)βγ I3(l, βγ )]−1/2

Bγ = 0 Cγ = cγ Aγ

cγ ≡ −[2(l − 1) jl (αγ ) − 2αγ jl+1(αγ )]/[(2l2 − 2 − β2
γ ) jl (βγ ) + 2βγ jl+1(βγ )]

I1(l, α)≡∫ 1
0 j2

l (αx) dx = πα2l [(2l+1)4l+1�(l+3/2)2]
−1

2F 3(l+1/2, l+1; l + 3/2, l + 3/2, 2l + 2; −α2)

I2(l, α) ≡ ∫ 1
0 x2 j2

l (αx) dx = [ j2
l (α) + j2

l+1(α) − (2l + 1) jl (α) jl+1(α)/α]/2

I3(l, α)≡∫ 1
0 x jl (αx) jl+1(αx) dx=πα2l+1[4l+2�(l+5/2)2]

−1
2F 3(l + 3/2, l + 2; l + 5/2, l + 5/2, 2l + 3; −α2)

The orthonormality condition Eq. (A6) reduces to a normal-
ization condition which determines the amplitude Bγ up to a
complex phase. We choose the amplitude to be real valued,
see Table V. In this case, the displacement modal fields wγ

obey the symmetry

w−m = (−1)mw∗
m (C6)

in the azimuthal order, dropping irrelevant mode indices.
Moreover, the modal fields depend only on the eigenfrequency
and the sphere radius, and scale with the latter as R−3/2, see
Table II.

b. Spheroidal modes

Spheroidal modes are characterized by Bγ = 0. They are
hybrid transverse and longitudinal excitations that cause dis-
placement in all spatial directions and modify the nanoparticle
shape. As in the case of the torsional modes, the boundary
conditions (C2) lead to a discrete set of spheroidal modes for
each l with eigenfrequencies degenerate in m. We enumerate
the eigenmodes using the radial index n. Spheroidal modes
can therefore be labeled by mode indices γ = ( f , l, m, n),
where

f = S, l ∈ N0, m ∈ Z, |m| � l, n ∈ N, (C7)

and we refer to each spheroidal eigenmode by a term of
the form Slmn. The spectrum of eigenfrequencies ωγ derives
from the roots βγ = (cl/ct )αγ of a transcendental frequency
equation to be discussed. Unlike for torsional modes, the roots
βγ of the frequency equations of spheroidal modes are not
universal but depend on the Poisson ratio ν only. We treat the
two cases l = 0 and l � 1 separately in order to obtain the
respective frequency equation from the boundary conditions
(C2). In the case l = 0, the boundary conditions reduce to
Aγ M11 = 0. Hence, the frequency equation is

4α j1(α) − β2 j0(α) = 0. (C8)

In the case l � 1, none of the coefficients Mi j in Table IV van-
ish at all frequencies. In consequence, nontrivial solutions for
the amplitudes Aγ , Cγ = 0 can only exist if the determinant of
the coefficient matrix of the first two equations in Eq. (C2) is
zero. The frequency equation is hence

M11M23 − M21M13 = 0 (C9)

in terms of the coefficients of the stress modal field defined in
Table IV. We plot the spectrum of spheroidal modes in panel
(b) of Fig. 4.

The boundary conditions (C2) relate the two amplitudes
Aγ and Cγ , and the orthonormality condition (A6) determines
the norm of the remaining free amplitude. We choose the
amplitudes to be real valued (see Table V) such that the dis-
placement modal field wγ of spheroidal modes also satisfies
the symmetry (C6). The displacement modal fields depend
only on the Poisson ratio, the eigenfrequency, and the radius,
and scale with the latter as R−3/2, see Table II.

