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The nonlocal nature of the Majorana zero modes implies an inherent teleportation channel and unique
transport signatures for Majorana identification. In this work we make an effort to eliminate some inconsistencies
between the Bogoliubov–de Gennes equation based treatment and the method using the associated regular
fermion-number states of occupation within the “second quantization” framework. We first consider a rather
simple “quantum dot–Majorana wire–quantum dot” system, then a more experimentally relevant setup by
replacing the quantum dots with transport leads. For the latter setup, based on the dynamical evolution of
electron-hole excitations, we develop a single-particle wave-function approach to quantum transport, which
renders both the conventional quantum scattering theory and the steady-state nonequilibrium Green’s function
formalism as its stationary limit. Further, we revisit the issue of Majorana tunneling spectroscopy and consider
in particular the two-lead coupling setup. We present comprehensive discussions with detailed comparisons, and
predict a zero-bias-limit conductance of e2/h (for symmetric coupling to the leads), which is a half of the popular
result of the zero-bias peak or the so-called Majorana quantized conductance (2e2/h). This work may arouse
a need to reexamine some existing studies and the proposed treatment is expected to be involved in analyzing
future experiments in this fast developing field.
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I. INTRODUCTION

In the past years the interests to the Majorana zero modes
(MZMs) in topological superconductors have been switched
from a theoretical topic into an active experimental field in
condensed matter physics [1–5]. In particular, proposals based
on semiconductor nanowires [6,7] stimulated the initial exper-
iment of Mourik et al. [8] and subsequent experiments with
transport features consistent with Majorana modes [9–16].
The nonlocal nature of the MZMs and the intrinsic non-
Abelian braiding statistics, both implying an immunity from
the influence of local environmental noises, promise a sound
potential for topological quantum computation [4,17,18]. To
confirm the nonlocal nature of the MZMs, beyond the local
tunneling spectroscopy experiments mentioned above, nonlo-
cal transport signatures (including also nonlocal conductances
based on the three-terminal setup) have been investigated
[19–27], together with evidences such as the peculiar noise
behaviors [28–34] and the 4π periodic Majorana-Josephson
currents [1,6,7,35,36]. In particular, some more recent stud-
ies were extensively focused on distinguishing the nonlocal
MZMs from the topologically trivial Andreev bound states by
transport measurements [37–45].

Closely related to the nonlocal nature of the MZMs, the
so-called teleportation issue emerges as the existence of a
dramatic ultrafast electron transfer channel [46–49]. Most
strikingly, since the two MZMs at the ends of the quantum
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nanowire can be located far away, the teleportation chan-
nel is somehow indicating certain type of “superluminal”
phenomenon [46,47,49]. In particular, since this channel is
usually mixed with the Andreev process of electron-pair split-
ting, in Ref. [48], a truncated teleportation Hamiltonian was
derived by considering the nanowire in contact with a floating
mesoscopic superconductor, instead of the grounded one as
usual. There, the strong charging energy of the mesoscopic
superconductor rules out the Andreev process, making thus
only the teleportation channel survived.

The ability allowing ultrafast charge transfer through the
teleportation channel is rather transparent using the low-
energy effective Hamiltonian and within the framework of
“second quantization,” which simply manifests the MZMs
associated regular fermion state occupied or not, i.e., the
number state |1〉 or |0〉. However, as we will show in this
work, the conventional treatment based on the well-known
Bogoliubov–de Gennes (BdG) equation will encounter diffi-
culty to restore this basic feature. In this work, we propose a
solving method to eliminate the inconsistency between these
two types of treatments. We notice that the standard BdG
treatment has been widely involved in literature [27–30].
This work may arouse a need to reconsider some transport
signatures associated with the Majorana nonlocal nature and
teleportation channel.

We structure the paper as follows. We first consider in
Sec. II a rather simple setup following Refs. [47,48], say,
a “quantum dot–Majorana wire–quantum dot” system (see
Fig. 1), then in Sec. III the setup by replacing the dots with
transport leads. For the former setup, we focus on the issue of
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FIG. 1. Schematic drawing for the setup of a Majorana quantum
wire coupled to two quantum dots. The single electron is assumed
initially in the left dot and the subsequent evolution is expected
to display a “teleportation”-type quantum oscillations between the
remotely distant dots.

“teleportation,” and particularly propose a scheme to elim-
inate the inconsistency between the Bogoliubov–de Gennes
equation based treatment and the method within the “second
quantization” framework, using the regular fermion-number
states of occupation. For the latter setup, we first propose
a single-particle wave-function quantum transport approach,
which renders both the conventional quantum scattering the-
ory and the steady-state nonequilibrium Green’s function
formalism as its long-time stationary limit. Then, we revisit
the Majorana tunneling spectroscopy with comprehensive dis-
cussions and make a new prediction. Finally, we summarize
the work in Sec. IV.

II. REVISIT THE ISSUE OF MAJORANA TELEPORTATION

A. Low-energy effective model and number-state treatment

About the issue of teleportation, let us consider first the
simplest quantum dot–Majorana wire–quantum dot setup (see
Fig. 1), following Refs. [47,48], to analyze the quantum
transfer and oscillation of an electron through a quantum
wire which accommodates a pair of Majorana bound states
(MBSs). Note that, aside from Refs. [47,48], the hybrid
structure of a Majorana wire coupled to quantum dots has
been employed to investigate the various Majorana signatures
[31–34,37,40,42–44,50–54], especially in the recent studies
on distinguishing the nonlocal MBSs from the topologi-
cally trivial Andreev bound states by transport measurements
[37,40,42,43]. The setup of Fig. 1 can be described by the
following effective low-energy Hamiltonian:

H = i
εM

2
γ1γ2 +

∑
j=1,2

[ε jd
†
j d j + λ j (d

†
j − d j )γ j]. (1)

Here, γ1 and γ2 are the Majorana operators for the two MBSs
at the ends of the quantum wire. The two MBSs interact
with each other by an energy εM . d1 (d†

1 ) and d2 (d†
2 ) are

the annihilation (creation) operators of the two single-level
quantum dots, while λ1 and λ2 are their coupling amplitudes
to the MBSs. The Majorana operators are related to the regular
fermion through the transformation of γ1 = i( f − f †) and
γ2 = f + f †. After an additional local gauge transformation,
d1 → id1, we reexpress Eq. (1) as

H = εM

(
f † f − 1

2

)
+

∑
j=1,2

[ε jd
†
j d j + λ j (d

†
j f + f †d j )]

− λ1(d†
1 f † + f d1) + λ2(d†

2 f † + f d2). (2)

It should be noticed that the tunneling terms in this Hamil-
tonian only conserve charge modulo 2e. This reflects the
fact that a pair of electrons can be extracted from the

superconductor condensate and can be absorbed by the con-
densate vice versa.

