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Bianisotropy for light trapping in all-dielectric metasurfaces
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Magnetoelectric dipole coupling effects in all-dielectric metasurfaces composed of particles with bianisotropic
electromagnetic response are investigated. This bianisotropic response is associated with the trapped mode
excitation. Maintaining the trapped mode resonant conditions allows one to sufficiently increase the quality factor
and reduce radiation losses in all-dielectric nanostructures (metasurfaces). An analytical model accounting for
the contributions of both electric and magnetic dipole moments induced in particles by external electromagnetic
fields is proposed. We show how bianisotropy can lead to the excitation of the trapped mode in metasurfaces.
This mode corresponds to the electromagnetic coupling between the out-of-plane particle dipole moments, which
do not radiate collectively from the metasurface plane resulting in the enhanced storage of electromagnetic
energy. Our approach reveals a physical mechanism of the trapped mode excitation and demonstrates that the
specially initiated bianisotropy of particles enables the energy flow between external electromagnetic waves and
the trapped mode. Due to this bianisotropy, one can control the process of light-matter interaction and energy
storage in all-dielectric metasurfaces via excitation of trapped modes.
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I. INTRODUCTION

All-dielectric nanostructures are promising for use in ad-
vanced optoelectronics devices [1]. Such nanostructures can
be fabricated from a wide range of dielectric and semiconduc-
tor materials (e.g., silicon) utilizing laser-assisted techniques
[2] or standard nanolithography and complementary metal-
oxide-semiconductor (CMOS) technologies [3]. Compatibil-
ity with the CMOS technologies is the major advantage of all-
dielectric nanostructures over metallic (plasmonic) nanoparti-
cle systems [4].

Typically, all-dielectric nanostructures are composed of a
set of subwavelength particles made of materials with high
or moderate refractive indexes [5,6]. At optical frequencies,
particles support many electric and magnetic resonances [7–9]
(often referred to as Mie resonances [10]), which arise due
to light field penetration inside the particles and resonant
excitation of their polarization currents. Therefore, each parti-
cle in the structure behaves as an individual nanoresonator,
whereas their collective response determines the resonant
characteristics of the entire all-dielectric nanostructure.

Since the Mie resonances are accompanied by a strong en-
hancement of electromagnetic field inside the high-refractive-
index nanoparticles [2,11], the current trend in the field of
all-dielectric nanostructures is associated with their applica-
tion in nonlinear optics [12–15]. It is revealed [16,17] that
efficiencies of nonlinear optical processes in all-dielectric
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nanostructures can be very high exceeding by several orders
corresponding characteristics achieved in plasmonic nanopar-
ticle systems [18,19]. Moreover, the efficiency of light-
matter interactions in dielectric nanostructures can be substan-
tially enhanced by increasing the quality factor of individual
nanoresonators forming the system, while providing their low
overhead absorption and radiation losses. This is achieved by
choosing a special form of dielectric nanoresonators, which
are made of low-loss materials.

An effective way to reduce radiation losses and increase
the quality factor of resonances in all-dielectric nanostructures
is to maintain excitations related to the so-called trapped
modes [20]. The trapped modes can be excited in all-dielectric
nanostructures if their constitutive resonators are in some
way perturbed [21–23]. A perturbation transforms inherently
nonradiative (dark) modes to weakly radiative ones when
spatial symmetry of the unit cell of the nanoparticle system
is broken. Recently, the excitation of trapped modes in such
asymmetrical structures was discussed in the framework of the
concept of symmetry-protected bound states in the continuum
(BICs) [24–27].

In the framework of BICs, the existence of trapped modes
in all-dielectric metasurfaces composed of perturbed disks has
been recently studied both numerically and experimentally
[28–31]. It has been proven that in such metasurfaces, the
trapped modes can be excited under normal plane wave in-
cidence conditions. The excitation of trapped modes leads to
a strong near-field enhancement, which may initiate the non-
linear [30] and thermal [31] processes in the nanostructure.
The reported numerical and experimental results convincingly
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demonstrate the practical importance of the effect of trapped
modes in all-dielectric nanostructures.

The excitation of trapped modes leads to arising narrow
Fano resonances in the spectral characteristics of metasur-
faces. This effect is similar to the excitation of surface lattice
resonances (SLRs) in one-dimensional (1D) [32–34] and two-
dimensional (2D) [7,35,36] structures composed of periodic
arrays of dipole nanoparticles (see a comprehensive review on
SLRs in plasmonic arrays in Ref. [37]). In both cases, the Fano
resonances arise owing to a general mechanism related to the
coupling between a broadband bright mode and a narrow-
band dark mode supported by a system [38]. However, there is
an important difference between the trapped modes and SLRs.
The SLRs are diffraction resonances determined by the ratio
on the wavelength and the period of the structure. They origi-
nate from the transition of a diffractive order from a propagat-
ing state into an evanescent state in the area of the Rayleigh
anomaly. However, the trapped mode can exist under the
long-wavelength conditions without the diffraction assistance.
They are deep subwavelength resonances whose excitation
requires a special design of spatially asymmetric unit cells.

Since all-dielectric nanostructures are composed of sub-
wavelength particles, their optical properties are related to
resonant features of individual resonators and their mutual
interactions. In most cases, especially for particles having a
simple form, only electric and magnetic dipole contributions
are significant, and their proper accounting allows one to
adequately describe characteristics of the nanostructure in the
coupled dipole approximation [7,39,40]. Such a description
can be expressed in terms of polarizabilities, which define the
linear relations between dipole moments induced in a single
resonator by external electromagnetic fields [41,42]. Ordi-
nary, this approach assumes that electric and magnetic dipole
moments of each particle in the nanostructure are excited
independently by the electric and magnetic field components
of the incident wave, respectively. However, in all-dielectric
nanostructures supporting the trapped modes, particles can
have a rather complicated shape [43–46]. In such particles,
as it will be shown in this paper, in addition to direct electric
and magnetic dipole response, a bianisotropic response can
occur due to magnetoelectric coupling. This magnetoelectric
coupling enables the excitation of magnetic dipoles by an
electric field and of electric dipoles by a magnetic field.
Therefore, the bianisotropic properties of a single particle are
responsible for the collective bianisotropy of their ensemble
[47–50]. The signature of the effect of bianisotropy appears in
the constitutive relations, where the dependence of electrical
induction on the magnetic field and magnetic induction on
the electric field is expressed in the corresponding cross-
polarizability terms [51].