In Table VI, we list the strain modal fields of spheroidal
modes that we use in Sec. III to predict changes in the optical
properties of a spinning nanoparticle. Only the spheroidal S00n

and S20n modes are affected by the static centrifugal force and
contribute to the average strain S̄. The spatial averages of their
strain modal fields s̄γ are diagonal in Cartesian coordinates
with diagonal elements

s̄ii
γ = Aγ

2
√

πR5

αγ cos(αγ ) − sin(αγ )

αγ

(C10)

for i ∈ {1, 2, 3} in the case of the S00n modes and

s̄ii
γ = Aγ

2
√

5πR5

αγ cos(αγ ) − sin(αγ )

αγ

+ 3Cγ

2
√

5πR5

βγ cos(βγ ) − sin(βγ )

βγ

(C11)

for i ∈ {1, 2} and s̄33
γ = −2s̄xx

γ in the case of the S20n

modes.
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TABLE VI. Strain modal fields of spheroidal modes related to the displacement modal fields in Table II by Eq. (A4). The amplitudes Aγ

and Cγ are specified in Table V and the remaining quantities are defined in Table III.

srr
γ (r) = Aγ /(x2

√
R5){[l (l − 1) − α2

γ x2] jl (αγ x) + 2αγ x jl+1(αγ x)}Y m
l (θ, ϕ)

+l (l + 1)Cγ /(x2
√

R5)[(l − 1) jl (βγ x) − βγ x jl+1(βγ x)]Y m
l (θ, ϕ)

srθ
γ (r) = Aγ /(x2

√
R5)[(l − 1) jl (αγ x) − αγ x jl+1(αγ x)]∂θY m

l (θ, ϕ)

+Cγ /(x2
√

R5){[(l2 − 1) − β2
γ x2/2] jl (βγ x) + βγ x jl+1(βγ x)}∂θY m

l (θ, ϕ)

srϕ
γ (r) = imAγ /(x2

√
R5)[(l − 1) jl (αγ x) − αγ x jl+1(αγ x)]Y m

l (θ, ϕ)/ sin θ

+imCγ /(x2
√

R5){[(l2 − 1) − β2
γ x2/2] jl (βγ x) + βγ x jl+1(βγ x)}Y m

l (θ, ϕ)/ sin θ

sθθ
γ (r) = Aγ /(x2

√
R5)[l jl (αγ x) − αγ x jl+1(αγ x)]Y m

l (θ, ϕ) + Cγ /(x2
√

R5)l (l + 1) jl (βγ x)Y m
l (θ, ϕ)

+Aγ /(x2
√

R5) jl (αγ x)∂2
θ Y m

l (θ, ϕ) + Cγ /(x2
√

R5)[(l + 1) jl (βγ x) − βγ x jl+1(βγ x)]∂2
θ Y m

l (θ, ϕ)

sθϕ
γ (r) = im{Aγ /(x2

√
R5) jl (αγ x) + Cγ /(x2

√
R5)[(l + 1) jl (βγ x) − βγ x jl+1(βγ x)]}[∂θY m

l (θ, ϕ) − Y m
l (θ, ϕ)/ tan θ ]/ sin θ

sϕϕ
γ (r) = Aγ /(x2

√
R5)[l jl (αγ x) − αγ x jl+1(αγ x)]Y m

l (θ, ϕ) + Cγ /(x2
√

R5)l (l + 1) jl (βγ x)Y m
l (θ, ϕ)

+{Aγ /(x2
√

R5) jl (αγ x) + Cγ /(x2
√

R5)[(l + 1) jl (βγ x) − βγ x jl+1(βγ x)]}[∂θY m
l (θ, ϕ)/ tan θ − m2Y m

l (θ, ϕ)/ sin θ ]

2. Spinning sphere

The dynamics of a linear elastic sphere spinning at a
constant frequency is governed by the Hamiltonian (6) with
constants defined in Eq. (9). We can obtain explicit expres-
sions for these constants by using the displacement modal

fields given in Table II. The results are listed in Table VII and
form the basis of the case study in Sec. III.