Let us consider the transfer of an electron between the
two quantum dots, which is assumed initially in the left
quantum dot. In particular, we consider the weak interac-
tion limit εM → 0, in order to reveal more drastically the
teleportation behavior. For simplicity, we assume λ1 = λ2 =
λ and ε1 = ε2 = 0. Using the regular fermion-number-state
representation, i.e., |n1, n f , n2〉, where n1(2) and n f denote,
respectively, the electron numbers (“0” or “1”) in the left
(right) dot and the central MZMs, we have eight basis states:
|100〉, |010〉, |001〉, |111〉 with odd parity (electron numbers);
and |110〉, |101〉, |011〉, |000〉 with even parity. Associated
with the specific initial condition, we only have the odd-parity
states involved in the state evolution.

Starting with the initial state |100〉, the state evolution
within the odd-parity subspace can be carried out straightfor-
wardly [47]. Specifically, we are interested in the probability
of electron appearing in the right dot, which has two compo-
nents [47]

P(1)
2 (τ ) = |〈001|e−iHτ |100〉|2 = sin4(λτ ),

P(2)
2 (τ ) = |〈111|e−iHτ |100〉|2 = 1

4
sin2(2λτ ). (3)

Of great interest is the result of P(1)
2 (τ ), which implies that,

even in the limit of εM → 0 (very long quantum wire), the
electron in the left dot can transmit through the quantum wire
and reappear in the right dot on a finite (short) timescale.
This is the remarkable teleportation phenomenon discussed
in Refs. [46–48] which, surprisingly, holds a superluminal
feature.

However, the result of P(2)
2 (τ ) is associated with the An-

dreev process, i.e., splitting of a Cooper pair from the conden-
sate of the superconductor. To be more specific, let us consider
the initial state |100〉. The state |111〉 can be generated from
|100〉 by the local Andreev process at the right-hand side,
which is described by the effective tunneling term d†

2 f † in
Eq. (2). Obviously, this is not the event of teleportation of
interest since the electron appearing in the right dot (D2) is
not the one initially prepared in the left dot (D1). In order to
single out the teleportation channel from the Andreev process,
it would be highly desirable if we can suppress the terms
(λ jd

†
j f † + H.c.) in Eq. (2).

Indeed, it was proposed in Ref. [48] that a nanowire is in
proximity contact with a mesoscopic floating superconductor
with strong charging energy EC . Under such assumptions,
it was derived by an elegant and precise treatment that the
tunnel coupling is truncated to the following Hamiltonian of
tunneling through a single resonant level [48]

H = εM

(
f † f − 1

2

)
+

∑
j=1,2

[ε jd
†
j d j + λ j (d

†
j f + f †d j )].

(4)

Comparing this result with the tunneling Hamiltonian in
Eq. (2), we find that the Andreev process terms have been
ruled out and that the only survived charge transfer channel
is the real transmission through the nonlocal Majorana states.
This is the true teleportation channel of our interest.
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FIG. 2. Quantum oscillations of an electron between two remote
quantum dots, mediated by the nonlocal MZMs. (a) Plots of the
analytic solution (5) (black and red lines, based on the number-states
treatment of the low-energy effective model), compared with the
results from the lattice model based simulation using the tunneling
Hamiltonian (13) (black and red dots). Through the whole work we
adopt an arbitrary system of units by setting the hopping energy in
the Kitaev lattice model t = 1. Other parameters in the lattice model:
ε1 = ε2 = 0, tL = tR = 0.05, μ = 0, and � = 1.0. The correspond-
ing parameters of the reduced low-energy effective model: εM = 0
and λ1 = λ2 = λ = 0.025. (b) Results based on the Kitaev lattice
model and using the tunneling Hamiltonian (11), which involves
both the positive- and negative-energy eigenstates in the dynamics.
Parameters are the same as in (a).

As an additional remark, it should be noted that the
suppression of the Andreev process terms does not mean
the superconducting pairing term destroyed. Actually, the
superconducting pairing term has been taken into account
when diagonalizing the superconductor Hamiltonian, which
is responsible to the formation of both the ground-state con-
densate and the quasiparticle states (including the Majorana
f quasiparticle). The tunnel-coupling Hamiltonians in both
Eqs. (2) and (4) are an effective low-energy description.

After suppressing the Andreev process, the transfer dy-
namics only involves states |100〉, |010〉, and |001〉. The
time-dependent state can be therefore expressed as |�(τ )〉 =
a(τ )|100〉 + b(τ )|010〉 + c(τ )|001〉. Also, we consider the
simplest case by assuming εM = ε1 = ε2 = 0 and λ1 = λ2 =
λ. Solving the Schrödinger equation based on the Hamiltonian
(4) yields

a(τ ) = 1

2
[1 + cos(

√
2λτ )],

b(τ ) = − i√
2

sin(
√

2λτ ),

c(τ ) = 1

2
[−1 + cos(

√
2λτ )]. (5)

This solution was obtained with the initial condition |�(0)〉 =
|100〉. Therefore, the occupation probability of the right dot,
P2(τ ) = |c(τ )|2 = sin4(λτ/

√
2), reveals a real teleportation

feature as discussed above based on P(1)
2 (τ ) in Eq. (3). In

Fig. 2(a), using the above analytic solution, we plot the

occupation probabilities of the two dots (by the black and red
lines). The displayed simple quantum oscillations are indeed
remarkable, viewing that the two dots are coupled through a
very long quantum wire.

