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Role of disorder in plasmon-assisted near-field heat transfer between two-dimensional metals
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We perform a theoretical study of the near-field heat transfer between two atomically thin metallic layers,
isolated galvanically but coupled by the Coulomb interaction, within the framework of fluctuational electro-
dynamics in the Coulomb limit. We clarify the role of disorder and spatial dispersion, and identify several
distinct regimes of the heat transfer. We find that the plasmon contribution to the heat current is suppressed
in both the clean and diffusive limits, but dominates in a parametrically wide crossover region at sufficiently
high temperatures.

DOI: 10.1103/PhysRevB.101.205411

I. INTRODUCTION

In metals, heat is most efficiently transported by electrons,
as manifested by the Wiedemann-Franz law. In the absence
of a galvanic contact between two nearby metals, heat can
be transferred by electromagnetic fluctuations [1–5]. In the
near field, the heat flux can be strongly enhanced compared
to the Planckian radiative one, as was observed in many
experiments (see reviews [6–8] as well as Refs. [9–15] for
more recent experiments). Depending on the circumstances,
such contactless heat transfer can be useful or harmful.

The standard framework for the theoretical description of
this heat transfer is fluctuational electrodynamics [2,16]. It
provides a very intuitive picture: the transferred heat can
be viewed as energy dissipated in one part of the structure
by fluctuating electromagnetic fields, which are created by
fluctuating charges and currents in the other part of the struc-
ture. According to the fluctuation-dissipation theorem, both
dissipation and fluctuations are determined by the material
response functions (such as optical conductivity), which thus
serve as the input to this phenomenological theory. The re-
sulting heat current is then entirely determined by the system
geometry and the model used for the material response. For
the latter, models with different levels of sophistication have
been used in the literature. They range from assuming a local
frequency-dependent conductivity [2], to including nonlocal
effects via spatial dispersion [17] or via surface contributions
to the response [3,18]. From the literature, it is often difficult
to decide which ingredients are important in which situation.

In particular, in several works dedicated to different ma-
terials in the near-field regime, the important role played
by collective plasmon excitations has been pointed out
[19–27]. However, Ref. [28] concluded that surface plasmons
were unimportant for the heat transfer between two bulk
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semi-infinite metals, and in Ref. [29] no plasmon contribution
was reported for heat current between two thin metallic layers
in the clean and diffusive limits.

To clarify this issue, we revisit the problem of heat transfer
between two thin parallel metallic layers, assuming the sep-
aration between them to be small enough, so that retardation
effects can be neglected and the transfer is dominated by the
Coulomb interaction (the conditions for this are discussed in
Sec. II B). Including disorder and spatial dispersion within the
framework of fluctuational electrodynamics in the Coulomb
limit, we identify different regimes of interlayer separation
and temperature where different physical ingredients are im-
portant. We find that the plasmon contribution to the heat
current is suppressed in both the clean and diffusive limits, but
dominates in a parametrically wide crossover region at suffi-
ciently high temperatures. We also discuss the applicability
of the effective circuit approach [30] to heat transfer between
metals.

The paper is organized as follows. In Sec. II we specify
our model for the system, discuss the main regimes of heat
transfer, present the resulting expressions for the heat current,
and discuss their sensitivity to the specific model chosen here.
We give the detailed derivation of the results in Sec. III, and
verify them numerically in Sec. IV. In Sec. V, we interpret
our results in terms of circuit theory, and in Sec. VI we discuss
some relevant experiments. In the Appendix, we give a deriva-
tion of the density response function for a two-dimensional
(2D) metal with short-range impurities, interpolating between
clean and diffusive limits.

II. MODEL AND SUMMARY OF RESULTS

A. Model

We consider two thin parallel metallic layers, labeled 1 and
2, separated by a distance d , and kept at different temperatures
T1 and T2. We assume to be in the limit d � c/T1,2, where
c is the speed of light, and we use units where Planck and
Boltzmann constants are set to 1. In this limit, heat transfer is
dominated by the Coulomb interaction. Our analysis is based
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on the standard expression for the heat current per unit area
[23,24,29,31,32],

J (T1, T2) =
∫ ∞

0

dω

π

∫
d2q

(2π )2
ω[N1(ω) − N2(ω)]T (q, ω),

(1)

T (q, ω) = 2|V12(q, ω)|2 Im �1(q, ω) Im �2(q, ω), (2)

often called the Caroli formula, in analogy to a similar ex-
pression for electron current across a tunnel junction [33]. In
Eq. (1), N1,2(ω) = 1/[exp(ω/T1,2) − 1] are the Bose distribu-
tion functions in the two layers. In Eq. (2),

V12(q, ω) = vqe−qd

(1 − vq�1)(1 − vq�2) − v2
q�1�2e−2qd

(3)

is the Coulomb interaction between the layers, screened in
the random-phase approximation, with vq = 2πe2/q being
the bare 2D Coulomb potential and e < 0 the electron charge.
Finally, �1(q, ω) and �2(q, ω) are the susceptibilities deter-
mining the linear response δρi(r, t ) = �i(q, ω) eϕq,ω eiqr−iωt

of the 2D electron density ρi in the corresponding layer
i = 1, 2 to a perturbing electrostatic potential ϕq,ω eiqr−iωt

applied to that layer. The density response function is related
to the in-plane longitudinal optical conductivity, σ (q, ω) =
(iω/q2)e2�(q, ω). Equation (1) can be derived from the
Coulomb limit of fluctuational electrodynamics [23], from
nonequilibrium Green’s function formalism [31], or from the
kinetic equation [29].