In this paper, we show the correspondence between the
resonant bianisotropic properties of a single particle and the
conditions of resonant trapped mode excitation in an all-
dielectric metasurface composed of such particles and irradi-
ated by a normally incident electromagnetic wave. This effect
leads to the high-quality-factor resonances in the metasurface
reflection and transmission spectra. For our aims, we first
develop the coupled dipole approximation (the coupled dipole
equation method), which involves bianisotropy terms and then
apply this method for studying electromagnetic properties of

the realistic all-dielectric metasurface. Since the bianisotropy
of the nanoparticles allows an energy flow between external
electromagnetic waves and the trapped mode in the metasur-
face, one can consider this mode as a quasi-trapped mode, the
lifetime of which is determined by the radiation losses.

To construct a metasurface supporting trapped modes, here
we employ a set of identical subwavelength high-refractive-
index dielectric particles made in the form of a disk. To
gain access to the trapped mode of the metasurface, the in-
plane symmetry of the resonators is broken provided that
each disk is perturbed by an eccentric through hole. Break-
ing symmetry of the disk resonator causes the existence
of bianisotropy, which is also a subject of our subsequent
study. The particle polarizability tensors are calculated nu-
merically applying the method proposed in Refs. [41,42].
Total induced electric polarization current inside the particles
and their electric and magnetic dipole moments are derived
using the discrete dipole approximation [52] and approach
developed earlier in Refs. [53,54]. Importantly, in this paper,
we consider monochromatic time dependence exp(−iωt ) for
all corresponding values (ω is the angular frequency). For
compactness, this explicit time dependence is accepted and
omitted in this paper.

The rest of the paper is organized as follows. Section II
presents a general theoretical background based on the cou-
pled dipole equations including bianisotropy terms for ar-
bitrary finite and infinite arrays of dielectric nanoparticles.
Then, for an infinite 2D periodic array (metasurface) of iden-
tical nanoparticles, a formal solution is derived. In Sec. III
we reveal the electromagnetic properties of an individual nan-
odisk and derive its dyadic polarizabilities. Then, the problem
of light trapping in a metasurface composed of such nanodisks
is investigated in detail. In particular, we show that the trapped
mode is associated with the coupling between the out-of-plane
particle dipole moments, which do not radiate collectively
from the metasurface plane. The main results are summarized,
and the conclusions are offered in Sec. IV.

II. THEORETICAL BACKGROUND

A. Coupled dipole model accounting for bianisotropy

In the dipole approximation, each nanoparticle in the par-
ticles’ array is substituted by point electric and magnetic
dipoles. Taking into account the effect of bianisotropy, the
vectors of the electric pl and magnetic ml dipole moments
of a particle with number l disposed at the position rl are
determined by the relations between the external local electric
Eloc(rl ) and local magnetic Hloc(rl ) fields [51]:

pl = α̂ee
l Dloc(rl ) + c−1

d α̂em
l Hloc(rl ),

ml = α̂mm
l Hloc(rl ) + cd α̂me

l Dloc(rl ), (1)

where α̂ee
l , α̂mm

l , α̂em
l , and α̂me

l are four (electric, magnetic,
electromagnetic, and magnetoelectric) dyadic polarizabilities
related to the particle with number l , Dloc(rl ) = ε0εd Eloc(rl )
is the local displacement field, and cd = (μ0ε0εd )−1/2 is
the light speed in homogeneous ambient space with relative
permittivity εd . Here ε0 and μ0 are the vacuum permittivity
and permeability, respectively. Generally, the polarizabilities
comprise 4 × 9 = 36 polarizability components.
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Note, for the cross polarizabilities, the condition α̂em =
(−α̂me)T holds from the time-reversal symmetry of the
Maxwell’s equations and linearity of the particle response
[51,55–57] (here T denotes the transpose operation).

The local fields acting on the particle with number l are in-
duced by both external incident waves with the fields D(rl ) =

ε0εd E(rl ) = ε0εd E exp(ikd rl ) and H(rl ) = H exp(ikdrl ), and
the dipole moments of all other nanoparticles (with number
j �= l) forming the array. Using expressions from Refs. [7,58]
for electric and magnetic fields generated by electric and mag-
netic dipoles, Eq. (1) for calculation of the dipole moments of
all particles can be represented as

pl = α̂ee
l

⎡
⎢⎣D(rl ) + k2

d

N∑
j=1
j �=l

(
Ĝl jp j + i

kd cd
[gl j × m j]

)⎤
⎥⎦ + c−1

d α̂em
l

⎡
⎢⎣H(rl ) + k2

d

N∑
j=1
j �=l

(
Ĝl jm j − icd

kd
[gl j × p j]

)⎤
⎥⎦,

ml = α̂mm
l

⎡
⎢⎣H(rl ) + k2

d

N∑
j=1
j �=l

(
Ĝl jm j − icd

kd
[gl j × p j]

)⎤
⎥⎦ + cd α̂

me
l

⎡
⎢⎣D(rl ) + k2

d

N∑
j=1
j �=l

(
Ĝl jp j + i

kd cd
[gl j × m j]

)⎤
⎥⎦, (2)

where l = 1, 2, 3, . . . , N , kd = |kd | = |k|√εd is the wave number in the medium with εd , k is the wave vector in vacuum, and
Ĝl j = Ĝ(rlr j ) and gl j = g(rl , r j ) are the Green’s functions (see Eqs. (2) and (3) in Ref. [7]).