B. Bogoliubov–de Gennes equation based simulation

We now turn to a lattice-model-based simulation for the
above transfer dynamics using the BdG equation and the well-
known Kitaev model for the topological quantum wire [1]

HW =
∑

j

[
−μc†j c j − t

2
(c†j c j+1 + H.c.)

]

+�

2

∑
j

(c jc j+1 + H.c.). (6)

In this spinless p-wave superconductor model, μ is the chem-
ical potential, � is the superconducting order parameter, and
t is the hopping energy between the nearest-neighbor sites
with c†j (c j) the associated electron creation (annihilation)

operators. The specific choice of t
2 and �

2 is for a conve-
nience such that the energy gap parameter of the quasiparticle
excitations is � (rather than 2�). The total Hamiltonian of
the setup shown in Fig. 1 reads as H = HW + HD + H ′, with
HD = ∑

j=1,2 ε jd
†
j d j and the coupling between the dots and

the quantum wire given by

H ′ = (tLd1c†1 + tRd2c†N ) + H.c. , (7)

with tL and tR the coupling energies.
In order to introduce the representation of elec-

tron and hole states, we use the Nambu spinor �̂ =
(c1, . . . , cN , c†1, . . . , c†N )T and rewrite the Hamiltonian of the
quantum wire as HW = 1

2 �̂†H̃W �̂, which yields thus the BdG
Hamiltonian matrix

H̃W =
(

T 	

−	 −T

)
, (8)

where the block elements are given by

T =

⎛⎜⎜⎜⎝
−μ −t/2 0 . . . . . .

−t/2 −μ −t/2 0 . . .

0 −t/2 −μ −t/2 . . .

· · · · ·
· · · · ·

⎞⎟⎟⎟⎠ (9)

and

	 = 1

2

⎛⎜⎜⎜⎝
0 � 0 · · · . . .

−� 0 � 0 . . .

0 −� 0 � . . .

· · · · ·
· · · · ·

⎞⎟⎟⎟⎠. (10)

More physically, the above BdG Hamiltonian matrix can
be understood as being constructed under the single-particle
basis {|e1〉, . . . , |eN 〉; |h1〉, . . . , |hN 〉}, where |e j〉 and |h j〉 de-
scribe, respectively, the electron and hole states on the jth site.

Further, let us consider the entire “dot-wire-dot” system.
Using the joint electron and hole basis, the complete states
of the quantum dots should include both |Dj〉 and |Hj〉, with
j = 1, 2 labeling the quantum dots while D and H describing
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the electron and hole states, respectively. Accordingly, the
Hamiltonian should include couplings of |D1〉 with |e1〉 and
|D2〉 with |eN 〉 for electrons, and |H1〉 with |h1〉 and |H2〉 with
|hN 〉 for holes. It is well known that the hole couplings are
employed to describe the Andreev process. For instance, in
the simplified description of the low-energy excitations, the
transition |1, 0, 0〉 ⇒ |1, 1, 1〉 corresponds to annihilating the
hole state |H2〉 (owing to the transfer of |H2〉 to |hN 〉), and
at the same time exciting the f quasiparticle of the MZMs
(via the |hN 〉 excitation). Similarly, the transition |1, 1, 1〉 ⇒
|0, 0, 1〉 is mediated by the hole transfer from |h1〉 of the wire
to |H1〉 of the left dot.

To make a close comparison between the effective low-
energy model result and the Kitaev lattice model based sim-
ulation, we restrict our analysis to the transfer dynamics
associated with the truncated teleportation Hamiltonian (4),
where only the teleportation channel is left while the Andreev
process is suppressed. Then, in the absence of hole couplings
between the dots and the quantum wire, the coupling Hamil-
tonian reads as

H ′ = (tL|e1〉〈D1| + tR|eN 〉〈D2|) + H.c. (11)

Again, let us consider the evolution starting with |�(0)〉 =
|D1〉, i.e., initially the electron in the left dot. The transfer
dynamics is described by

|�(τ )〉 = α1(τ )|D1〉 + α2(τ )|D2〉

+
N∑

j=1

[u j (τ )|e j〉 + v j (τ )|h j〉], (12)

where the superposition coefficients can be solved from the
time-dependent Schrödinger equation ih̄ ∂

∂τ
|�(τ )〉 = H |�(τ )〉

by casting the Hamiltonian into the BdG-type matrix form,
using the joint electron and hole basis.

In Fig. 2(b) we show the results from numerically solv-
ing Eq. (12). To compare with the results displayed in Fig.
2(a), we plot the probabilities P1(τ ) = |α1(τ )|2 and P2(τ ) =
|α2(τ )|2 by the black and red lines, respectively. Most surpris-
ingly, in Fig. 2(b), we find no occupation of the right dot with
the increase of time, which simply means no charge transfer
mediated by the MZMs. We only find quantum oscillations
between the left dot and the quantum wire, but with a period
differing from that in Fig. 2(a), despite that in both plots we
have used identical coupling strengths. We may identify the
reasons for both results as follows.

By diagonalizing the BdG Hamiltonian H̃W of the quan-
tum wire, one obtains two sets of eigenstates, say, |En〉 and
| − En〉 with n = 1, 2, . . . , N , corresponding to the positive
and negative eigenenergies. In particular, in the topological
regime, the lowest-energy states |E1〉 and | − E1〉 are subgap
states with E1 → 0 and the wave functions distribute at the
ends of the quantum wire. The MBSs at the ends of the wire
are obtained from, respectively, |γ1〉 = (|E1〉 + | − E1〉)/2
and |γ2〉 = (|E1〉 − | − E1〉)/2i. From the tunnel Hamilto-
nian (11), the charge transfer |D1〉 → |e1〉 will generate a
quantum superposition of |E1〉 and | − E1〉 in the quantum
wire, especially with equal weights as E1 → 0. Owing to the
requirement of energy conservation, the higher eigenenergy
states will not be excited (populated) after a timescale longer

than h̄/tL. As a consequence of this superposition of |E1〉 and
| − E1〉, the electron and hole excitations are largely located
at the left side of the wire, leading thus to no charge transfer
to the right side of the wire and to the right side quantum dot.
The simultaneous coupling of |D1〉 to the zero-energy states
|E1〉 and | − E1〉 of the quantum wire is also the reason for the
different periods of oscillations in Figs. 2(b) and 2(a).