The density response functions encode all material charac-
teristics of the two layers. We model each layer as a degen-
erate isotropic 2D electron gas with short-range impurities.
Such a system can be characterized by three parameters: (i) ν,
the electronic density of states per unit area at the Fermi level
including both spin projections, whose energy dependence is
neglected; (ii) vF , the Fermi velocity; and (iii) τ , the elastic
scattering time. The Fermi momentum pF is assumed to be
the largest momentum scale, pF � q, ω/vF , T/vF , 1/(vF τ ).
Under these assumptions, the density response function of
each layer is temperature independent and given by [34]

�(q, ω) = −ν

[
1 + iωτ√

(1 − iωτ )2 + (vF qτ )2 − 1

]
, (4)

for an arbitrary relation between ω, vF q, and τ . Equation
(4) interpolates between two well-known expressions corre-
sponding to the clean limit (τ → ∞) and the diffusive limit
(ω, vF q � 1/τ ):

�(q, ω) = −ν

[
1 + iω√

(vF q)2 − ω2

]
(clean), (5a)

�(q, ω) = − νDq2

Dq2 − iω
(diffusive), (5b)

where D = v2
F τ/2 is the diffusion coefficient. Equation (4)

corresponds to a 2D analog of Mermin’s prescription [35],
which was recently used to model the response in monolayer
graphene [20,36]. In the Appendix we give a derivation of
Eq. (4) based on the Boltzmann equation for electrons scatter-
ing on impurities. In spite of several assumptions underlying
Eq. (4), its simplicity enables one to obtain an important

FIG. 1. A schematic picture showing the behavior of T (q, ω)
[Eq. (2)] in the (q, ω) plane for d � �. For q � 1/d (to the right
of the hatched area), T (q, ω) is suppressed by the factor e−qd . In
the hatched area, T (q, ω) is well approximated by the clean limit
expression (5a), while the shaded area q� � 1, ωτ � 1 corresponds
to the diffusive limit (5b). In the white region above the shaded and
hatched areas (ω � 1/τ , ω > vF q) the integrand is small except,
maybe, in the vicinity of the symmetric and antisymmetric plasmon
dispersions (upper and lower solid lines, respectively) where |V12|2 is
peaked.

insight into the interplay between the spatial dispersion [that
is, the q dependence of the conductivity σ (q, ω)] and the
impurity scattering. For simplicity we also assume the two
metals to be identical.

The three independent material parameters, introduced
above, define two important length scales: (i) the 2D screening
length 1/κ = (2πe2ν)−1, and (ii) the mean free path � = vF τ .
Typically, the screening length is very short (on the atomic
scale), so we assume κ� � 1 and κd � 1. The mean free path
can vary from several nanometers to several microns, and may
be larger or smaller than the separation d between the two
layers.

B. Summary of results

In the isotropic model, formulated above, Eq. (1) repre-
sents a two-dimensional integral over q and ω. This integral
can be rather straightforwardly evaluated numerically, but
much better insight into relevant physics is obtained by study-
ing different asymptotics of the integral in various parameter
regimes. The latter approach was adopted in Ref. [29] using
the two limiting expressions (5a) and (5b). It turns out, how-
ever, that these expressions miss the plasmon contribution.

We show schematically the behavior of T (q, ω) [Eq. (2)] in
the (q, ω) plane for d � � in Fig. 1. At large ω � max{T1, T2},
the integrand in Eq. (1) is suppressed by the Bose function
at ω, and this cutoff may be positioned anywhere in Fig. 1,
depending on the temperatures. At large q � 1/d , the inte-
grand is suppressed by e−qd in the numerator of Eq. (3); Fig. 1
corresponds to the case d � �, but for larger d the spatial
cutoff may shift to the diffusive shaded area.
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The strongly coupled plasmon modes (in the case of iden-
tical layers, symmetric and antisymmetric, denoted by “±”)
manifest themselves as poles of V12(q, ω). In the clean limit,
τ → ∞, the plasmon frequencies are real and given by (for
q � κ)

ω± = vF

√
κq

1 ± e−qd

2
. (6)

At finite τ , but such that ω±τ � 1, the poles acquire a
small imaginary part, so |V12(q, ω)|2 is peaked around the
dispersions (6). At ω±τ � 1, when the diffusive expres-
sion (5b) applies, the plasmons are overdamped and do
not produce a separate contribution to the integral. In the
strictly clean limit, τ → ∞, their contribution vanishes as
well, since for ω > vF q the integrand vanishes because
Im �(q, ω > vF q) = 0.

For temperature-independent �(q, ω), Eq. (1) naturally
splits into the difference J (T1, T2) = J (T1) − J (T2). A detailed
analysis of different asymptotic regimes for the integral in
Eq. (1) (given in the next section) results in several asymptotic
expressions for J (T ):

Jlc(T ) = π2

60

T 4

v2
F (κd )2

ln
vF

T d
, (7a)

Jhc(T ) = π2

900

vF

d3

T

(κd )2 , (7b)

Jlp(T ) = ζ (3)

4π

T 3

Dκd
, (7c)

Jhp(T ) = T

16πτd2
L(�2κ/4d ), (7d)

Jld (T ) = ζ (3)

8π

T 3

Dκd
, (7e)

Jhd(T ) = 1

16π

Dκ

d3
T . (7f)

Subscripts “l” and “h” denote low and high temperature, while
“c,” “p,” and “d” stand for clean, plasmonic, and diffusive,
respectively. Here ζ (x) is the Riemann zeta function, and
L(x) is a slow logarithmic function defined in Eq. (16). For
moderate values of ln(�2κ/4d ) < 10, it can be approximated
with 10% precision as

L(x) ≈ 4 ln3 x

1 + (ln x)/ ln(1 + ln x)
. (8)

Figure 2 schematically shows the domains of validity for
expressions (7) in the (1/d, T ) plane. The clean and diffusive
regimes were also identified in Ref. [29].