After solving system (2) for an array composed of N nanoparticles, one can calculate in the dipole approximation the
extinction power Pext and scattered power Psca [7,58]

Pext = ω

2
Im

N∑
l=1

{E∗(rl ) · pl + μ0H∗(rl ) · ml}, (3)

Psca = 1

32π2

√
ε0εd

μ0

k4
0

ε2
0

∫ ∣∣∣∣∣
N∑

l=1

e−ikd (n·rl )

{
[n × [pl × n]] + 1

cd
[ml × n]

}∣∣∣∣∣
2

d�, (4)

where the asterisk ∗ denotes complex conjugation, n =
r/|r| = (sin θ cos φ, sin θ sin φ, cos θ ) is the unit vector de-
termining the scattering direction, d� = sin θdφdθ is the
element of the solid angle �, and θ and φ are the polar
and azimuthal angles of the spherical coordinate system,
respectively. Integration in Eq. (4) is performed over the full
solid angle.

The origin of the corresponding Cartesian coordinate sys-
tem is chosen inside the region occupied by the array of
nanoparticles. Total electric and magnetic fields at any point
r outside the array are a superposition of the fields of inci-
dent waves and the fields radiated by all electric and mag-
netic dipoles related to the nanoparticles. These total fields
are

Etot(r) = E(r) + k2
d

ε0εd

N∑
l=1

(
Ĝlpl + i

kd cd
[gl × ml ]

)
,

Htot(r) = H(r) + k2
d

N∑
l=1

(
Ĝlml − icd

kd
[gl × pl ]

)
, (5)

where Ĝl = Ĝ(r, rl ) and gl = g(r, rl ). Since the extinction
and scattering powers are parametrically dependent on the in-
troduced polarizabilities, they take into account bianisotropy
of the entire nanoparticle array. This method can be applied to
both a finite and an infinite array of particles.

B. Infinite 2D periodic array of identical particles

Here we consider the general case of a plane electromag-
netic wave interacting with an infinite 2D periodic array of

identical nanoparticles possessing bianisotropy. Under normal
incidence conditions of an external plane electromagnetic
wave, all particles forming the array bear the same electric
p and magnetic m dipole moments. Using the approach
developed in Ref. [7], generalized system of equations (2) is
transformed to

p = α̂ee
[
D + k2

d Ĝ0p
] + c−1

d α̂em
[
H + k2

d Ĝ0m
]
,

m = α̂mm[
H + k2

d Ĝ0m
] + cd α̂

me[D + k2
d Ĝ0p

]
, (6)

where D = ε0εd E and H are the fields of the incident wave at
the array plane, and equation

Ĝ0 =
∞∑
j=2

Ĝ(0, r j ) (7)

is the dipole sum tensor (here we assume that the nanopar-
ticle with number j = 1 is disposed at the origin of chosen
Cartesian coordinate system, so r1 = 0). A formal solution of
system (6) can be written in the following form:

p = Â−1
[
α̂ee + k2

d α̂
emĜ0

(
Û − k2

d α̂
mmĜ0

)−1
α̂me

]
D

+ Â−1c−1
d α̂em[

Û + k2
d Ĝ0(Û − k2

d α̂
mmĜ0)−1

α̂mm]
H,

m = B̂−1
[
α̂mm + k2

d α̂
meĜ0

(
Û − k2

d α̂
eeĜ0

)−1
α̂em

]
H,

+ B̂−1cd α̂
me

[
Û + k2

d Ĝ0
(
Û − k2

d α̂
eeĜ0

)−1
α̂ee

]
D, (8)

where Û is the unit 3×3 tensor, and power −1 denotes
the inverse operation applied to the corresponding matrix
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FIG. 1. Cartesian coordinate system and a dielectric nanodisk
with an eccentric through hole. The hole is shifted along the y axis
from the disk center. The disk is represented as a lattice of spherical
elements, which are used in numerical simulations.

including Â and B̂. These matrices are

Â = Û − k2
d α̂

eeĜ0 − k4
d α̂

emĜ0
(
Û − k2

d α̂
mmĜ0

)−1
α̂meĜ0,

B̂ = Û − k2
d α̂

mmĜ0 − k4
d α̂

meĜ0
(
Û − k2

d α̂
eeĜ0

)−1
α̂emĜ0.

With solution (8) the extinction cross section σ
(1)
ext per one

particle of the array can be derived in the form [7]:

σ
(1)
ext = kd

|E|2ε0εd
Im{E∗ · p + μ0H∗ · m}, (9)

and the transmission and reflection coefficients of the ar-
ray can be calculated using the dipole approach given in
Refs. [7,59,60].

The application of the above-introduced analytical ap-
proach depends on many parameters determined by the
single-particle polarizabilities, array configuration, and ir-
radiation conditions. In what follows, we apply this ap-
proach to explain mechanisms of excitation of quasi-trapped
modes in a 2D array of dielectric particles with bianisotropic
properties.

III. MODEL OF BIANISOTROPY AND LIGHT TRAPPING

In this section, we consider a metasurface composed of
a set of identical subwavelength particles. These particles
are cylindrical dielectric resonators (nanodisks, see Fig. 1).
For numerical simulations, we chose the following parame-
ters (we use approximate equality here, since the geometric
parameters of the problem are determined up to the dis-
cretization step, which is 7 nm). The nanodisks’ diameter
and thickness are Dc � 170 nm and H � 85 nm, respectively.
They are made of nonmagnetic material with relative permit-
tivity εp = 16. Each nanodisk is perturbed by an eccentric
through hole. The hole diameter is Dh � 50 nm and the
hole shift from the particle center along the y axis is 
 �
Dc/8 nm. Due to the eccentric hole, the in-plane symmetry
of the nanodisk is broken. The particle is symmetric with
respect to the line drawn through its center parallel to the
y axis, whereas with respect to the x axis it is asymmetric.
Note that our results can be easily scaled for the disks with
other geometrical and material parameters operating in the
desired spectral range. Therefore, in what follows, we perform
normalization of all geometrical parameters on the factor
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FIG. 2. Dipole and multipole contributions to the scattering cross
section calculated for different irradiation conditions of the nanodisk
with (a) central hole, and (b), (c) eccentric hole; in the inserts, k is
the wave vector and E is the vector of electric field amplitude of the
incident plane wave.

