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Application to graphene nanoribbons
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We develop a general theoretical framework based on Z classification to count the number of topological
bound states at a junction of chiral-symmetric one-dimensional systems. The formulation applies to general
multiway junctions composed of an arbitrary number of channels and an arbitrary joint structure. By using
the formula, we calculate the zero-energy bound states in various types of two-way and three-way junctions
of semiconducting graphene nanoribbons. We then consider periodic two-dimensional networks of graphene
nanoribbons and show that the topological junction states form isolated energy bands inside the bulk energy
gap, which can be viewed as a two-dimensional crystal of the effective atoms. Depending on the Z number of
a single junction, we have a different set of effective atomic orbitals, resulting in various types of nanoscale
metamaterials, which are often accompanied by flat bands. The system would provide an ideal platform for
quantum simulator to emulate a strongly-interacting fermion system on various types of lattices.
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I. INTRODUCTION

The topological characterization is now recognized as a
fundamental tool to understand electronic properties of ma-
terials. One of the most striking effects caused by nontrivial
topology is the emergence of surface states at the boundary
between topologically distinct materials [1–3]. When different
topological materials are periodically arranged in a superlat-
tice, a serial connection of mutually coupled interface states
often gives rise to novel quantum phases [4–8], providing a
powerful approach to the topological band engineering.

Recently, graphene nanoribbons (GNRs) [9–14] have
drawn attention as one-dimensional (1D) topological materi-
als. It was shown that the armchair-edged GNR is character-
ized by Z2 invariant, and the topological bound states exist at
the interface of GNRs belonging to different classes [15,16].
The argument was extended to the chiral symmetric materials
with Z classification [17]. It was also proposed that a 1D
superlattice of GNR junction states forms an interacting spin
chain, which would offer an ideal platform to study quantum
spin effects in 1D [15,17]. Experimentally, a recent develop-
ment of nanofabrication techniques [18–30] realized precise
control of the atomic structure of GNR. The topological bound
states were actually observed in 1D periodically modulated
GNRs [31,32].

In this paper, we expand the idea of topological engineer-
ing in GNR to a broader class of structures including two-
dimensional (2D) networks. We develop a general theoretical
framework to estimate the number of topological bound states
at a junction of chiral-symmetric systems. In addition to the
direct connection of two GNRs considered in the previous
works [15–17] [e.g., Fig. 1(a)], the formulation applies to a
junction with an intermediate section [Fig. 1(b)] and even
to multiway junctions composed of three or more GNRs

[Fig. 1(c)]. The argument is based on the Z classification
under the chiral symmetry (an approximate symmetry of
graphene), and it can be applied to any chiral-symmetric
systems.

By using the formula, we design 2D crystals of topological
bound states from armchair GNR networks as in Fig. 1(d).
We show that the topological states sitting on junctions form
a cluster of energy bands near the charge neutral point, which
are very well approximated by an ideal nearest-neighbor tight-
binding model of the effective atoms. Depending on the Z
number of a single junction, we have a different set of effec-
tive atomic orbitals, resulting in different types of effective
lattice models, which are often accompanied by flat bands
with exponentially small band widths. The zero-energy band
cluster is robust against the perturbation since they are well
separated from the bulk states by the semiconducting energy
gap of armchair GNRs. The on-site Coulomb interaction in
the topological bound state is typically much greater than
the band width, suggesting that the system would provide an
ideal platform for quantum simulator to emulate a strongly-
interacting fermion system on various types of lattices. The
existence of the isolated topological bands inside the bulk en-
ergy gap is a major characteristic that distinguishes our GNR
networks from the previously studied graphene superlattices
with nanoscale holes [33–48]. Recently, an isolated narrow
band was predicted in a phenalenyl-phenyl honeycomb net-
work [49], which is a type of hydrocarbon network system
[49–52], and it is interpreted as a topologically-nontrivial case
in our approach.

The paper is organized as follows. In Sec. II, we introduce
the general argument to count the topological junction states
in chiral symmetric systems. In Sec. III, we apply the theory to
various two-way and three-way junctions of armchair GNRs.
In Sec. IV, we consider 2D honeycomb networks of GNRs
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FIG. 1. Examples of chiral symmetric junctions to which the
developed theory is applicable. (a) Two-way junction from a direct
connection of two GNRs. (b) Two-way junction of two GNRs with
an intermediate section. (c) Three-way junction. (d) GNR network as
a 2D crystal of topological junction states.

and study the energy band of the topological bound states
and its effective lattice model. The brief conclusion is given
in Sec. VI.

II. GENERAL THEORY FOR TOPOLOGICAL
BOUND STATES

We introduce a method to calculate the number of the
topological bound states in a junction of chiral-symmetric 1D
crystal. Let us consider a 1D periodic lattice with the chiral
symmetry as shown in Fig. 2, where the unit cell contains N
sites of the A sublattice (A1, A2, · · · , AN ) and N sites of the B
sublattice (B1, B2, · · · , BN ). The chiral symmetry (sublattice
symmetry) allows the couplings only between the A sublattice
and the B sublattice but not between A and A or B and B. The
Hamiltonian is then written as

H =
∞∑

m,l=−∞

N∑
i, j=1

(
T (l )

i j a(m+l )†
i b(m)

j + H.c.
)
, (1)