Each of the above regimes is characterized by typical
scales of q and ω, which dominate the integral in Eq. (1).
Namely, q ∼ 1/d in all high-temperature cases, T/(vF

√
κd )

in the low-temperature plasmonic case, and
√

T/Dκd in the
low-temperature diffusive case. In the low-temperature clean
case, the momentum integral is logarithmic, determined by the
whole interval T/vF < q < 1/d . In order for the results to be
valid for some real sample with a finite in-plane size, this size
should be much larger than the corresponding convergence
scale 1/q specified here. The convergence scale of the fre-
quency integral is ω ∼ T in all low-temperature cases, while

FIG. 2. The regions in which clean (blue), plasmonic (grey), and
diffusive (red) contributions are dominant in the heat current and the
domains of validity for asymptotic expressions (7) in the parameter
plane (1/d, T ), shown in the dimensionless variables x ≡ 1/(κd ),
y ≡ T/(κvF ). The boundaries between the regimes are governed by
a single dimensionless material parameter η = 1/(κ�) � 1.

in the high-temperature cases it is vF
√

κ/d in the plasmonic
case, Dκ/d in the diffusive case, and vF /d in the clean
case.

The specified q and ω scales also determine the condition
for the validity of the Coulomb limit, which is q � ω/c. In
both clean regimes this condition reduces to vF � c, which
is always true. In both plasmonic regimes, the condition
q � ω/c translates into a condition on the antisymmetric
plasmon velocity, vF

√
κd � c. In the high-temperature dif-

fusive regime, the condition is vF κ� � c. Finally, in the low-
temperature diffusive regime, the condition reads

T d

c
� c

vF

1

κ�
. (9)

Note that none of these cases corresponds to comparing the
separation d to the thermal wavelength c/T .

Plasmon contributions dominate in a parametrically wide
region of the parameter space. Crucially, this behavior is
captured by neither of the limiting expressions (5a) or (5b),
but by the leading term of the small q expansion of the
full expression (4). This is equivalent to using the Drude
expression for the optical conductivity, σ (ω) = e2νD/(1 −
iωτ ), that is, neglecting the spatial dispersion. We find that
the spatial dispersion can also be neglected to describe the
diffusive contribution. It becomes important only in the clean
region where J (T ) is dominated by the hatched area in Fig. 1.
In all three high-temperature regions, one can approximate the
Bose distribution as N (ω) ≈ T/ω, so the density fluctuations
can be treated classically and the resulting J (T ) ∝ T .

Expressions (7) were obtained for two identical metallic
layers. If they are different, but the material parameters ν, vF ,
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and τ are of the same order, our expressions are still valid
as order-of-magnitude estimates. In particular, this applies
to the plasmon contribution: the plasmons remain strongly
hybridized even when the bare plasmonic dispersions of each
layer do not match exactly. The case when the two materials
are strongly different is beyond the scope of the present
paper.

C. Generality of the results

The above results were derived for a very specific model
of a 2D metal, described in Sec. II A. We now discuss how
sensitive these results are to the details of the model.

One assumption used in derivation of Eq. (4) is that the
electron scattering is dominated by short-range impurities.
If it is relaxed, Eq. (4) is not valid quantitatively (see the
Appendix). Note, however, that in the clean regimes (lc, hc),
the result is not sensitive to the electron scattering at all, so
expressions (7a) and (7b) remain quantitatively valid. In the
other four regimes (ld, hd, lp, hp, and crossovers between
them) it is sufficient to use only the local Drude conductivity
σ (ω), which is very general. Thus, all information about
the electron scattering, needed to describe these regimes, is
encoded in the momentum relaxation time τ , and expressions
(7c)–(7f) remain valid for any disorder (weak enough not to
induce Anderson localization effects).

If the electron momentum relaxation is due to some in-
elastic scattering mechanism (such as electron-phonon), the
relaxation time acquires a temperature dependence. Then, the
screened Coulomb interaction depends on both temperatures
through the respective polarization operators, so the heat
current can no longer be written as J (T1, T2) = J (T1) − J (T2).
Even if the layers are made of the same material, when kept
at different temperatures, they should be treated as different
because their inelastic scattering times are different. If the
two temperatures are of the same order, our expressions can
still be used as order-of-magnitude estimates; the situation
when they are strongly different is beyond the scope of this
paper.

Another strong assumption behind Eq. (4) is the strictly
2D character of the electron motion, valid for atomically thin
materials. For a metallic slab whose thickness h exceeds a
few Fermi wavelengths, several electronic transverse modes
contribute to the density response, making Eq. (4) invalid even
in the clean limit. However, in electrodynamics, the condi-
tions for a material slab to be described as an infinitely thin
layer with some density response function �(q, ω) are much
weaker. Namely, (i) the normal component of the electric
field should not penetrate inside the slab, since the description
in terms of a 2D density response function implies that the
electrons respond only to the in-plane component, and (ii) the
in-plane component should be approximately constant over
the slab thickness. The first condition is usually satisfied in
metals at frequencies below the bulk plasma frequency ωp

(typically, several eV), when the normal electric field com-
ponent is screened on the length scale of the bulk screening
radius (typically, on the atomic scale). The second condition
requires the layer thickness h to be smaller compared to both
1/q and the skin depth δ(ω) in the corresponding regime
of the skin effect [37]. The relevant values of q and ω are

determined by the convergence scales of the corresponding
integrals [as specified after Eqs. (7)]. Note that in all cases the
2D response function must satisfy �(q � 1/h, ω = 0) = −ν,
where ν = ν3Dh is determined by the bulk density of states per
unit volume, ν3D. This defines κ = 2πe2ν, as before. Since
thicker layers imply larger ν and κ , the convergence scale of q
may become quite small in some of the discussed regimes, so
the Coulomb limit condition q � ω/c may become violated
for h not small enough.