D = 185 nm. We consider for the surrounding medium εd = 1
so that kd = k.

First, the optical properties of the isolated nanodisk are
discussed in the context of its polarizability tensors, and the
expressions describing the electric and magnetic moments of
the perturbed nanodisk, with accounting for bianisotropy, are
derived. For this problem, we consider a linearly polarized
plane wave as exciting radiation. To derive polarizabilities,
the irradiation of the nanodisk by the linearly polarized
waves with different incident directions should be considered.
Thus, we further distinguish x, y, and z polarizations for
the incident wave. Both frontal (k = {0, 0,±kz}) and lateral
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FIG. 3. Spectral characteristics of the nonzero components of (a), (b) magnetic and (c), (d) electric dipole moments and their absolute
values calculated for the nanodisk irradiated by the x-polarized wave from the +z and −z directions as shown in the inserts. The dipoles are
located at the center of nanodisk.

(k = {±kx, 0, 0} ∨ k = {0,±ky, 0}) irradiations of the nan-
odisk are supposed. Then we apply the obtained solution to
explain characteristics of the metasurface composed of such
perturbed nanodisks and irradiated by a normally incident
plane wave (k = {0, 0,+kz}).

A. Bianisotropic polarizabilities of a single nanoparticle

To demonstrate the applicability of the coupled dipole
approximation to the problem under study, we apply the
multipole decomposition method [9] considering different ir-
radiation conditions of the nanoparticle by the incident wave.
The main multipole moments are calculated using their exact
definitions from Refs. [53,54].

For numerical simulations of the disk scattering cross
section we use the discrete dipole approximation (DDA)
method. It allows us to obtain the distribution of the induced
polarization P(r) inside an arbitrary-shaped scatterer. The
main idea of the DDA method consists in the replacement
of the scattering object by a cubic lattice of electric point
dipoles with known polarizability. The corresponding dipole
moment d j induced in each lattice point j (with the radius
vector r j) is found by solving coupled dipole equations. After
that a discrete representation of the induced polarization is

obtained as

P(r) =
Nd∑
j=1

d jδ(r − r j ), (10)

where Nd is the total number of the dipoles inside the scatterer,
δ(r − r j ) is the Dirac delta function. A detailed description
and discussions of the DDA numerical method and its ap-
plicability for electromagnetic scattering problems one can
find in Ref. [61]. Note that there is a close correspondence
between the DDA and discretizations that are based on the
digitized Green’s function (DGF) method or the volume-
integral equation formulation (VIEF) [62].

In the framework of the DDA method, after the discretiza-
tion procedure, the dielectric nanodisk is presented as a set
of spherical elements (Fig. 1). Knowing the polarization P,
the electric field Esca of the wave scattered in the direction
determined by a unit vector n is calculated from the equation
[54,63]

Esca (r) = −k2

ε0

eikd r

4πr

[
n ×

(
n ×

∫
Vp

e−ikd (n·r′ )P(r′)dr′
)]

,

(11)

205415-5



EVLYUKHIN, TUZ, VOLKOV, AND CHICHKOV PHYSICAL REVIEW B 101, 205415 (2020)

where r is the radius vector of an observation point and
n = r/r, and Vp is the scatterer volume. The scattering cross
section of a single scatterer is

σsca = 1

|E|2
∫ π

0

∫ 2π

0
|Esca (r)|2r2d�. (12)

Multipole decomposition of the scattering cross section with
accounting for the several first multipole terms is written as
[54,64]

σsca � k4

6πε2
0|E|2 |p|2 + k4εdμ0

6πε0|E|2 |m|2

+ k6εd

720πε2
0|E|2

∑
αβ

|Qαβ |2 + k6ε2
dμ0

80πε0|E|2
∑
αβ

|Mαβ |2

+ k8ε2
d

1890πε2
0|E|2

∑
αβγ

|Oαβγ |2, (13)

where p and m are the vectors of electric and magnetic dipole
moments of the scatterer, respectively, and Q̂, M̂, and Ô are
the tensors of electric and magnetic quadrupole moments,
and electric octupole moment, respectively. Definitions of the
multipole moments can be found elsewhere [53,54], whereas
expressions for the electric and magnetic dipole moments are
given below.

The resulting contributions of the corresponding dipolar
and multipolar moments to the scattering cross section of
the given nanoparticle are shown in Fig. 2. From this figure,
one can conclude that only electric dipole (ED) and magnetic
dipole (MD) make a major contribution to the total scattering
cross section independently on the irradiation conditions.
Contributions of the higher-order multipoles, such as elec-
tric quadrupole (EQ), magnetic quadrupole (MQ), electric
octupole (EOC), and others, are negligibly small. It means that
the optical response of the chosen nanodisk can be adequately
described in the dipole approximation.

Comparing the curves presented in Figs. 2(a) and 2(b) one
can see that as soon as a perturbation to the nanodisk is intro-
duced (i.e., the hole is shifted from the nanodisk’s center) an
additional weak dipole resonance appears at the wavelength
λr ≈ 660 nm (λr/D ≈ 3.57). This resonance is attributed to
the trapped mode, which is a signature of the systems with
broken symmetry [20]. Importantly, the spectral position of
this additional resonance coincides with both frontal and
lateral irradiation of the nanoparticle. Below we show that
this additional resonance is a manifestation of the effect of
bianisotropy induced by the in-plane broken symmetry.