We understand then that the main difference of the cou-
pling Hamiltonian (11) from the “number”-states treatment
using the low-energy effective model is the redundant cou-
pling of the dot electron to the negative-energy eigenstates
of the superconducting quantum wire. Indeed, the negative-
energy eigenstates are the dual counterparts of the Bogoli-
ubov quasiparticles (the positive-energy eigenstates). Before
diagonalizing the Hamiltonian of the superconductor, intro-
ducing holes (with negative energies) is unavoidable, in or-
der to “mix” the electron and hole components to form the
Bogoliubov quasiparticles (physically, owing to the many-
body electron-electron scattering and the existence of the
superconducting condensate). However, after the diagonal-
ization, the negative-energy eigenstates are redundant. A
negative-energy eigenstate simply means the result of re-
moving an existing quasiparticle (which has positive en-
ergy). Moreover, the corresponding Bogoliubov “creation”
operators of the negative-energy eigenstates will, importantly,
annihilate the ground state of the superconductor. In other
words, the negative-energy eigenstates cannot be created
from the ground state of the superconductor. Therefore, if
we explicitly introduce the creation of Bogoliubov positive-
energy quasiparticles (from the ground state) and annihila-
tion of the existing ones, the negative-energy eigenstates are
redundant, which should not appear in the tunnel-coupling
Hamiltonian.

For the specific setup under consideration, the tunnel-
coupling Hamiltonian should thus be modified as

H ′ = (tL|ẽ1〉〈D1| + tR|ẽN 〉〈D2|) + H.c., (13)

where the two projected states are defined through

|ẽ1〉 = P̂|e1〉,
|ẽN 〉 = P̂|eN 〉, (14)

while the projection operator is defined by

P̂ =
N∑

En>0, n=1

|En〉〈En|. (15)

Very importantly, the above tunneling Hamiltonian properly
accounts for the creation and annihilation of the Bogoliubov
quasiparticles (with positive energies), which are the real
existence in superconductors. Here, owing to the suppression
of the Andreev process, the hole states of the quantum dots
do not appear in the tunnel coupling to the Bogoliubov quasi-
particles. Otherwise, in the presence of Andreev process, as
we will see later, the hole states of the transport leads will
participate in the coupling to the Bogoliubov quasiparticles.

Based on the tunnel Hamiltonian (13), we resimulate
the electron transfer dynamics and obtain results shown in
Fig. 2(a) by the symbols of black and red dots. In contrast
to what we observed in Fig. 2(b), here the desired quantum
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oscillations are recovered in precise agreement with the
number-state treatment based on the low-energy effective
model. We should mention that this full agreement is achieved
in the regime of weak coupling between the dots and the
quantum wire, which guarantees the dominant coupling of the
quantum dots being to the MZMs, but not to the Bogoliubov
quasiparticle states above the superconducting gap. If we
consider a strong-coupling regime, occupation of the quasi-
particle states above the gap will result in some irregularities
instead of the ideal quantum oscillations.

We may finally remark that, as explained in detail above
Eq. (4), in order to suppress the Andreev pair process (thus
single out the teleportation channel alone), we follow the
treatment by Fu in Ref. [48] by considering a floating topolog-
ical superconductor with large charging energy EC . However,
the full agreement achieved in Fig. 2(a) is not restricted in
this regime. As we will see in Sec. III (D), a consistent
result as shown in Fig. 4(b) is achieved also for the grounded
superconductor and in the absence of charging energy EC

(thus allowing the Andreev pair processes). The basic reason
for the consistent results is that the projected Hamiltonian
(13) rules out the redundant inclusion of the negative-energy
states, in the tunneling process with outside. As elucidated in
detail by the two paragraphs above Eq. (13) (reasoning for
its construction), the superposition of |E1〉 and | − E1〉 will
result in the electron and hole excitations located on the left
side of the wire, lacking thus the transfer phenomenon as
predicted by the treatment of the number states (|0〉 and |1〉).
This difficulty exists in either the floating setup with large EC

as shown in Fig. 2(b), or the grounded setup without EC as
shown in Fig. 4(a).

C. On the teleportation issue

Taking the lattice model, let us first simulate the “mi-
croscopic” dynamics of the electron-hole excitations in the
quantum wire. Without loss of the main physics, as a simpler
and clearer illustration, we may consider an isolated quantum
wire with an initial excitation of |e1〉. This corresponds to the
electron in the left dot (D1) entering the wire via the first
site, i.e., |ẽ1〉 = c†1|G〉 = P̂|e1〉, where |G〉 is the ground state
of the superconductor wire. Note that, owing to the property
(requirement) of the ground state, the real physical state is |ẽ1〉
but not |e1〉.

Specifically, let us assume μ = 0 and � = 0.8 (note that
we always set t = 1 through the whole work). We find that,
from the initial “lattice state” |e1〉, the projection probability
of getting the Majorana state |E1〉 is p1 = |〈E1|e1〉|2 � 0.247.
In the ideal case of � = t , this probability is p1 = 0.25. In
Fig. 3(a), we show the initial electron-hole excitations from
the (unnormalized) projected state |ẽ1〉 = P̂|e1〉. The result
displayed by the red curve in Fig. 3(a) is the distribution
of the hole components on the lattice sites, which largely
characterizes the distribution of the electron-hole excitations
in the Majorana state |E1〉, by noting that the weights of the
electron and hole components are equal, i.e., |uj |2 = |v j |2
on every lattice site, for E1 � 0. However, on the left side,
owing to the quantum superposition with the high-energy
states and thus the quantum interference, the hole distribution
has some distortion compared to the right side, where this

FIG. 3. Wave-packet propagation of the electron-hole excitations
based on simulation of the isolated Kitaev’s lattice wire. We adopt
an arbitrary system of units by setting the hopping energy t = 1
(and h̄ = 1), and assume the other parameters μ = 0 and � = 0.8.
(a) Initial distribution of the electron-hole excitations after project-
ing the lattice state |e1〉 onto the Hilbert space of the Bogoliubov
quasiparticle states, which corresponds to the action of c†1 on the
superconductor ground state |G〉. (b)–(e) Propagation of the electron-
hole excitations along the lattice wire with the increase of time (τ ).

same effect is negligibly weak. The black curve in Fig. 3(a)
more heavily involves the electron-component contribution
of the high-energy states above the gap, with their super-
position resulting in the localized distribution in space. In
Figs. 3(b)–3(e), we show the wave-packet propagation of the
electron-hole excitations. It should be noted that the propaga-
tion is largely from the electron-hole excitations of the high-
energy states. The two-side edge distributions associated with
zero-energy Majorana mode are almost unaffected from the
evolution.