III. DERIVATION OF THE RESULTS

For identical layers, Eq. (2) can be written in a slightly
simpler form:

T
2

=
∣∣∣∣ Im � vqe−qd

[1 − �vq(1 − e−qd )][1 − �vq(1 + e−qd )]

∣∣∣∣
2

. (10)

Below, we analyze the contributions from the three regions
of the (q, ω) plane in Fig. 1: the vicinity of the plasmon
dispersions, the diffusive region, and the clean region. In each
region, we separate two temperature regimes. We see that in
the high-temperature regimes, the integral (1) is dominated
by a certain frequency scale, different in each regime, but
always determined by q ∼ 1/d and being much lower than
the temperature. Then, the thermal cutoff plays no role, and
one can approximate the Bose distribution N (ω) ≈ T/ω [that
is why J (T ) ∝ T in Eqs. (7b), (7d), and (7f)]. In the low-
temperature regimes, it is the e−qd cutoff which is ineffective,
so the frequency integral is determined by ω ∼ T , while the
q integral converges on a scale much smaller than 1/d . Then
one can approximate e−qd ≈ 1 in the numerator of Eq. (10)
and 1 + e−qd ≈ 2, 1 − e−qd ≈ qd in the denominator.

A. Plasmon contribution

As discussed earlier, the plasmon contribution comes from
the region ω > 1/τ, vF q, since otherwise the plasmons are
overdamped. At such frequencies one can expand �(q, ω) to
the leading order in q and approximate

�vq = v2
F κq

2ω(ω + i/τ )
, (11)

which corresponds to neglecting the spatial dispersion in the
conductivity which takes the Drude form, σ (ω) = e2νD/(1 −
iωτ ). (Generally, the spatial dispersion can be neglected when
q � max{√ω/D, ω/vF }.) The integral is then dominated by
the vicinities of the two plasmon dispersions, where one of the
factors in the denominator of Eq. (10) is small. The plasmon
contribution exists only if the plasmon frequencies ω± at q ∼
1/d (when the spatial cutoff becomes effective) exceed 1/τ .
This gives a condition d � κ�2 (the vertical line x = η2 in
Fig. 2).

Let us first consider the temperature interval 1/τ � T �
vF

√
κ/d (the two inequalities are consistent when d � κ�2),

where the thermal cutoff plays first leaving the spatial cutoff
e−qd ineffective. Then one can expand e−qd and perform the q
integration first, approximating the integrand by a Lorentzian
in the vicinity of each pole. The remaining frequency integral
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can be calculated exactly:

Jlp(T ) =
∫ ∞

0

ω dω/π

eω/T − 1

ω

4τv2
F κ2

(
ω2

v2
F

+ κ

d

)

= T 3

2πτv2
F κd

[
ζ (3) + 12 ζ (5)

T 2d

v2
F κ

]
. (12)

Here ζ (x) is the Riemann zeta function, and the first (second)
term in the square brackets comes from the antisymmetric
(symmetric) plasmons, respectively. In the considered region
1/τ � T � vF

√
κ/d the symmetric contribution is always

small compared to the antisymmetric one.
At high temperatures, T � vF

√
κ/d , the integral is de-

termined by the spatial factor e−qd , while the thermal cutoff
is ineffective so the Bose distribution N (ω) ≈ T/ω. Taking
expression (11), Eq. (10) can also be written in the form
suitable for integration over ω:

T (q, ω) = ω2

2τ 2

(ω2
+ − ω2

−)2

|ω(ω + i/τ ) − ω2+|2|ω(ω + i/τ ) − ω2−|2 .

(13)
Note that one cannot just do two separate Lorentzian integrals
because the separation ω2

+ − ω2
− becomes exponentially small

at q � 1/d . Fortunately, the ω integral can be calculated
exactly:

∫ ∞

0

dω

π
T (q, ω) = 1

2τ

(ω2
+ − ω2

−)2

(ω2+ − ω2−)2 + 2(ω2+ + ω2−)/τ 2
.

(14)
Then the q integral reads as

Jhp(T ) = T

τ

∫ ∞

0

q dq

4π

�2κq

�2κq + 2e2qd
, (15)

leading to Eq. (7d) with the function L(x) defined as

L(x) ≡
∫ ∞

0

u2 du

u + eu/x
. (16)

B. Diffusive contribution

Let us focus on the contribution from the shaded region in
Fig. 1: q � 1/�, ω � 1/τ . Then one can use expression (5b)
for �(q, ω), and since we are interested in q � 1/d � κ , we
have Dq2 � Dκq(1 ± e−qd )/2, which is again equivalent to
neglecting the spatial dispersion in the conductivity. Thus, we
can write

T ≈ 2ω2(Dκq)2e−2qd

[ω2 + (Dκq)2(1 + e−qd )2][ω2 + (Dκq)2(1 − e−qd )2]
.

(17)
At low frequencies, when the momentum integral should
converge on some scale q � 1/d , the two factors in the
denominator are strongly different, and it is the second factor
that determines the convergence scale q ∼ √

ω/(Dκd ). When
ω ∼ T � Dκ/d this scale is indeed much smaller than 1/d ,
so we expand e−qd , integrate over q, then over ω, and arrive
at Eq. (7e). Moreover, the convergence scale

√
T/(Dκd ) �

1/� provided that T � κd/τ . Thus, since we always assume

κd � 1, Eq. (7e) is valid for the diffusive contribution every-
where below the horizontal line y ∼ η (T ∼ 1/τ ) in Fig. 2.

For T � Dκ/d , the q integral is dominated by q ∼ 1/d .
Then the typical frequency scale of Eq. (17) is ω ∼ Dκ/d ,
so for T � Dκ/d the thermal cutoff is ineffective. Then we
approximate N (ω) ≈ T/ω, straightforwardly integrate over
ω, then over q, and arrive at Eq. (7f). Note that Eq. (7f) is
valid even at T � 1/τ provided that the convergence scale
ω ∼ Dκ/d � 1/τ , that is, to the left of the vertical line x =
η2 in Fig. 2. As we have seen, to the right of this line the
plasmon contribution becomes important.