Dipole polarizability tensor of a single nanoparticle can be
calculated using the approach given in Refs. [41,42]. Initially,
one has to calculate the electric and magnetic dipole moments
induced separately by mutually inverse incident plane waves
with the same linear electric polarization. For example, if we
consider the incident x-polarized waves propagating in the
+z and −z directions (see the inserts in Fig. 3) electric p
and magnetic m dipole moments should satisfy the following
expressions:

p±
j = αee

jxD0 ± αem
jy D0,

c−1
d m±

j = ±αmm
jy D0 + αme

jx D0, (14)
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FIG. 4. Spectral characteristics of the nonzero components of the
dipole (a) electric, (b) magnetic, and (c) magnetoelectric polarizabil-
ities calculated for the problem geometries presented in Fig. 3.

where the sign choice corresponds to the incident wave prop-
agation direction, j = x, y, z, the dipole moments are located
at the origin of the coordinate system (see Fig. 1), and

D = {D0, 0, 0}e±ikz,

H = {0,±cd D0, 0}e±ikz, (15)

where D0 = ε0εd E is the amplitude of D.
Solving system (14) yields the polarizability components

αee
jx = p+

j + p−
j

2D0
, αem

jy = p+
j − p−

j

2D0
,

αmm
jy = m+

j − m−
j

2cd D0
, αme

jx = m+
j + m−

j

2cd D0
, (16)
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FIG. 5. The same as in Fig. 3 but for the lateral irradiation of the nanodisk from the +y and −y directions; (a), (b) magnetic and (c), (d)
electric dipole moments.

where the electric and magnetic dipole moments are related to
the total electric field induced inside the particle [53,54]. They
are

p± =
∫

Vp

j0(kd r)P±(r)dr

+ k2
d

2

∫
Vp

j2(kd r)

(kd r)2
[3(r · P±(r))r − r2P±(r)] dr ,

m± = ω

2i

∫
Vp

j1(kd r)

kd r
[r × P±(r)]dr, (17)

where Vp is the scatterer volume, j0(kd r), j1(kd r), and j2(kd r)
are the zero-, first-, and second-order spherical Bessel func-
tions [53,54], and P±(r) = (i/ω)j±(r) is the induced polariza-
tion P±(r) or electric current density j±(r) inside the particle.
Note that inside the scatterer, the induced polarization is
related to the total electric field as P±(r) = ε0(εp − εd )E±(r).

Results of the dipole moments calculation for the frontal
irradiation of the nanodisk by the x-polarized wave from the
+z and −z directions are summarized in Fig. 3. One can see
that the magnetic dipole vector has two nonzero components
my and mz [see Figs. 3(a) and 3(b)]. Remarkably, the sign
of mz does not depend on the direction of incidence of the
irradiating wave, whereas my changes the sign correspond-

ingly. This is because the characteristic of the mz component
is determined by the direction of the incident electric field,
while that of the my component depends on the direction of
the incident magnetic field, which is an axial vector dependent
on the geometry of the given problem. This dependence on
the sign of the components of the magnetic dipole vector on
the direction of the incident wave irradiation expresses the
essence of bianisotropy in the asymmetric nanoparticle. Also
from Figs. 3(c) and 3(d) one can conclude that the electric
dipole vector has only one component px which is indepen-
dent on the incident wave irradiation direction. It means that
px is solely determined by the characteristics of the electric
field. Applying Eq. (16) for the numerically calculated values
presented in Fig. 3, the nonzero components of the dipole
polarizability tensors αmm

yy , αme
zx , and αee

xx can be obtained.
The results of the corresponding calculations are presented in
Fig. 4.

The electromagnetic response of the nanodisk on the lateral
irradiation can be revealed similarly to the above-presented
frontal case. Figure 5 demonstrates the magnetic m and
electric p dipole moments calculated for the lateral irradiation
of the nanodisk from the +y and −y directions. It is evident
that for this problem geometry there is a strong dependence
of the induced magnetic and electric dipoles on the irra-
diation direction of the incident wave. The corresponding
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presented in Fig. 5.

nonzero polarizabilities are collected in Fig. 6. The effect
of bianisotropy manifests itself in the resonant behaviors
of the cross polarizabilities αme

zx and αem
xz [Fig. 6(c)]. One

can see that for these cross polarizabilities the condition
αme

zx ≈ −αem
xz holds, which complies with the Onsager-Casimir

principle [65] (some mismatch in the coincidence of the
curves can be explained by the finiteness of discretization
in the numerical simulation). An account for other cases
when the nanodisk is irradiated by the z-polarized wave
incident from the ±x and ±y directions gives us the rest
components of the polarizability tensors. Here αmm

xx ≈ αmm
yy ,

while other nonzero polarizability components are not pre-
sented here, since they are inessential for our subsequent
consideration.

x
z

y

d

E
k

H

FIG. 7. Schematic view of an all-dielectric metasurface com-
posed of perturbed nanodisks and the irradiation condition.

A principal conclusion to this section is that the strong
resonant bianisotropic response appears in the in-plane per-
turbed dielectric nanodisks. It is related to the excitation of
the out-of-plane (directed along the z axis) component mz of
the magnetic dipole moment. The spectral position of this
resonance coincides with that of the magnetic dipole reso-
nance excited under the lateral irradiation conditions. Such
a resonant feature allows us to realize an excitation of the
trapped mode in a 2D array composed of such perturbed
nanodisks.

B. Trapping light in a 2D array of nanodisks

In this section, we show that due to the bianisotropic
properties of the perturbed nanodisk, a 2D periodic array
composed of such nanodisks can support an ultranarrow opti-
cal resonance in the reflection and transmission spectra. This
resonance is related to the trapped mode and corresponds to
the electromagnetic coupling of the out-of-plane components
of magnetic dipole moments induced in the nanodisks by an
external electromagnetic wave.