The picture revealed in Fig. 3 indicates that the charge
transfer mediated by the Majorana state is not via the wave-
packet propagation of the electron-hole excitations along the
wire. Once the external electron enters the wire, the two-side
edge excitations associated with the MZMs are generated in-
stantaneously, thus holding the teleportation ability to mediate
charge transfer. We may argue this extremely puzzling issue
with a few remarks in order as follows.

(i) We notice that in Ref. [47], in order to rule out the
difficulty of arriving to a “superluminal” conclusion, it was
argued that since a classical exchange of information (the
result of the coincident measurements) is necessary, there is
no superluminal transfer of information in the observation of
the teleportation effect. However, as pointed out in Ref. [49],
in principle one can confirm the teleportation event in a
later stage from the coincident measurement data of two
remote detectors. Obviously, this confirmation for the existing
objective event does not need any communication of classical
information.

(ii) Unlike the argument in Ref. [47], we may provide an
alternative understanding. Since the Majorana state is a quasi-
particle excitation in the presence of many other electrons
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(condensate of the superconductor ground state), we cannot
conclude that the electron appearing in the right quantum
dot is the one initially in the left dot. Indeed, consider the
action of c†1 on the superconductor ground state |G〉. viewing
that |G〉 is a condensate of many electrons (superposition
of occupied and unoccupied electron pairs), the action of c†1
would induce a “reformation” of the whole correlated many-
electron condensate. From the “re-organized” condensate,
the quasiparticle excitation can be separated with respect to
the ground state. In particular, the Majorana state among
the quasiparticle excitations holds the nonlocal nature, as a
superposition of the electron-hole excitations at the two ends
of the quantum wire.

Obviously, the electron-hole components at the right side
are not from the left side through any quantum transfer
process. The new particle is formed as a result of “reorgani-
zation” of the many-particle condensate. This reorganization
process, which thus allows us to extract electron from the
right side, may resemble in some sense the current formation
in a conducting wire under electric field, where the current
forming at a remote place is not from the electrons of the
initial place we performed electric disturbance. The speed of
current formation in the conducting wire is not superluminal.
Similarly, the reorganization of the many-electron condensate
mentioned above cannot be superluminal. Therefore, the su-
perluminal feature of Majorana teleportation is a result that
the reorganization process of the many-electron condensate
did not enter a dynamical description.

(iii) The action of the local operator of c†1 on the ground
state, which causes the nonlocal excitation of the Majo-
rana state, can be also understood from the perspective of
quantum measurement. More specifically, in terms of the
POVM (positive-operator-value-measure) formalism, let us
consider ρ̃ = MρM†/|| • ||, with the Kraus measurement op-
erator M = c†1, the density matrix of the ground state ρ =
|G〉〈G|, and || • || denoting the normalization factor. We
know that c†1 can be decomposed into a superposition of
the Bogoliubov operators, both the creation and annihilation
operators. However, the action of the annihilation operators
on the ground state would vanish the result. The state sur-
vived from this action is a superposition of the quasiparticle
states generated by the creation operators. Among them, the
particular Majorana state is highly nonlocal. Actually, the
“measurement” process described by the POVM projection
should correspond to the reorganization of the many-electron
condensate.

To summarize, the Majorana-nonlocality-induced telepor-
tation looks like a superluminal phenomenon, but in reality it
cannot be, if we take into account the re-organization process
of the many-electron condensate and/or the measurement
process discussed above.

III. TRANSPORT THROUGH MAJORANA
QUANTUM WIRES

A. Preliminary consideration

As a more realistic configuration, let us consider to connect
the quantum wire with two transport leads, instead of the
quantum dots. The transport leads can be described by the

interaction-free Hamiltonian

Hleads =
∑

l

εl a
†
l al +

∑
r

εrb†r br, (16)

and the coupling of the quantum wire to the leads is described
by the tunnel Hamiltonian

H ′ =
(∑

l

tl c
†
1al +

∑
r

trc†N br

)
+ H.c. (17)

To display the Andreev process in a transparent manner,
let us introduce the electron and hole basis {|e j〉, |h j〉 | j =
1, 2, . . . , N} for the Kitaev quantum wire, and similarly
{|el〉, |hl〉} and {|er〉, |hr〉} for the left and right leads. Using
these basis states, the tunnel Hamiltonian can be rewritten as

H ′ =
[∑

l

tl (|e1〉〈el | − |h1〉〈hl |)

+
∑

r

tr (|eN 〉〈er | − |hN 〉〈hr |)
]

+ H.c. (18)

In particular, the tunnel coupling between the hole states in
this form is explicitly used to describe the Andreev process.
However, based on the lesson learned in the “dot-wire-dot”
setup, we propose to modify the tunnel Hamiltonian as

H ′ =
[∑

l

tl (|ẽ1〉〈el | − |h̃1〉〈hl |)

+
∑

r

tr (|ẽN 〉〈er | − |h̃N 〉〈hr |)
]

+ H.c., (19)

where the lattice edge site states (for both electrons and holes)
are projected onto the subspace of the Bogoliubov quasipar-
ticle states, through the projector P̂ introduced previously by
Eq. (15).