The eigenmodes and eigenfrequencies of a spinning sphere
can be constructed via a Bogoliubov transformation. For the
sake of completeness, we provide a sketch of the procedure. It

TABLE VII. Constants appearing in the Hamiltonian Eq. (8) for a rotating sphere. The coupling constants have the symmetries gγ ′γ = gγ γ ′

and κγ ′γ = κ∗
γ γ ′ . We distinguish coupling between different mode families f and f ′. The radial partial waves W i

γ of the displacement modal
fields of a sphere are given in Table II in Appendix C 1 and the frequency-dependent radial constant αγ and βγ are defined in Table III. The
two integrals IY

γ and I�
γ appearing in the linear shifts can be evaluated explicitly in terms of generalized hypergeometric functions pFq and the

gamma function �. The amplitudes Aγ and Cγ are specified in Table V.

Case Constant

Linear shifts
f = T eγ = 0
f = S eγ = −ω2R3

√
ρ/(h̄cl )

√
αγ

−1δm,0[δl,0
√

16π/18 IY
γ − δl,2

√
8π/45(IY

γ + 3I�
γ )]

Beam splitter
f = T, f ′ = T kγ γ ′ = −(ω2R/cl )α−1

γ δll ′δmm′δnn′ [1 − m2/(l2 + l )]/2
f = S, f ′ = S kγ γ ′ = −(ω2R/cl )

√
αγ αγ ′ −1δmm′ [δll ′δnn′/2 + K−2 δl−2,l ′ + K0 δll ′ + K+2 δl+2,l ′ ]

f = T, f ′ = S kγ γ ′ = −(ω2R/cl )
√

αγ αγ ′ −1δmm′ [K−1 δl−1,l ′ + K+1 δl+1,l ′ ]
f = S, f ′ = T kγ γ ′ = k∗

γ ′γ

Two-mode squeezing
f = T, f ′ = T gγ γ ′ = (−1)m+1(ω2R/cl )α−1

γ δll ′δ−m,m′δnn′ [1 − m2/(l2 + l )]/2
f = S, f ′ = S gγ γ ′ = (−1)m+1(ω2R/cl )

√
αγ αγ ′ −1δ−m,m′ [δll ′δnn′/2 + K−2 δl−2,l ′ + K0 δll ′ + K+2 δl+2,l ′ ]

f = T, f ′ = S gγ γ ′ = (−1)m(ω2R/cl )
√

αγ αγ ′ −1δ−m,m′ [K−1 δl−1,l ′ + K+1 δl+1,l ′ ]
f = S, f ′ = T gγ γ ′ = gγ ′γ

K−2 ≡ −[8l (l − 2) + 6]−1√(2l − 3)(l − m − 1)(l − m)(l + m − 1)(l + m)/(2l + 1){IYY
γ γ ′ − (l − 2)IY �

γγ ′ + (l + 1)I�Y
γ γ ′ − (l − 2)(l + 1)I��

γγ ′ }
K−1 ≡ im

√
(l − m)(l + m)/(4l2 − 1){I�Y

γ γ ′ − (l − 1)I��
γγ ′ }/2

K0 ≡ −[8l (l + 1) − 6]−1{[2l (l + 1) − 2m2 − 1]IYY
γ γ ′ + [l (l + 1) − 3m2](IY �

γγ ′ + I�Y
γ γ ′ )[2l (l + 1)(l (l + 1) − m2) − 3m2]I��

γγ ′ }
K+1 ≡ im

√
(l − m + 1)(l + m + 1)/[4l (l + 2) + 3]{I�Y

γ γ ′ + (l + 2)I��
γγ ′ }/2

K+2 ≡ −[4l + 6]−1
√

(l − m + 1)(l − m + 2)(l + m + 1)(l + m + 2)/[4l (l + 3) + 5]{IYY
γ γ ′ + (l + 3)IY �

γγ ′ − lI�Y
γ γ ′ − l (l + 3)I��

γγ ′ }
I i j
γ γ ′ ≡ ∫ 1

0 x2W i
γ (x)W j

γ ′ (x)dx, for i, j ∈ {Y, �,�}
I i
γ ≡ ∫ 1

0 x3W i
γ (x)dx, for i ∈ {Y, �}

IY
γ = Aγ [lI4(l, αγ ) − αγ I5(l, αγ )] + Cγ l (l + 1)I4(βγ )

I�
γ = Aγ I4(l, αγ ) + Cγ [(l + 1)I4(l, βγ ) − βγ I5(l, βγ )]

I4(l, α) ≡ ∫ 1
0 x2 jl (αx)dx = √

παl [2l+1(l + 3)�(l + 3/2)]
−1

1F 2[(l + 3)/2; (l + 5)/2, l + 3/2; −α2/4]
I5(l, α) ≡ ∫ 1

0 x3 jl+1(αx)dx = √
παl+1[2l+2(l + 5)�(l + 5/2)]

−1
1F 2[(l + 5)/2; (l + 7)/2, l + 5/2; −α2/4]
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is useful to express the Hamiltonian in the matrix form

Ĥ = h̄

2
�̂ iMi j�̂ j (C12)

which is equivalent to Eq. (13) up to a constant. Here,
�̂ ≡ (â1, . . . , âN , â†

1, . . . , â†
N )

t
is the 2N-dimensional vector

of ladder operators âγ and we use γ both to denote the
mode index γ = ( f , l, m, n) as well as to enumerate the N
lowest-frequency modes γ = 1, . . . , N . The Hamilton matrix
M ≡ M0 + M2 is a complex-valued (2N × 2N )-dimensional
matrix with the two parts

M0 ≡
[
W 0
0 W

]
, M2 ≡

[
K G∗

G K∗

]
(C13)

where we define (N × N )-dimensional submatrices W , K, and
G with the eigenfrequencies Wγ γ ′ ≡ ωγ δγγ ′ and the coupling
constants kγ γ ′ and gγ γ ′ as components, respectively. Direct
diagonalization of the Hamilton matrix M is not possible
since this approach does not in general respect the bosonic
structure [41]. Instead, we need to diagonalize the dynamical
matrix DM ≡ JM where J ≡ diag[1N ,−1N ] and 1N is the
N-dimensional identity matrix. The system is linearly stable if
and only if the eigenfrequencies 
ξ are real-valued and occur
in pairs (
ξ,−
ξ ) as eigenvalues of the dynamical matrix
DM [41]. By calculating the eigenvalues of the dynamical
matrix, we can therefore at once verify that the system is
linearly stable and obtain the phonon spectrum 
ξ of the
spinning nanoparticle.

Provided that the system is linearly stable the bosonic
operators b̂ξ corresponding to the new eigenmodes can be
constructed from the transformation matrix U that diag-
onalizes the dynamical matrix. Let DN = U−1DMU such
that the transformed dynamical matrix is diagonal DN =
diag(
1, . . . , 
N ,−
1, . . . ,−
N ). The columns of the
transformation matrix U are formed by the unit eigenvectors
e(
ξ ) and e(−
ξ ) of the dynamical matrix [41]: Ui j = ei(
 j )
for j ∈ [1, N] and Ui j = ei(−
 j−N ) for j ∈ [N + 1, 2N]. The
eigenvectors of positive and negative eigenvalues are related.
As a result, the transformation matrix obeys the symmetries
Ui(N+ j) = U ∗

(N+i) j and U(N+i)(N+ j) = U ∗
i j for i, j ∈ [1, N]. The

ladder operators âγ corresponding to eigenmodes of the rest-

ing nanoparticle are related to the ladder operators b̂ξ of the
spinning nanoparticle through [41]