C. Clean contribution

For T � 1/τ , 1/d � 1/�, one should take into account the
contribution from the hatched area in Fig. 1. Here one can take
the limit τ → ∞ and use expression (5a) for �(q, ω). Then,
in the integration region ω < vF q, Re �(q, ω)vq = −κ/q, so
one can neglect unity in both factors in the denominator of
Eq. (10) and write

T ≈ 2

v2
q

∣∣∣∣ Im �

�2

∣∣∣∣
2 e−2qd

(1 − e−2qd )2
= ω2(v2

F q2 − ω2)

2v4
F κ2q2 sinh2 qd

. (18)

For T � vF /d we approximate N (ω) ≈ T/ω, straightfor-
wardly integrate over ω between 0 and vF q, then integrate
over q, and arrive at Eq. (7b). For T � vF /d , in most of the
integration region we have ω ∼ T � vF q, so the upper limit
ω < vF q is not important except for the narrow region q ∼
T/vF which determines the lower cutoff of the logarithmic q
integral:

Jlc(T ) = 1

4π2

∫ ∞

0

ω3 dω

eω/T − 1

∫ ∞

∼T/vF

q dq

sinh2 qd
, (19)

leading to Eq. (7a).
In the region T � 1/τ , 1/d � 1/�, the clean contribu-

tion and the plasmon contribution both exist and should be
added up, since they come from two distinct regions in the
(q, ω) plane. Thus, to determine the dominant asymptotics,
one can combine the four expressions (7a)–(7d) as J =
max{min{Jlp, Jhp}, min{Jlc, Jhc}}, which results in the compli-
cated shape of the boundary between the clean and plasmonic
regions in Fig. 1.

IV. NUMERICAL VERIFICATION

In order to illustrate the various behaviors and crossovers
indicated in Fig. 2, and to verify our asymptotic expressions
(7), we evaluate numerically the integral in Eq. (1) using the
full response function (4).

To describe clean and plasmonic regimes, we take param-
eters typical for doped graphene. If the temperature is well
below the Fermi energy εF (counted from the Dirac point),
the electrons in graphene can be viewed as a conventional
2D electron gas with the density of states per unit area ν =
2|εF |/(πv2

F ), including the valley and spin degeneracies. In
Fig. 3, we plot J (T ) for two sets of parameters corresponding
to 1/(κd ) ≈ η1/3 = 0.034, and 1/(κd ) ≈ η1/2 [we remind
that η ≡ 1/(κ�)].

To study the diffusive crossover for realistic materials,
we introduce dielectric screening. Equation (3), written for
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FIG. 3. Power per unit area as a function of temperature, J (T ),
for ν = 0.29 eV−1 nm−2, vF = 106 m/s, and � = 10 μm, d = 10 nm
(upper panel), � = 1 μm, d = 20 nm (lower panel), characteristic
of two graphene monolayers with Fermi energy εF = 0.2 eV, sus-
pended in vacuum (the 2D screening length κ−1 = 0.4 nm, the Fermi
momentum pF = 0.3 nm−1). The black crosses show numerical re-
sults, while the red, black, and blue solid lines represent Eqs. (7e),
(7c), and (7a), respectively.

metallic layers surrounded by vacuum, can be generalized to
the situation when the layers are embedded in a dielectric
medium. This generalization is particularly simple when the
medium is characterized by a uniaxially anisotropic dielectric
constant, ε‖ in the plane parallel to the layers, and ε⊥ along
the z direction, perpendicular to the layers. The solution of
the Poisson equation in such a medium gives the 2D Coulomb
potential at a distance z from a charged layer:

vq(z) = 2πe2

√
ε‖ε⊥ q

e−
√

ε‖/ε⊥ q|z|. (20)

Thus, in all expressions (7) it is sufficient to rescale

κ → κ√
ε‖ε⊥

, d → √
ε‖/ε⊥ d. (21)

FIG. 4. Power per unit area as a function of temperature, J (T ),
for ν = 2.1 eV−1 nm−2, vF = 0.94 × 105 m/s, and � = 2 μm, d =
100 nm, characteristic of two WSe2 monolayers with Fermi energy
εF = 50 meV, embedded in boron nitride with ε‖ = 7, ε⊥ = 5 [38]
(the 2D screening length κ−1 = 0.3 nm, the Fermi momentum pF =
1.6 nm−1). The black crosses show the numerical integration results,
while the solid and dashed red lines represent expressions (7e) and
(7f), respectively.

In Fig. 4 we show the crossover between low- and high-
temperature diffusive asymptotics (7e) and (7f) for two hole-
doped tungsten diselenide monolayers embedded in boron
nitride. The valence band of WSe2 is parabolic with the hole
effective mass mh being about half of the free electron mass.
The spin degeneracy is lifted by a strong spin-orbit coupling,
so only valley degeneracy remains, and the density of states
per unit area is ν = mh/π . We take εF = 50 meV and a very
short � = 2 nm, still consistent with κ� � 1, pF � � 1. The
taken separation d = 100 nm corresponds to 1/(κd ) = 0.006,
well below η2 = 0.1, and hence to the diffusive region.

We are not showing the high-temperature clean and plas-
monic regimes; for realistic material parameters, they corre-
spond to temperatures so high that the assumptions behind our
model (degenerate Fermi gas, near-field Coulomb regime) are
no longer valid. However, we checked numerically the validity
of the asymptotic expressions (7b) and (7d) for Jhc(T ) and
Jhp(T ).

V. COMPARISON TO CIRCUIT THEORY

Often, complicated structures can be described in terms of
effective electric circuits made of lumped elements (capaci-
tors, inductors, and resistors). In this approach, all details of
the structure’s geometry are hidden inside the effective circuit
parameters, resulting in a much simpler description (provided
that such reduction is valid). The theory of heat transfer in
electric circuits was developed in Ref. [30]. In the circuit
analog of the fluctuational electrodynamics, dissipative circuit
elements represent thermal baths and provide thermal voltage
fluctuations (Johnson-Nyquist noise), while reactive elements
mediate the electromagnetic interactions, resulting in energy
exchange between the baths. We check now whether such a
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FIG. 5. Circuit representation of two parallel metallic layers.
(a) The elementary RC circuit described by Eq. (23). (b) The 2D
system represented as a tiling of the elementary circuits, each one
corresponding to a region of size L.

circuit approach can be applied to the heat transfer between
two metallic layers.