B. Single-particle wave-function approach

For mesoscopic quantum transports, there exist well-
known approaches such as the nonequilibrium Green’s func-
tion (nGF) method [55,56] and the S-matrix quantum scat-
tering theory [56,57] which are particularly suitable, in the
absence of many-body interactions, to study transport through
a large system modeled by the tight-binding lattice model
and with superconductors involved (either as the leads or
a central device). Another less-developed method, say, the
single-particle wave-function (SPWF) approach [58–61], is an
alternative but attractive choice. This method, directly based
on the time-dependent Schrödinger equation, was developed
in the context of transport through small systems such as
quantum dots and has been applied skillfully to study some
interesting problems [61]. Below, we extend it to study quan-
tum transports through large lattice systems, especially in
the presence of superconductors which may result in rich
physics such as Andreev reflections and phenomena related
to the MZMs. Importantly, this method can be regarded as
an extension of the S-matrix scattering theory, i.e., from
stationary to transient versions. For instance, this method
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should be very useful to study the possible transport probe
of nonadiabatic transitions during Majorana braiding in the
context of topological quantum computations.

The basic idea of the SPWF method is keeping track of
the quantum evolution of an electron initially in the source
lead, based on the time-dependent Schrödinger equation, and
computing various transition rates such as the transmission
rate to the drain lead, or Andreev-reflection rate back to the
source lead as a hole. For the problem under study, we denote
the initial state as |�(0)〉 = |el̄〉. The subsequent evolution
will result in a superposition of all basis states of the leads
and the central device, expressed as

|�〉 = |�w〉 + |�leads〉

=
N∑

j=1

(u j |e j〉 + v j |h j〉) +
∑

l

(αl |el〉 + α̃l |hl〉)

+
∑

r

(βr |er〉 + β̃r |hr〉). (20)

Based on the time-dependent Schrödinger equation i|�̇〉 =
H |�〉, we have

i u̇ j = (•) +
∑

l

tlαl〈e j |ẽ1〉 +
∑

l

(−tl )α̃l〈e j |h̃1〉

+
∑

r

trβr〈e j |ẽN 〉 +
∑

r

(−tr )β̃r〈e j |h̃N 〉,

i v̇ j = (•) +
∑

l

tlαl〈h j |ẽ1〉 +
∑

l

(−tl )α̃l〈h j |h̃1〉

+
∑

r

trβr〈h j |ẽN 〉 +
∑

r

(−tr )β̃r〈h j |h̃N 〉,

i α̇l = εlαl + t∗
l 〈ẽ1|�w〉,

i ˙̃αl = −εl α̃l − t∗
l 〈h̃1|�w〉,

i β̇r = εrβr + t∗
r 〈ẽN |�w〉,

i ˙̃βr = −εr β̃r − t∗
r 〈h̃N |�w〉. (21)

For the sake of brevity, in the first two equations, we have
used the symbol (•) to denote the terms for the central system
(in the absence of coupling to leads). Performing the Laplace
and inverse-Laplace transformations, after some algebras, we
obtain

i u̇ j = (•) − i
�L

2
[〈e j |ẽ1〉〈ẽ1|�w〉 + 〈e j |h̃1〉〈h̃1|�w〉]

− i
�R

2
[〈e j |ẽN 〉〈ẽN |�w〉 + 〈e j |h̃N 〉〈h̃N |�w〉]

+ tLe−iEint 〈e j |ẽ1〉,

i v̇ j = (•) − i
�L

2
[〈h j |ẽ1〉〈ẽ1|�w〉 + 〈h j |h̃1〉〈h̃1|�w〉]

− i
�R

2
[〈h j |ẽN 〉〈ẽN |�w〉 + 〈h j |h̃N 〉〈h̃N |�w〉]

+ tLe−iEint 〈h j |ẽ1〉. (22)

In a more compact form, the result can be reexpressed as

i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u̇1

u̇2
...

u̇N

v̇1

v̇2
...

v̇N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (•) + (

P̂�P̂
)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2
...

uN

v1

v2
...

vN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ tLe−iEint P̂

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
...
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (23)

where we introduce the self-energy operator as

� = (−i�L/2) (|e1〉〈e1| + |h1〉〈h1|)
+ (−i�R/2) (|eN 〉〈eN | + |hN 〉〈hN |). (24)

Equation (23) describes the evolution dynamics of the
electron-hole excitations, in the presence of tunnel couplings
to the transport leads which lead to the self-energy term, i.e.,
the second term on the right-hand side of Eq. (23) together
with Eq. (24). The third term on the right-hand side of Eq. (23)
is resulted from the tunnel coupling which injects the initial
electron into the quantum wire. For both of the two terms,
only the real (positive-energy) Bogoliubov quasiparticle states
participate in the tunneling process, as imposed by the pro-
jection operator. Again, we emphasize that the projection
eliminates the redundancy (double use) of the negative-energy
eigenstates to be involved in the tunneling process. Physi-
cally speaking, the negative-energy eigenstate simply means
the consequence of annihilating an existing positive-energy
quasiparticle via, for instance, the usual tunneling or the more
dramatic Andreev process. These two processes, by using only
the positive-energy eigenstates, have been already accounted
for in the treatment of the tunnel couplings, i.e., in Eq. (19).
However, we may notice that Eq. (23) does not exclude any
possible presence of the negative-energy eigenstates during
the inside electron-hole excitation dynamics in the quantum
wire.

It is clear that, based on the time-dependent state |�w(t )〉
given by Eq. (23), one can straightforwardly compute the
various current components by finding first the projected
occupation probabilities of the terminal sites of the quantum
wire (for both the electron and hole components), then multi-
plying the tunnel-coupling rates, which yields

iLR = e�R |〈eN |P̂|�w〉|2,
iA = e�L |〈h1|P̂|�w〉|2,

iCA = e�R |〈hN |P̂|�w〉|2, (25)

where e is the electron charge. These are the single-incident-
electron (initially in |el̄〉) contributed current components
associated with, respectively, the normal electron transmission
from the left to right leads, the local Andreev reflection at the
left side, and the cross Andreev reflection process.