âγ =
∑

ξ

[Uγ ξ b̂ξ + Uγ (N+ξ )b̂
†
ξ ]. (C14)

In consequence, we can construct the displacement modal
fields of the eigenmodes of the spinning nanoparticle as linear
combinations of the modal fields of the resting nanoparticle

vξ (r) =
∑

γ

Aξγ wγ (r) (C15)

where Aξγ ≡ √

ξ/ωγ [Uγ ξ + U(γ̃+N )ξ ]. Here,γ̃ is the mode

index such that wγ̃ (r) = w∗
γ (r). For a resting sphere, taking

the complex conjugate of the displacement modal fields given
in Table II corresponds to inverting the sign of the azimuthal
order, γ̃ = ( f , l,−m, n). The normalization of the new modal
fields is then given by∫

B
v∗

ξ · vξ ′ (r)dr =
∑

γ

A∗
ξγAξ ′γ � δξξ ′ (C16)

compare Eq. (A6). The modal fields vξ (r) are merely approx-
imately orthonormal because we include only the N lowest-
frequency eigenmodes of the resting nanoparticle.

APPENDIX D: ELASTIC NONLINEARITY

The centrifugal strain experienced by a spinning nanoparti-
cle increases with its rotation frequency. At extreme frequen-
cies, anharmonic corrections to the interatomic interaction
potential (elastic energy) V become relevant. The resulting
equation of motion of elasticity theory is then no longer
linear, as opposed to Eq. (A3), and there can increasingly
be deviations from the linear elastic theory presented in this
paper. Here, we estimate at which rotation frequencies such
elastic nonlinearities start to appear for a spinning nanosphere.

The deformation of a continuous body is described by its
strain tensor S. The full strain tensor has Cartesian compo-
nents [64]

Si j ≡ 1

2

[
∂iu

j + ∂ ju
i +

∑
k

∂kui∂ku j

]
(D1)

and includes terms quadratic in the displacement u that are
neglected in linear elasticity theory; compare Eq. (A4). The
elastic energy density V is a function of S. For isotropic
bodies, V can only depend on the tensor invariants I1 =
Tr(S), I2 = Tr(S2), and I3 = Tr(S3) [64]. To third order in
the strain

V = μI2 + λ

2
I2

1 + A

3
I3 + BI1I2 + C

3
I3

1 + O4(S). (D2)

TABLE VIII. Elastic nonlinearity of a nanosphere. The terms V2(∇u) and V3(∇u) are the harmonic and leading-order anharmonic
contributions to the elastic energy density V of an isotropic body [64]. The frequency hγ is the leading-order anharmonic correction to the
frequency of the S001 mode. We define the dimensionless nonlinear elastic constants Ã ≡ A/(2μ + λ) and likewise for B̃ and C̃.

V2(∇u) = μ[(∂iu j )(∂ jui ) + (∂iu j )(∂ jui )]/2 + λ(∂iui )(∂ ju j )/2
V3(∇u) = A(∂iu j )(∂ juk )(∂kui )/12 + (4μ + A)(∂iu j )(∂ juk )(∂iuk )/4 + B(∂iui )(∂ juk )(∂ku j )/2 + (λ + B)(∂iui )(∂ juk )(∂ juk )/2

+C(∂iui )(∂ ju j )(∂kuk )/3
S001 mode
hγ = √

2/π
√

h̄cl/(R6ρ )
√

αγ
−3{2I (0, αγ )[Ã + 6B̃ + 4C̃ + 3/(2 − 2ν )]/3 + I (1, αγ )[2B̃ + 4C̃ + ν/(1 − ν )]I (2, αγ )[2B̃ + 2C̃ + ν/(1 − ν )]

+ I (3, αγ )[2Ã + 6B̃ + 2C̃ + 3]/6}
I (i, α) ≡ ∫ 1

0 xi−1[WY
γ (x)]3−i[∂xWY

γ (x)]idx

205416-14



ACOUSTIC AND OPTICAL PROPERTIES OF A … PHYSICAL REVIEW B 101, 205416 (2020)