Let us focus on the diffusive regime. As we have seen, the
dynamics of density excitations is overdamped in this regime,
so it is natural to consider a circuit made of resistors and
capacitors only, such as shown in Fig. 5(a). Indeed, the elec-
tronic excitations in each layer constitute a dissipative bath
analogous to a resistor. To mimic charge oscillations within
each layer, the resistor should be shunted by a capacitor.
The Coulomb interaction between the layers resembles that
between the plates of a capacitor, so the two RC contours are
connected by two coupling capacitors Cc.

For the circuit in Fig. 5(a), the power transferred from the
first to the second resistor is given by [30]

P(T1, T2) =
∫ ∞

0

dω

π
ω[N1(ω) − N2(ω)]T (ω), (22)

T (ω) = 2 Re Z1(ω) Re Z2(ω)

|Z1(ω) + Z2(ω) − 2/(iωCc)|2 , (23)

where Z1,2(ω) = (1/R1,2 − iωC1,2)−1 is the impedance of
each RC contour. As before, for simplicity we assume the
two subsystems to be identical: R1 = R2 = R, C1 = C2 = C.
Writing the transmission as

T (ω) = ω2(RCc)2

2[1 + ω2(RC)2][1 + ω2R2(C + Cc)2]
, (24)

we obtain the following asymptotic expressions for the trans-
ferred power P(T1, T2) = P(T1) − P(T2):

P(T ) = C2
c

4(C + Cc)(2C + Cc)

T

RC
, T � 1

RC
, (25a)

P(T ) = π

12
T 2,

1

R(C + Cc)
� T � 1

RC
, (25b)

P(T ) = π3

30
T 4(RCc)2, T � 1

R(C + Cc)
. (25c)

The intermediate “universal” regime, where the power de-
pends only on the temperature but not on the circuit, is present
only when C � Cc.

To relate results (25) to those of Sec. III, it is important
to realize that while Eqs. (25) give the full transferred power,
Eqs. (7) give the power per unit area. To make a meaningful
comparison we must therefore invoke a length scale L, such
that the infinite sample can be divided into squares of size L.
Then Eqs. (25) describe the power transferred in each square,
and the contributions of different squares can be added up
independently, as schematically shown in Fig. 5(b). Thus, the
relevant length scale should be associated with the typical
convergence scale of the q integral in Eq. (1).

In the diffusive regime, it is natural to associate the resis-
tance R to the resistance per square 1/σ of each metallic layer,
R ∼ 1/σ = 2π/(κD). The coupling capacitance is associated
to the geometric capacitance between the two layers, Cc ∼
L2/d , where the in-plane length scale L � d must be invoked
because the capacitance is proportional to the area. The ca-
pacitance C should be associated to an intrinsic property of
each layer, such that RC corresponds to the characteristic
relaxation time of charge density modulations. In a 2D system,
this time depends on the in-plane length scale L and is given
by L/σ . This gives C ∼ L. Recalling the convergence scales
of the q integral in Sec. III B, we associate L ∼ √

Dκd/T
and L ∼ d in the low- and high-temperature diffusive regimes,
respectively. Then Eqs. (25c) and (25a) match Eqs. (7e) and
(7f) at low and high temperatures, respectively. Expression
(25b) does not correspond to any parametric region because
at T � Dκ/d the two capacitances become of the same order.

To summarize, while the proposed effective RC circuit
does capture the qualitative picture of the heat transfer in
the diffusive regime, one cannot completely disregard the 2D
geometry of the system. This geometry manifests itself in
the appearance of the length scale L, which must supplement
the circuit picture in order to reproduce the temperature
dependence of the heat current. Moreover, this length scale
is temperature dependent, so one cannot represent a given
system by a given array of elementary circuits in the whole
temperature range. This strongly limits the usefulness of the
circuit analogy. For this reason, we do not consider the other
two regimes (plasmonic and clean), whose modeling would
require a more complicated circuit; this would have to include
also inductors in order to mimic the physics of weakly damped
density excitations.

VI. DISCUSSION OF EXPERIMENTS

Let us now discuss some relevant experiments from the
viewpoint of the theory presented in this paper. In the lit-
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erature we are aware of, experiments in the planar ge-
ometry are not very numerous; apparently, a tip-to-plane
or sphere-to-plane configurations are easier to realize in a
controllable way.

In a recent experiment [14], two monolayer graphene
sheets were placed on insulating silicon (dielectric constant
ε = 11.7) and separated by a vacuum gap of width d = 430
nm. The experiment was performed around room temperature,
and the linear thermal conductance per unit area, dJ/dT = 30
W m−2 K−1, was measured. Importantly, the doping level
was sufficiently high, εF = 0.27 eV, so the peculiarities of the
Dirac spectrum can be safely ignored and the electrons can
be treated as the usual 2D electron gas with the 2D screening
length κ−1 = 2.8 Å. The single-layer plasmon frequency at
q = 1/d is vF

√
κ/(ε + 1)d ) ∼ 3 × 1013 s−1, slightly below

room temperature (T = 300 K corresponds to ω = 3.93 ×
1013 s−1) and above 1/τ = 1013 s−1 [14]. These conditions
correspond to the crossover between the low- and high-
temperature plasmon regimes. The plasmon velocity is about
20 times smaller than the speed of light, so the heat transfer is
well within the Coulomb limit.