C. Connection with other approaches

To express the results in a more general form, let us denote
the incident channel by α, the outgoing channel by β, and
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the associated current by iαβ . The “total” current associated
with the (α, β ) channels from the incident electrons within the
unit energy interval around E is simply given by ρα (E )iαβ (E ),
with ρα (E ) the density of states at the incident energy. In
long-time limit (stationary limit), comparing this result with
the current derived from the nonequilibrium Green’s function
(nGF) technique [55,56], we can establish the following con-
nection between the two approaches:

ρα (E ) iαβ (E ) = e

h
Tαβ (E ). (26)

In this expression, h is the Planck constant and Tαβ (E ) is the
transmission coefficient from the channel α to β at the energy
E , which can be used to compute the linear response or dif-
ferential conductance by means of the well-known Landauer-
Büttiker formula as Gαβ = (e2/h)Tαβ . In this context, we
like to mention that for the two-electron Andreev reflections,
the respective conductance is related to the hole-reflection
coefficient as GA = (2e2/h)TA. Within the nGF formalism,
the transmission coefficient is given by [55,56]

Tαβ (E ) = Tr(�αGr�βGa), (27)

where Gr(a) is the retarded (advanced) Green’s function of
the transport central system, which includes the self-energies
from the transport leads. Notice that, even within the nGF
formalism, this result is valid only for transport through non-
interacting systems. Another connection is that this formula
corresponds to the S-matrix scattering approach [27,29,30,57]
after summing all the final states of the scattering probability
under the restriction of energy conservation, and for all the
initial states at the energy E .

Applying the formula (27) to transport through a super-
conductor, straightforwardly, we can obtain the coefficients of
the electron transmission (from left to right leads), the local
Andreev reflection (in the left lead), and the cross Andreev
reflection, respectively, as [62–64]

TLR(E ) = Tr
(
�e

LGr
ee�

e
RGa

ee

)
,

TA(E ) = Tr
(
�e

LGr
eh�

h
LGa

he

)
,

TCA(E ) = Tr
(
�e

LGr
eh�

h
RGa

he

)
. (28)

Here, we have added explicitly the superscripts “e” (for
electrons) and “h” (for holes) to the tunnel-coupling rates �L

and �R. We have also expressed the Green’s functions in an
explicit form of matrix sector in the Nambu representation
between the electron/hole states.

The above results of Eqs. (26)–(28) establish a connection
at steady-state transport limit between the SPWF and nGF
approaches, based on the standard BdG treatment without pro-
jection onto the space of positive-energy Bogoliubov quasi-
particle states. In order to account for the modified treatment
with projection, as a long-time stationary limit of Eq. (25),
we only need to modify the Green’s functions in Eq. (28)
as G̃r(a) = P̂Gr(a)P̂, together with the modified self-energies
�̃r(a) = P̂�r(a)P̂, as similarly done in Eq. (23) with the result
of Eq. (24).

D. Results and discussions

Indeed, the SPWF approach has the particular advantage to
address time-dependent transports. However, in this work we
restrict our interest to stationary results of the transport.

Before displaying our numerical results, we first quote the
analytical results based on the low-energy effective model and
the S-matrix scattering approach [27,29,30,44,57]. Using the
results derived in Ref. [29], we obtain the local Andreev re-
flection, the cross Andreev reflection, and the normal electron
transmission coefficients (TA, TCA, and TLR), respectively,
as

TA(E ) = �2
L

(
E2 + �2

R

)
/|Z|2,

TCA(E ) = TLR(E ) = ε2
M�L�R/|Z|2, (29)

where Z = ε2
M − (E + i�L )(E + i�R). The same results can

be obtained as well using Eq. (28), more straightforwardly.
In particular, under the limits of εM → 0 and E → 0, we

have TA → 1, being free from the coupling strength. We no-
tice that in Ref. [30], this type of full Andreev reflection (with
unity coefficient) has been highlighted in terms of Majorana-
fermion-induced resonant Andreev reflection. However, in
Ref. [30], the local Andreev reflection is considered for the
setup where only one bound state of the Majorana pair is
coupled to the probe lead, while the other bound state is
suspending (without coupling to any probe lead). This con-
sideration corresponds to the setup of the standard two-probe
tunneling spectroscopy experiment, which probes the local
Andreev reflection taking place at the interface between a
normal metal and grounded superconductor. Actually, the
resonant Andreev reflection with TA → 1 will result in the
quantized zero-bias differential conductance G = 2e2

h TA →
2e2/h. In this context, we may mention that for the local
Andreev state or the so-called quasi-Majorana states [44], one
more Majorana state coupled to the same lead will result in
the conductance G → 4e2/h, under certain parameter condi-
tions. The quantized conductance 2e2/h has been extensively
analyzed [37,44,65–67] and was regarded as an important
signature of Majorana states [16].

For the setup we consider here, both sides of the Majo-
rana wire are coupled to probing leads. The fully “resonant”
Andreev reflection on the left side obtained also in this setup
implies that the electron-hole excitation at the left side does
not propagate to the other side since no coupling effect of
the other side is sensed in the probe of the local Andreev
reflection. Based on Eq. (29), we observe another remarkable
feature, say, under the limit εM → 0, TCA = TLR → 0. This
type of vanishing cross Andreev reflection and normal elec-
tron transmission indicates also that the electron-hole excita-
tions cannot propagate from one side to the other through the
Majorana quantum wire.

Indeed, all the above features (from the low-energy ef-
fective model) are recovered in Fig. 4(a), by simulating the
electron and hole dynamics based on the Kitaev lattice model
using both the SPWF and nGF approaches, by setting P̂ = 1
which corresponds to the conventional BdG treatment. How-
ever, the results of the vanishing cross Andreev reflection
and normal electron transmission shown in Fig. 4(a) are not
consistent with the electron transfer dynamics revealed from
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FIG. 4. Kitaev’s lattice model based simulation for coefficients
of transmission from the left to right leads (TLR), local Andreev re-
flection on the left side (TA), and cross Andreev reflection (TCA). Full
agreement is achieved between the single-electron wave-function
method (stationary limit) and the nonequilibrium Green’s function
approach, as shown by the corresponding curves and dots. (a) Results
based on simulation using the standard method of BdG equation with
both the positive- and negative-energy eigenstates participating in
the dynamics. Parameters: μ = 0, � = 0.5, t = 1.0, and the tunnel-
coupling rates �L = �R = � = 0.05. (b) Results from similar simu-
lation as for (a), except keeping only the positive-energy eigenstates
by performing the projection as explained in the main text.

the simple dot-wire-dot system analyzed in Refs. [47,48],
where the electron and hole excitations in the wire (described
by the occupied state |n f = 1〉) do correlate the two quantum
dots and can result in electron transfer and cross Andreev
process between them.