Here, μ and λ are the linear elastic constants introduced in
Sec. III and A, B, and C are nonlinear elastic constants. We
do not include a term constant in energy since it does not
affect the dynamics. Moreover, there is no term linear in the
strain, otherwise S = 0 would not be a minimum of the strain
energy and u = 0 would not be an equilibrium configuration
of the body. Keeping only terms up to third order in the
displacement, we obtain [64]

V = V2(∇u) + V3(∇u) + O4(∇u), (D3)

where ∇u is the Jacobi matrix of the displacement with Carte-
sian components �ui j = ∂iu j . The harmonic term V2(∇u) and
the leading-order anharmonic correction V3(∇u) are given in
Table VIII.

The quantum operator representing the elastic energy of
the body is hence V̂ = V̂2 + V̂3 + O4(∇û), with

V̂i ≡
∫

B
Vi(∇û) dr (D4)

for i = 2 and 3. The linear elastic energy V̂2 is contained in
the Hamiltonian (A9) of linear elasticity theory. The term
V̂3 represents the leading order nonlinear correction to the
elastic energy. In general, it causes a shift in the eigenfrequen-
cies of the linear elastic phonon eigenmodes summarized in
Appendix C and leads to coupling between the modes. The
shifts and coupling frequencies can in principle be evaluated
from V3 in Table VIII. In practice, only the S001 and S201

are significantly displaced by the static centrifugal force and
thereby primarily affected by anharmonicities; see Sec. III. In
order to obtain a simple criterion for the rotation frequencies
at which anharmonic effects become relevant, we focus on
the frequency shift of the radially symmetric S001 mode and
neglect its anharmonic coupling to other modes. For the S001

mode,

V̂2 = h̄ωγ

4

(
â2

γ + 2â†
γ âγ + â† 2

γ

)
,

V̂3 = h̄hγ

8

(
â3

γ + 3â†
γ â2

γ + 3â† 2
γ âγ + â† 3

γ

)
,

(D5)

where we discard the energy of the vacuum state by normal
ordering and define the anharmonic correction hγ to the
eigenfrequency given in Table VIII. The expectation values
with respect to the vacuum state |0〉 of the displaced mode

FIG. 5. Relative contribution of anharmonic corrections to the
elastic energy of the S001 mode of a spinning silica nanosphere, as
defined in Eq. (D6). The dashed-dotted line indicates the power law
hγ dγ /ωγ ∝ ω2R2/c2

l at frequencies ω � cl/R.

âγ (see Sec. II) are 〈0|V̂2|0〉 = h̄ωγ Re2(dγ ) and 〈0|V̂3|0〉 =
h̄hγ Re3(dγ ). Here, the displacements dγ ∈ R such that we
can express the expected elastic energy due to the S001 mode
of a spinning nanoparticle in the absence of vibrations as

〈0|V̂ |0〉 = h̄ωγ d2
γ

[
1 + hγ

ωγ

dγ + O2(dγ )

]
. (D6)

Anharmonic effects can be neglected at rotation frequencies
for which the frequency-dependent displacement dγ is suf-
ficiently small such that hγ dγ /ωγ � 1. In Fig. 5, we plot
hγ dγ /ωγ as a function of the rotation frequency for the
parameters given in Table I. At frequencies ω � cl/R, the
anharmonic correction scales as hγ dγ /ωγ ∝ ω2R2/c2

l with
a prefactor that only depends on the Poisson ratio and the
three nonlinear elastic constants as indicated by the dashed-
dotted line. We define ωnl as the rotation frequency at which
anharmonic corrections change the linear elastic energy of the
displaced S001 by 25%. For the parameters specified in Table I
and used in the case study in Sec. III, we find that ωnl =
2 × 5.1 GHz. We use ωnl to indicate in which regime to expect
sizable corrections to the linear elastic results presented in
Figs. 1 and 3.
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M. Aspelmeyer, Phys. Rev. Lett. 122, 123602 (2019).