To give a theoretical estimate for the thermal conductance,
one has to account for the strong dielectric contrast (vacuum
vs silicon) between the two sides of each graphene layer. This
amounts to replacing vq� → vq� + (1 − ε)/2 in the denom-
inator of Eq. (3). In the high-temperature plasmon regime, one
should multiply 2e2qd in the denominator of Eq. (15) by

[(ε + 1)2 − (ε − 1)2e−2qd ][(ε + 1) − (ε − 1)e−2qd ]

8
,

so ε enters only inside the logarithmic function L. Setting L =
1 gives dJ/dT = 11 W m−2 K−1, which agrees by an order
of magnitude with the experimental value.

Several works have been dedicated to transfer between
finite-thickness layers of conventional metals, to be reviewed
below. In each case, one should decide whether these layers
should correspond to the 2D or bulk limit, according to
the discussion in Sec. II C. In all cases, the separation d
between the sheets is larger than their thickness h, so the
criterion h � 1/q is always fulfilled. Thus, the main issue
is the comparison between the layer thickness and the skin
depth.

In the pioneering study in Ref. [39], heat transfer between
two h = 100-nm-thick chromium plates was measured at
room temperature, probing separation dependence of heat
flux over scales d = 1–8 μm. Reference [39] provides no
information on electron scattering, but if we take a typical
value for the mean free path �3D = 10 nm and use the val-
ues ν3D = 0.06 eV−1 Å−3 [40], vF = 0.5 × 106 m/s [41], we
obtain the normal skin depth δ = 50 nm at frequency ω =
3.93 × 1013 s−1, corresponding to T = 300 K. Thus, such
plates cannot be treated as two dimensional.

In Ref. [42], heat transfer was studied for two tungsten
layers h = 150 nm thick on alumina substrate, over a wide
range of separations d = 1–300 μm, with the cold layer held
at 5 K, while the hot layer temperature was varied in the
range 10–40 K. Specifically, at small separations, the observed
temperature and distance dependence was J (T ) ∝ T 1.5/d2.5.
The measured dc conductivity of the material, corresponding
to 4πσ3D = 0.6 × 1018 s−1, was constant in the temperature

range 4–77 K, identifying the static disorder as the dominant
source of electron scattering with τ = 6 fs and �3D = 6 nm
(vF = 106 m/s from Ref. [43]). This gives the normal skin
depth corresponding to T = 40 K as δ = 240 nm, and even
longer at lower temperatures. Thus, one could expect this
experiment to correspond to the low-temperature diffusive 2D
regime, whose conditions can be written as T � 1/τ , T �
4πσ3Dh/d . However, if we check the Coulomb limit condition
(9) estimating ν3D = 1047 J−1 m−3 = 0.016 eV−1 Å−3 from
ω2

p = 4πν3Dv2
F /3 with ωp = 0.97 × 1016 s−1 [42], we obtain

κ� = 1.3 × 105, and the two sides of the inequality become
comparable only for the smallest d = 1 μm and T = 10 K.
Thus, the whole experimental curve corresponds to the regime
when retardation is important, so it is natural that the experi-
mental result is not consistent with Jld (T ) ∝ T 3/d .

Linear response thermal conductance dJ (T )/dT at room
temperature was measured in Ref. [10] for two gold layers h =
100 nm thick with separations 60 nm < d < 10 μm. At small
separations a dependence 1/dα with α between 2 and 3 was
observed. These results were successfully interpreted using
the Drude model parameters ωp = 0.6 × 1016 s−1 and τ =
6 fs [44], which give the skin depth δ = 50 nm. Estimating
ν3D from ωp and vF = 1.4 × 106 m/s [43], we again obtain
that inequality (9) is not satisfied, although for the smallest
separation the two sides become comparable.

Finally, a recent preprint [15] reports a series of measure-
ments of heat transfer between two aluminum films on silicon,
separated by a vacuum gap d = 215 nm. The film thicknesses
h were varied in the interval 13–79 nm. The experiment was
performed around room temperature, and for the thinnest
films with h = 13 nm the linear thermal conductance per unit
area, dJ/dT = 60 W m−2 K−1, was measured. For thicker
layers, the thermal conductance was slightly smaller (about
50 W m−2 K−1 for d = 79 nm). No information on electron
scattering was given in Ref. [15], but the 13-nm-thick sample
was thinner than the smallest possible skin depth c/ωp = 30
nm (with ωp = 0.97 × 1016 s−1 [44]), so one would expect
it to be in the 2D limit. From ν3D = 1.45 × 1047 J−1 m−3 =
0.023 eV−1 Å−3 [45], we obtain the 2D screening length
1/κ = 3.6 × 10−3 Å. If we take a typical value � = 10 nm,
we nominally find the system to be in the low-temperature
diffusive limit. Still, with vF = 1.6 × 106 m/s [43], inequality
(9) is not satisfied, with the left-hand side a few times larger
than the right-hand side.

To summarize, metallic layers studied in experiments may
have thicknesses a few times larger or a few times smaller
than the skin depth, but the inequality is never very strong.
More stringent is condition (9), which enables one to neglect
retardation effects and use the Coulomb limit. For typical
metals, it requires temperatures below 100 K, while h and d
should be in the range of tens of nanometers.

VII. CONCLUSIONS

We have studied the problem of heat transfer between
two thin parallel metallic layers, mediated by the Coulomb
interaction. Using a simple model for a 2D electron gas
subject to scattering on short-range impurities, we described
the crossover between clean and diffusive limits and showed
that strongly coupled surface plasmons dominate the heat
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transfer in a parametrically wide region at sufficiently high
temperatures, but their contribution is suppressed in both the
clean and diffusive limits. We also clarified the role of the
spatial dispersion in the optical conductivity, which turns out
to be important only in the clean limit. In all other regimes,
the effect of disorder is correctly captured by the relaxation
time in the Drude conductivity.

We have shown that in the diffusive limit, the heat transfer
is quantitatively similar to that in an effective RC circuit.
However, for this analogy to be meaningful, one must spec-
ify a length scale. This length scale should correspond to
the size of regions within the infinite 2D sample where the
transfer occurs independently. In other words, each region
can be described by a separate circuit, and contributions from
different regions add up. This length scale must be determined
from the microscopic theory and turns out to be temperature
dependent. This greatly limits the usefulness of the circuit
analogy, especially when the two temperatures are strongly
different.