In Fig. 4(b) we show the consistent results from new
simulations, based on the same Kitaev lattice model and using
both the SPWF and nGF approaches. In the new simulations,
from the lesson learned earlier in the dot-wire-dot setup, we
allow only coupling the electron and hole states of the leads to
the positive-energy Bogoliubov quasiparticles in the wire, i.e.,
properly accounting for the projection of the wire states. Re-
markably, we find essential differences, compared to Fig. 4(a).
(i) The transmission and cross Andreev reflection coefficients
are now nonzero in the limit εM → 0. The basic reason is
that in the projected Hilbert subspace (after the action of the
projector P̂), no “cancellation” of the electron-hole excitations
occurs on the right side of the quantum wire, which yet would
happen if including both the positive and negative zero-energy
eigenstates in the naive treatment. The results in Fig. 4(b) are
now in agreement with the teleportation picture revealed in
Refs. [47,48]. (ii) For the local Andreev reflection (on the left
side), we find that the height of the reflection peak becomes 1

4 ,
rather than 1 as observed in Fig. 4(a). We may understand this
from the simplified low-energy effective model of the single
MZMs coupled to two probe leads. Applying Eq. (28), we
have

TA(E ) = �2
L/|E − εM − i(�L + �R)|2. (30)

Under the symmetric coupling to both leads (�L = �R), we
find TA(E ) → 1

4 when E → εM , being also independent of the
coupling strength. However, if �L 
= �R, the result is no longer
independent of the coupling strengths. We have examined this
point as well by simulating the Kitaev lattice model.

As an extending discussion, let us consider to switch off
the coupling to the right lead, say, to set �R = 0. We thus
return to the situation considered in Ref. [30]. From Eq. (30),
as in Ref. [30], we also conclude that the resonant Andreev
reflection coefficient is 1 and is independent of the coupling
strength. Again, this single-lead coupling corresponds to the
standard tunneling spectroscopy experiments of detecting the
Majorana zero modes [8–16], and the coupling-strength-free
resonant Andreev reflection will result in the Majorana quan-
tized conductance 2e2/h. However, the result will dramati-
cally change if we consider a two-lead coupling device. More
specifically, following Ref. [29], let us consider the two leads
are equally voltage biased (with respect to the grounded super-
conductor), and for simplicity assume a symmetric coupling
to the two leads. Then, based on the result of Fig. 4(b),
we obtain GA = ( 2e2

h )( 1
4 ) = e2/(2h), by accounting for the

contribution of the local Andreev reflection. Moreover, for the
equally biased two-lead setup, the crossed Andreev reflection
(which exists even at the limit εM → 0) will contribute a
conductance of GCA = ( e2

h )( 1
4 + 1

4 ) = e2/(2h). Therefore, the
total zero-bias peak of the conductance probed at the left lead
is a sum of the two results above, i.e., G = GA + GCA = e2/h,
which is a half of the popular value of the Majorana con-
ductance (2e2/h). From the understanding based on Fig. 4(b)
and Eq. (30), we know that this result manifests the nonlocal
nature of the MZMs, which allows both the crossed Andreev
reflection (even at εM → 0) and the “backward propagation”
(to the left side) of the self-energy effect owing to coupling to
the right lead.

In the above analysis, we only considered the ideal case
of εM → 0, which is most dramatic for the issue of Majorana
nonlocality. If εM 
= 0, the insight gained from Eq. (30) in-
dicates that the transmission peak under the resonant condi-
tion E → εM 
= 0 is the same as E → εM = 0. This simply
implies the same differential conductance at the bias voltage
eV = εM 
= 0 as the zero-bias peak for εM = 0. However, if
we consider only the zero-bias case, which means E → 0
(but εM 
= 0), we know from Eq. (30) that the transmission
coefficient is lower than 1

4 (for the symmetric coupling �L =
�R), which would result in a smaller zero-bias conductance.
Also, for the dot-wire-dot setup considered in Sec. II, if εM 
=
0 but ε1 = ε2 = εM , the result of the resonant teleportation
transfer is the same as that from ε1 = ε2 = εM = 0.

However, as emphasized through the whole work, if in-
serting the usual BdG treatment into the dynamics of the
charge transfer between the quantum dots or transmission
between two transport leads, the vanishing energy εM = 0
will vanish the charge transfer/transmission. For εM 
= 0,
only the Rabi-transition-type mechanism will result in a state
transfer between the MBSs (a picture in the state basis of
|γ1〉 and |γ2〉), with the Rabi frequency given by the overlap
energy εM . Nevertheless, this mechanism is fully different
from the transmission through the single Majorana energy
level.
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IV. SUMMARY

We have revisited the teleportation-channel-mediated
charge transfer and transport problems, essentially rooted in
the nonlocal nature of the MZMs. We considered two setups:
the first one is a toy configuration, say, a “quantum dot–
Majorana wire–quantum dot” system, while the second one
is a more realistic transport setup which is quite relevant to
the tunneling spectroscopy experiments. Through a simple
analysis for the teleportation issue in the first setup, we
revealed a clear inconsistency between the conventional BdG
equation based treatment and the method within the second

quantization framework (using the regular fermion-number
states of occupation). We proposed a solving method to
eliminate the discrepancy and further considered the trans-
port setup, by inserting the same spirit of treatment. In this
latter context, we developed a single-particle wave-function
approach to quantum transports, which renders both the con-
ventional quantum scattering theory and the steady-state nGF
formalism as its stationary limit. We analyzed the tunneling
conductance spectroscopy for the Majorana two-lead coupling
setup, with comprehensive discussions and a new prediction
for possible demonstration by experiments.
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