[11] Y. Arita, M. Mazilu, and K. Dholakia, Nat. Commun. 4, 1
(2013).

[12] T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin,
and T. Li, Phys. Rev. Lett. 117, 123604 (2016).

205416-15

https://doi.org/10.1088/1367-2630/12/3/033015
https://doi.org/10.1088/1367-2630/12/3/033015
https://doi.org/10.1088/1367-2630/12/3/033015
https://doi.org/10.1088/1367-2630/12/3/033015
https://doi.org/10.1073/pnas.0912969107
https://doi.org/10.1073/pnas.0912969107
https://doi.org/10.1073/pnas.0912969107
https://doi.org/10.1073/pnas.0912969107
https://doi.org/10.1103/PhysRevA.83.013803
https://doi.org/10.1103/PhysRevA.83.013803
https://doi.org/10.1103/PhysRevA.83.013803
https://doi.org/10.1103/PhysRevA.83.013803
https://doi.org/10.1126/science.aba3993
https://doi.org/10.1126/science.aba3993
https://doi.org/10.1126/science.aba3993
https://doi.org/10.1126/science.aba3993
https://doi.org/10.1103/PhysRevLett.124.013603
https://doi.org/10.1103/PhysRevLett.124.013603
https://doi.org/10.1103/PhysRevLett.124.013603
https://doi.org/10.1103/PhysRevLett.124.013603
https://doi.org/10.1103/PhysRevLett.122.223601
https://doi.org/10.1103/PhysRevLett.122.223601
https://doi.org/10.1103/PhysRevLett.122.223601
https://doi.org/10.1103/PhysRevLett.122.223601
https://doi.org/10.1103/PhysRevA.100.013805
https://doi.org/10.1103/PhysRevA.100.013805
https://doi.org/10.1103/PhysRevA.100.013805
https://doi.org/10.1103/PhysRevA.100.013805
https://doi.org/10.1103/PhysRevLett.123.153601
https://doi.org/10.1103/PhysRevLett.123.153601
https://doi.org/10.1103/PhysRevLett.123.153601
https://doi.org/10.1103/PhysRevLett.123.153601
https://doi.org/10.1103/PhysRevLett.122.123601
https://doi.org/10.1103/PhysRevLett.122.123601
https://doi.org/10.1103/PhysRevLett.122.123601
https://doi.org/10.1103/PhysRevLett.122.123601
https://doi.org/10.1103/PhysRevLett.122.123602
https://doi.org/10.1103/PhysRevLett.122.123602
https://doi.org/10.1103/PhysRevLett.122.123602
https://doi.org/10.1103/PhysRevLett.122.123602
https://doi.org/10.1038/ncomms3374
https://doi.org/10.1038/ncomms3374
https://doi.org/10.1038/ncomms3374
https://doi.org/10.1038/ncomms3374
https://doi.org/10.1103/PhysRevLett.117.123604
https://doi.org/10.1103/PhysRevLett.117.123604
https://doi.org/10.1103/PhysRevLett.117.123604
https://doi.org/10.1103/PhysRevLett.117.123604


DANIEL HÜMMER et al. PHYSICAL REVIEW B 101, 205416 (2020)

[13] S. Kuhn, A. Kosloff, B. A. Stickler, F. Patolsky, K. Hornberger,
M. Arndt, and J. Millen, Optica 4, 356 (2017).

[14] P. Nagornykh, J. E. Coppock, J. P. J. Murphy, and B. E. Kane,
Phys. Rev. B 96, 035402 (2017).

[15] A. T. M. A. Rahman and P. F. Barker, Nat. Photonics 11, 634
(2017).