Comparing the theory, developed here, to experimental
data, available in the literature, we found that the theory
qualitatively agrees with the experiment on heat transfer be-
tween two graphene sheets, which falls into the crossover
between the low- and high-temperature plasmonic regimes.
For finite-thickness layers of conventional metals, we find
that, in all experiments that we are aware of, the parameters
do not fulfill the stringent condition to be in the Coulomb limit
when retardation can be neglected; still, this limit is realistic
for nanometer-sized structures at low temperatures.
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APPENDIX: DENSITY RESPONSE FUNCTION FROM THE
BOLTZMANN EQUATION

We assume the 2D electron gas to be in the good metallic
regime, when the mean free path � is much larger than the
Fermi wavelength, so we may neglect localization effects. In
this limit, and for perturbations smooth on the scale of the
Fermi wavelength, the electron dynamics can be described
by the semiclassical Boltzmann kinetic equation [46]. The
electron distribution function fp(r, t ) is assumed to depend
on the 2D momentum p and the 2D position r, while the
dynamics in the third dimension is assumed to be completely
frozen by a tight confinement. Then the kinetic equation reads

∂ fp

∂t
+ vp · ∂ fp

∂r
+ F · ∂ fp

∂p
= St[ f ], (A1)

where F is an externally applied force, and vp = ∂εp/∂p is the
electron group velocity determined by the energy dispersion
εp. The collision integral on the right-hand side, written in the

Born approximation,

St[ f ] = 2πni

∫
d2p′

(2π )2
|U (p − p′)|2 δ(εp − εp′ )( fp′ − fp),

(A2)
is determined by the impurity concentration ni and the Fourier
transform of the impurity potential U (p − p′). Beyond the
Born approximation, |U (p − p′)|2 should be replaced by the
exact scattering amplitude, properly normalized.

In the absence of perturbations, the electrons are assumed
to have the Fermi-Dirac distribution determined by the Fermi
energy εF and the temperature T :

f eq
p = 1

e(εp−εF )/T + 1
. (A3)

If a perturbing electrostatic potential ϕq,ω eiqr−iωt + c.c. is
applied to the 2D system (again, we neglect its dependence
on the third coordinate), it enters Eq. (A1) via the associated
electrostatic force F = −ieqϕq,ω eiqr−iωt + c.c. To the linear
order in the perturbation, the distribution function can be
sought in the form

fp(r, t ) = f eq
p + eϕq,ω gp eiqr−iωt + c.c., (A4)

where gp is position and time independent and satisfies the
following linear integral equation:

− iωgp + iqvpgp − iqvp
∂ f eq

∂εp

= 2πni

∫
d2p′

(2π )2
|U (p − p′)|2 δ(εp − εp′ )(gp′ − gp).

(A5)

An explicit solution of this equation can be found only in
the case of short-range impurities when U (p − p′) does not
depend on momentum. In this case the collision integral
reduces to the relaxation time approximation:

St[ f ] = fp − fp

τ
, (A6)

where the overbar denotes the average over the momentum
directions on a constant energy surface,

fp ≡
∫

d2p′ fp′ δ(εp′ − εp)∫
d2p′ δ(εp′ − εp)

, (A7)

and the relaxation time and the density of states per unit area
are given by

1

τ
= πνni|U |2, ν = 2

∫
d2p′

(2π )2
δ(εp − εp′ ) (A8)

(the factor of 2 in front of the integral takes into account two
spin projections). Then, Eq. (A5) gives

gp = iqvp(∂ f eq/∂εp) + (1/τ ) gp

iqvp − iω + 1/τ
. (A9)

Averaging both sides over the momentum directions, one
obtains a closed equation for gp and readily finds

gp = 1 + (iωτ − 1)S

1 − S

∂ f eq

∂εp
, (A10)
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where S stands for the following angular average:

S ≡ (1 − iωτ + iqvpτ )−1

=
∫ 2π

0

dφ

2π

1

1 − iωτ + ivF q cos φ

= 1√
(1 − iωτ )2 + (vF qτ )2

. (A11)

The last two lines were written under the assumption of an
isotropic dispersion εp. Finally, since the electron density is
given by

ρ(r, t ) = 2
∫

d2p
(2π )2

fp(r, t ) (A12)

(again, the factor of 2 takes care of the spin multiplicity), the
density response function can be found as

�(q, ω) = 2
∫

d2p
(2π )2

gp. (A13)

Collecting all factors and assuming that −∂ f eq/∂εp is a
narrow peak around the Fermi energy of width ∼T , so that the
energy dependence of ν and vF can be neglected, we arrive at
Eq. (4).

If U (p − p′) is momentum dependent, no closed solution
can be obtained even in the simplest of isotropic scattering
when the scattering amplitude depends only on the difference
φ − φ′ of the polar angles φ, φ′ associated to the 2D vectors
p, p′. Indeed, in this case the solution can be sought as a
sum over polar harmonics, gp = ∑

m gmeimφ , which are the
eigenfunctions of the collision integral. Different harmonics
do not separate because of the second term in Eq. (A5), which
is responsible for the spatial dispersion of the conductivity
σ (q, ω). Only when the spatial dispersion is neglected, the
Drude conductivity σ (ω) can be written in terms of the
transport relaxation time τ1, determined by the first eigenvalue
of the collision integral, −1/τ1. Otherwise, the result contains
all eigenvalues −1/τm>0. Still, qualitatively, it is τ1 that de-
termines the relevant time scale: in the limit of Eq. (A6) all
τm>0 = τ , while in the opposite limit of small-angle scattering
τm quickly grows with m, so high harmonics are suppressed
and the result is determined by the first few τm’s.
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