We consider a metasurface that is infinitely distributed in
the x-y plane at z = 0 embedded in a homogeneous nonmag-
netic transparent medium with a relative dielectric constant
εd = 1. Perturbed nanodisks are oriented equally and arranged
equidistantly forming a metasurface array. The array has a
lattice period d in both the x and y directions (Fig. 7).
The metasurface is irradiated by the x-polarized plane wave
propagating in the +z direction with the magnetic field vector
oriented along the y axis (Fig. 7). In the chosen problem ge-
ometry, the electromagnetic field of the incident wave excites
only one component px of the electric dipole moment and two
components my and mz of the magnetic dipole moment in each
nanodisk forming the array. Therefore, from Eq. (6) we can
write

px = αee
xx

[
Dx + k2

d G0
xx px

] + c−1
d αem

xz k2
d G0

zzmz,

mz = αmm
zz k2

d G0
zzmz + cdα

me
zx

[
Dx + k2

d G0
xx px

]
, (18)

my = αmm
yy

[
Hy + k2

d G0
yymy

]
.

Here only corresponding nonzero components of the polariz-
ability tensors are taken into account, and, due to the structure
periodicity in the x and y directions, the tensor Ĝ0, composed
of the dipole sums, contains only the nonzero diagonal ele-
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ments G0
xx, G0

yy, and G0
zz [58,66]. For the periodic array with

square unit cell, the condition G0
xx = G0

yy holds. The remaining
elements are

Ĝ0
xx = 1

4π

∞∑
l=2

eikd rl

rl

(
1 + i

kd rl
− 1

k2
d r2

l

− x2
l

r2
l

− i3x2
l

kd r3
l

+ 3x2
l

k2
d r4

l

)
, (19)

Ĝ0
zz = 1

4π

∞∑
l=2

eikd rl

rl

(
1 + i

kd rl
− 1

k2
d r2

l

)
, (20)

where rl =
√

x2
l + y2

l is the distance between the Cartesian
coordinate system origin, which coincides with position of the
magnetic and electric dipoles of the nanodisk with number
l = 1, and other points where the dipoles of nanodisks with
number l � 2 are located. Note that the expressions for the
dipole sums G0

yy and G0
zz can be obtained from Eq. (19) by

simple replacing xl with yl and zl , respectively. In the latter
case for getting Eq. (20), one has to put zl = 0 because all
dipoles are located in the x-y plane with z = 0.

1. Trapped mode

Before proceeding with the analysis of Eq. (18), let us
consider a hypothetical case. Assume that all particles in the
infinite array of disks possess only z component of the mag-
netic dipole moment mz without any external field sources.
Also in the array, there is not any coupling to components of
all other existing magnetic and electric dipoles. In this case
system (18) can be reduced to the equation

(
1 − αmm

zz k2
d G0

zz

)
mz = 0. (21)

For Eq. (21) to have a nontrivial solution (mz �= 0), the follow-
ing condition must be satisfied:

αmm
zz k2

d G0
zz = 1. (22)

Now we show that this condition can be fully satisfied only
for the case of lossless dipole particles.

Introducing new notations αmm
zz = α′

z + iα′′
z and k2

d G0
zz =

S′
z + iS′′

z , where α′
z and S′

z are the real parts and α′′
z and S′′

z
are the imaginary parts of the corresponding values, Eq. (22)
has the following solution:

S′
z = α′

z

α′2
z + α′′2

z

≡ Re
1

αmm
zz

,

S′′
z = − α′′

z

α′2
z + α′′2

z

≡ Im
1

αmm
zz

. (23)

It expresses the conditions of the mz-lattice mode existence,
which can be referred to as a trapped mode. Such a reference
is valid since for this mode there is no electromagnetic energy
radiation from the array plane to free space due to z orientation
of all magnetic dipoles. With this solution we can analyze the
feasibility of the trapped mode in a realistic structure.

If d < 2π/kd , then the summation in S′′
z can be performed

analytically, resulting in

S′′
z ≡ k2

d

4π

∞∑
l, j=0,1,2,...

(
sin kd dl j

dl j
+ cos kd dl j

kd d2
l j

− sin kd dl j

k2
d d3

l j

)

= − k3
d

6π
, (24)

where dl j = d
√

l2 + j2, kd = 2π/λd is the wave number,
λd = λ/

√
εd is the wavelength in the surrounding lossless

medium, and the term with d00 = 0 is excluded from the
sum. From the obtained expression one can notice that S′′

z
is dependent on the wavelength λd and independent on the
period d .

For the real part of Sz we have

S′
z = k2

d

4π

∞∑
l, j=0,1,2,...

(
cos kd dl j

dl j
− sin kd dl j

kd d2
l j

− cos kd dl j

k2
d d3

l j

)
.

(25)

Here again the term with d00 = 0 is excluded from the sum.
In contrast to the characteristic of S′′

z , the sum S′
z is slowly

converged, therefore it has to be evaluated numerically. Re-
markably, S′

z is dependent on both the wavelength λd and
period d .

From the ratio between the extinction cross section, which
is calculated involving the optical theorem, and the scattering
cross section for a dipole lossless scatterer [64], one can obtain
the general equality for the imaginary part of 1/αmm

zz

Im
1

α′
z + iα′′

z

= − α′′
z

α′2
z + α′′2

z

= − k3
d

6π
, (26)

which is completely independent on the scatterer design [67].
Comparing Eqs. (24) and (26) one can see that the second
condition for S′′

z in Eq. (23) is always satisfied for a dipole
lossless scatterer. Thus the condition of the trapped mode
existence is determined by the first equation in system (23).