[16] F. Monteiro, S. Ghosh, E. C. van Assendelft, and D. C. Moore,
Phys. Rev. A 97, 051802(R) (2018).

[17] R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer,
D. Windey, F. Tebbenjohanns, and L. Novotny, Phys. Rev. Lett.
121, 033602 (2018).

[18] J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M.
Ma, and T. Li, Phys. Rev. Lett. 121, 033603 (2018).

[19] C. C. Rusconi, V. Pöchhacker, K. Kustura, J. I. Cirac, and O.
Romero-Isart, Phys. Rev. Lett. 119, 167202 (2017).

[20] A. E. Rubio López, C. Gonzalez-Ballestero, and O. Romero-
Isart, Phys. Rev. B 98, 155405 (2018).

[21] C. Gonzalez-Ballestero, J. Gieseler, and O. Romero-Isart, Phys.
Rev. Lett. 124, 093602 (2020).

[22] G. S. MacCabe, H. Ren, J. Luo, J. D. Cohen, H. Zhou, A.
Sipahigil, M. Mirhosseini, and O. Painter, arXiv:1901.04129.

[23] A. Kuhlicke, A. W. Schell, J. Zoll, and O. Benson, Appl. Phys.
Lett. 105, 073101 (2014).

[24] T. M. Hoang, J. Ahn, J. Bang, and T. Li, Nat. Commun. 7, 12250
(2016).

[25] M. L. Juan, G. Molina-Terriza, T. Volz, and O. Romero-Isart,
Phys. Rev. A 94, 023841 (2016).

[26] T. Delord, P. Huillery, L. Schwab, L. Nicolas, L. Lecordier, and
G. Hétet, Phys. Rev. Lett. 121, 053602 (2018).

[27] G. P. Conangla, A. W. Schell, R. A. Rica, and R. Quidant, Nano
Lett. 18, 3956 (2018).

[28] J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, and T. Li, Nat.
Nanotechnol. 15, 89 (2020).

[29] T. G. Wang, A. V. Anilkumar, C. P. Lee, and K. C. Lin, J. Fluid
Mech. 276, 389 (1994).

[30] R. J. A. Hill and L. Eaves, Phys. Rev. Lett. 101, 234501 (2008).
[31] K. A. Baldwin, S. L. Butler, and R. J. A. Hill, Sci. Rep. 5, 7660

(2015).
[32] L. Childress, M. P. Schmidt, A. D. Kashkanova, C. D. Brown,

G. I. Harris, A. Aiello, F. Marquardt, and J. G. E. Harris, Phys.
Rev. A 96, 063842 (2017).

[33] C. Bernando, R. M. P. Tanyag, C. Jones, C. Bacellar, M. Bucher,
K. R. Ferguson, D. Rupp, M. P. Ziemkiewicz, L. F. Gomez,
A. S. Chatterley, T. Gorkhover, M. Müller, J. Bozek, S. Carron,
J. Kwok, S. L. Butler, T. Möller, C. Bostedt, O. Gessner, and
A. F. Vilesov, Phys. Rev. B 95, 064510 (2017).

[34] B. Langbehn, K. Sander, Y. Ovcharenko, C. Peltz, A. Clark,
M. Coreno, R. Cucini, M. Drabbels, P. Finetti, M. Di Fraia,
L. Giannessi, C. Grazioli, D. Iablonskyi, A. C. LaForge, T.
Nishiyama, V. Oliver Álvarez de Lara, P. Piseri, O. Plekan,
K. Ueda, J. Zimmermann, K. C. Prince, F. Stienkemeier, C.
Callegari, T. Fennel, D. Rupp, and T. Möller, Phys. Rev. Lett.
121, 255301 (2018).

[35] A. Aiello, J. G. E. Harris, and F. Marquardt, Phys. Rev. A 100,
023837 (2019).

[36] J. D. Achenbach, Wave Propagation in Elastic Solids (North-
Holland, Amsterdam, 1973).
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