Figure 8(a) demonstrates the spectral dependence of the
value S′

z calculated for different d . One can see that the value
S′

z changes its sign from positive to negative as the wavelength
increases. The larger array period, the lager wavelength λ0 at
which the value S′

z crosses zero. The spectral characteristics
of Re(1/αmm

zz ) and Im(1/αmm
zz ) are presented in Figs. 8(a) and

8(b), respectively. The inverse polarizability is calculated in
correspondence to parameters given in Fig. 6(b) for the disk
with bianisotropic properties. Comparing the curves for S′

z
and Re(1/αmm

zz ) presented in Fig. 8(a), one can see that the
condition S′

z = Re(1/αmm
zz ) holds for the trapped mode for all

shown periods. It is always possible to tune the realization of
this condition on a specified wavelength by varying the array
period, since the value S′

z is independent on the nanoparticle
polarizability. Contrariwise, as Fig. 8(b) suggests regarding
imaginary part of Sz, the inequality Im(1/αmm

zz ) < −k3
d/6π ≡

S′′
z appears, which means that there is an energy leakage for

the trapped mode (i.e., it turns to a weakly radiating state).
This inequality follows from the energy conservation law and
magnetoelectric optical theorem [68,69] introduced for the
dynamic polarizability tensor accounting for the bianisotropic
terms in the lossless case. In the given problem, due to
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and compared with −k3

d/6π .

bianisotropy, condition (26) is reduced to

Im
1

αmm
zz

= − k3
d

6π

(
1 +

∣∣αem
xz

∣∣2∣∣αmm
zz

∣∣2

)
. (27)

Therefore, the introducing bianisotropy into particles
opens a channel for the trapped mode excitation by electro-
magnetic plane waves normally incident on the array. How-
ever, the channel opening also leads to the energy leakage
transforming nonradiating trapped mode to the radiating one.
The energy leakage is characterized by the second term in the
brackets of Eq. (27). In what follows we refer to this weakly
radiating state as a quasi-trapped mode.

2. Quasi-trapped mode

The solution of system (18) can be written as

px = K−1
[
αee

xx

(
1 − αmm

zz k2
d G0

zz

) + αem
xz k2

d G0
zzα

me
zx

]
Dx

≡ αee/eff
xx Dx, (28)

mz = K−1αme
zx cd Dx ≡ αme/eff

zx cd Dx, (29)

and

my = 1

1/αmm
yy − k2

d G0
yy

Hy ≡ αmm/eff
yy Hy, (30)

where

K = (
1 − αee

xxk2
d G0

xx

)(
1 − αmm

zz k2
d G0

zz

)
−αem

xz k2
d G0

zzα
me
zx k2

d G0
xx, (31)

and the corresponding effective polarizabilities αee/eff
xx , αme/eff

zx ,
and αmm/eff

yy are introduced. Identical denominator K of expres-
sions (28) and (29) indicates on strong coupling and same
resonant behavior of px and mz. For px the next expression
can be formally written

px = p0
x + pm

x , (32)

where

p0
x = K−1αee

xx

(
1 − αmm

zz k2
d G0

zz

)
Dx (33)

is the part of px, which is mainly excited by the field of
incident wave, and

pm
x = c−1

d αem
xz k2

d G0
zzmz (34)

is the part excited due to the bianisotropic coupling with the
field generated by mz.

Expression (9) for the extinction cross section produced by
a single particle in the array can be written as

σ
(1)
ext = kdε0εd

|Dx|2 Im {E∗
x px + μ0H∗

y my}. (35)

Taking into account Eq. (32) it is seen that σ
(1)
ext is also

depended on the out-of-plane magnetic dipole component mz.
Finally, we have

σ
(1)
ext = kd Im

{
αee/eff

xx + αmm/eff
yy

}
. (36)

Similarly to the extinction cross sections given by Eq. (9),
the reflection r and transmission t coefficients of the meta-
surface can be formally determined via the in-plane dipole
components px and my, since only these components radiate
in the perpendicular directions with respect to the metasurface
plane. These coefficients are [7,59,60]

r = ikd

2DxSL

[
px − 1

cd
my

]
, (37)

t = 1 + ikd

2DxSL

[
px + 1

cd
my

]
, (38)

where SL is the area of the array unit cell, and the contribu-
tion of the out-of-plane component mz enters owing to the
bianisotropic coupling with px [see Eq. (32)]. The intensity
reflection R and transmission T coefficients are

R = |r|2, T = |t |2, (39)

and the absorption coefficient A can be obtained from the
electromagnetic energy conservation relation A = 1 − T − R.

We apply the developed model to analyze the optical
properties of the metasurface presented in Fig. 7 substituting
nanodisks by their electric and magnetic dipoles. For the
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FIG. 9. (a) Extinction cross section per one particle for several
values of the period p of the all-dielectric metasurface, and (b) reflec-
tion and transmission spectra of the metasurface composed of array
with the lattice period d/D = 1.892 calculated with the coupled
dipole approximation (solid lines) and full-wave simulation (dashed
lines).

numerical evaluations of the dipole sums G0
xx and G0

yy we use
useful analytical relation from Ref. [70]:

kd ImG0
xx = kd ImG0

yy = kd

2SL
− k3

d

6π
, d < 2π/kd , (40)

and for G0
zz we use Eq. (24).

The spectral dependences of the extinction cross sections
per one particle for the metasurfaces with different period d
are shown in Fig. 9(a). Also the reflection and transmission
spectra of the metasurface calculated with the developed cou-
pled dipole approximation are presented in Fig. 9(b) by solid
lines. These results are checked against full-wave simulations
by the RF Module of the COMSOL MULTIPHYSICS solver. Since
the parameters of the developed model have a certain degree
of inaccuracy associated with the discretization step, the
following parameters are specified for full-wave simulations:
Dc = 170 nm, H = 85 nm, Dh = 40 nm, 
 = Dc/8, and d =
350 nm. The results of full-wave simulations are shown in
Fig. 9(b) by dashed lines and agree closely with our analytical
findings. This clearly verifies the obtained solution.

Figure 9 suggests that there are two types of resonances in
the chosen wavelength range: a shortwave broad resonance
and longwave narrow resonance with high quality factor.
The longwave resonance acquires a peak-and-trough (Fano)
profile [38] (for the definition of the quality factor of a Fano
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FIG. 10. Comparative characteristics of polarizabilities of the
singly standing perturbed nanodisk and the same perturbed nan-
odisks disposed in the array with period d/D = 1.892. They are
related to (a) mz, (b) px , and (c) my dipole components.

resonance, see Refs. [71,72]). Increasing the lattice period
induces a wavelength to downshift for both resonances which
indicate existing lattice coupling between nanodisks in the
array.

The corresponding narrow longwave resonance in the re-
flection and transmission spectra appears as a result of the
bianisotropic coupling between the px and mz dipole compo-
nents. This conclusion is made after comparing the curves in
Figs. 9 and 10. Thus, in Fig. 10 the spectral characteristics
of polarizabilities of the singly standing perturbed nanodisk
and the effective polarizabilities of the same perturbed nan-
odisks arranged in the metasurface are given. The extreme
quality factor growth of the px and mz resonances is related
to the quasi-trapped mode excitation for which the strong
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suppression of radiation losses is evident for the mz compo-
nent. We emphasize that this effect is related to bianisotropy
of the second type discussed in Ref. [51] and corresponding to
the omega meta-atom effect. Note that, for the trapped mode,
the bianisotropic part of the magnetic moment mz is induced
by the orthogonal electric field Ex.

The Fano profile of the long-wave resonances depicted in
Fig. 9 results from the interference coupling between two
contributions in the excitation of px. In Eq. (32), the first term
p0

x is associated with the broadband excitation directly from
free space, and the second term pm

x corresponds to the narrow-
band excitation from the trapped mode. From Fig. 11 one
can conclude that on the shortwave side of the px resonance,
the contributions from free space (p0

x) and from the trapped
mode (pm

x ) are out-of-phase (
ϕ � 180o) resulting in the
suppression of px. This suppression explains the local dips of
the extinction spectra presented in Fig. 9(a).

Thus, the physical mechanism providing ultranarrow res-
onances in the reflection and transmission spectra of the
given metasurface can be explained as follows: (i) Due to the
bianisotropic property of the perturbed nanoparticles forming
the metasurface, normally incident electromagnetic waves
excite the out-of-plane (mz) component of the magnetic dipole
moment in each nanoparticle. The magnetic moments of
all particles are oriented identically. (ii) These out-of-plane
magnetic moments do not radiate electromagnetic waves from
the metasurface plane, but can resonantly radiate in the longi-
tudinal directions along the metasurface plane. (iii) When the
conditions for the trapped mode excitation are satisfied, the
resonant coupling between the out-of-plane magnetic dipole
components mz significantly suppresses their radiation in the
longitudinal directions, which increases the quality factor of
the out-of-plane dipole resonance. (iv) However, the effect
of bianisotropy opens not only the channel for the excitation
of the trapped mode but also enables the energy leakage,
which complies with the reciprocity theorem [73]. There is
a bianisotropic coupling between the out-of-plane and in-
plane dipole components that radiate the electromagnetic
energy from the array plane into the far-field zone. In these
conditions, the exited mode can be considered as a quasi-
trapped mode resulting in the arising narrow resonance in the
metasurface reflection and transmission spectra. Nevertheless,
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FIG. 12. Normalized intensity of the z component of magnetic
field mapped in the x-y plane at position z/D = 0.8108 above the
metasurface at the wavelength of (a) the resonant quasi-trapped mode
excitation and (b) far from the resonance. The plotted intensities are
normalized on the incident wave intensity.

despite a small leakage of energy, the electromagnetic field is
still strongly confined in the metasurface plane at the resonant
wavelength (see Fig. 12).

Note, that the resonant coupling of the mz component
between the particles in the array may also exist without
bianisotropy due to resonant behaviors of the magnetic dipole
polarizability αmm

zz . It means that the role of bianisotropy is
only in the opening a channel for the trapped mode excitation.
If one finds a way to close this channel after the mode
is excited, the electromagnetic energy will be stored in the
trapped mode without any leakage.

IV. CONCLUSION

The coupled dipole equation method has been applied to
study the optical response of an infinite metasurface com-
posed of dielectric disks with bianisotropic properties. First,
the generalized equations for describing electric and magnetic
dipole vectors via dyadic polarizabilities were obtained. Next,
the electric and magnetic moments of an isolated nanodisk
perturbed by an eccentric through hole were calculated and
analyzed, with accounting for bianisotropy. Finally, the ob-
tained solution was applied to study resonant conditions of
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the trapped mode excitation in an all-dielectric metasurface
composed of such perturbed nanodisks and irradiated by a
normally incident electromagnetic wave. For this metasurface,
we reported on the observation of exceptionally narrow trans-
mission and reflection resonances, which are attributed to the
excitation of the trapped mode through the free-space cou-
pling, which is provided by the structural symmetry breaking.

We concluded that the trapped mode of an all-dielectric
metasurface is realized due to the lattice coupling between
out-of-plane multipole moments of individual disks forming
the metasurface when these moments do not radiate col-
lectively electromagnetic waves from the metasurface plane.
In this meaning, the trapped modes are identical to the
symmetry-protected bound states in the continuum supported
by the periodic nanoparticle arrays.

The obtained solution allows us to gain a deeper under-
standing of the mechanism of excitation of the trapped modes
in all-dielectric metasurfaces and to determine the impact of
bianisotropy of individual resonators on the electromagnetic
features of the entire nanostructure. This opens prospects in

the conscious design of tiny optical devices by using novel
resonant low-loss all-dielectric metasurfaces with active and
nonlinear media inclusions. These artificial open high-quality-
factor two-dimensional periodic nanostructures are promising
to achieve strong localization and enhancement of electro-
magnetic fields, which is necessary to produce effectively
tunable metasurfaces.
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