FIG. 2. 1D periodic lattice with the chiral symmetry. A unit
cell contains N sites of the A sublattice (open circles; N = 2 in
this figure), and N sites of the B sublattice (filled circles), and the
coupling occurs only between the A sublattice and the B sublattice.
In the figure, only the intracell hopping T (0) and the nearest neighbor
coupling T (±1) are shown.

where a(m)†
i and b(m)†

i (i = 1, 2, . . . , N ) are the creation oper-
ators for an electron at Ai and Bi in mth unit cell, respectively.
The T (l ) is the N × N matrix to describe the hopping from
the B sublattice in mth cell to the A sublattice in (m + l )th
cell. We assume that T (l ) exponentially decays in increasing
|l|, as naturally expected in real systems. In Fig. 3, only the
nearest neighbor couplings T (±1) are shown for the illustrative
purpose, while the following argument is also valid when the
further hoppings T (l ) (|l| � 2) exist. The simplest example
of Eq. (1) is the Su-Schrieffer-Heeger model [53,54], where
N = 1 and only T (0) and T (1) are nonzero.

The Hamiltonian Eq. (1) can be written in k-space repre-
sentation as

H =
∫ π

−π

dk�
†
k H (k)�k, (2)

FIG. 3. (a) (b) Modifying the unit cell by moving a B site to the
left. (c) Continuously reducing all the intercell couplings T (l �=0) to
zero.
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where

H (k) =
(

0 D(k)

D(k)† 0

)
, (3)

D(k) =
∞∑

l=−∞
e−ikl T (l ), (4)

and

�
†
k = 1√

2π

∞∑
m=−∞

eikm(a(m)†, b(m)†). (5)

The energy band is given by the eigenvalues of ±D(k)D(k)†.
If det D(k) �= 0 for any of k, we have a band gap at E = 0,

and then we can define the winding number by

W = 1

2π i

∫ π

−π

dk
d

dk
ln det D(k). (6)

The W is always an integer and it depends on the definition
of the unit cell; it can be changed one by one by transferring
a site from cell to cell, without changing the actual physical
system. For instance, let us consider a process to move Bj of
a certain j to the left neighboring cell, i.e., Bj of mth cell is
renumbered to Bj of (m − 1)th cell, as illustrated in Figs. 3(a)
and 3(b). Then the matrix D(k) changes to D′(k) where all the
elements in the jth column are multiplied by e−ik while all
the other elements remain unchanged. As a result, we have
det D′(k) = e−ik det D(k), and then the winding number W
changes to W ′ = W − 1 according to Eq. (6). If we move an
A site to the left instead, W changes to W ′ = W + 1.

By repeating the process, we can always take a certain unit
cell with W = 0, regardless of W in the initial Hamiltonian.
Under this choice of the unit cell, we can continuously kill all
the intercell matrices [T (l ) for l �= 0] without closing the gap
[Fig. 3(c)], because W remains 0 and there is no topological
phase transition during the process. Here note that W must
be zero when the intercell matrices are killed, because D(k)
does not depend on k, and then obviously W = 0 in Eq. (6).
To conclude, we can continuously change the original system
of Eq. (1) to an array of disconnected islands, without closing
the energy gap.

Now we introduce an edge to the system. The number
of the zero-energy edge states depends on how the system
is terminated. Here we define C as an initial choice of the
unit cell and cut the system at a boundary of C as illustrated
in Fig. 4(a). In a chiral-symmetric system, the existence of
the zero-energy edge states is precisely correlated with the
nonzero winding number [55]. Let W be the winding number
for the unit cell C. It is known that [56] the number of the edge
states at each end is equal to |W |, and when W > 0(<0), the
left and right edge states have wave amplitudes exclusively
on the B and A (A and B) sublattices, respectively [Fig. 4(c)].
Here the left and right edges are defined as the ends on the
negative and positive m sides, respectively.

This statement can be easily proved by using the continu-
ous deformation argued above. Let us consider the left edge of
a semi-infinite system with the unit cell C as in Fig. 4(a). As
argued, we can take a different unit cell C∗ which gives zero
winding number. If W is positive in the original unit cell C,

W = 1

W = 0

(a)

(b)

(c)

W > 0

W < 0

Left Right

FIG. 4. (a) Semi-infinite 1D system terminated at a left boundary
of the unit cell C. (b) The same system as (a), where the unit cell
is changed to C∗ with W = 0, and then the intercell coupling is
switched off. (c) Relationship between the winding number W and
the left and right edge states in a chiral-symmetric ribbon.

for instance, we move W sites of the B sublattice from right
to left to get C∗ [Fig. 4(b)]. In the terminated system, we are
left with an incomplete portion [triangular part in Fig. 4(b)]
sandwiched by the end of the system (red dashed line) and
the boundary of C∗ (blue dashed line). From the definition,
this end sector consists of W sites of the B sublattice, which
are exactly the sites transferred in changing the unit cell
from C to C∗. Now we continuously switch off the intercell
matrices between the boundaries of C∗ to make the end sector
an isolated island. Generally, a finite-sized system with the
chiral symmetry has |NA − NB| zero-energy modes, where NA

and NB are the number of sites of the A and B sublattices,
respectively [57]. These modes have the wave amplitudes on
the A(B) sublattice when NA − NB > 0 (<0). In the present
case, the end portion has NA = 0 and NB = W , and therefore
it gives W zero-energy modes on the B sublattice. When we
switch on the intercell matrices back to the original value,
the W zero-energy modes stay at the zero energy and remain
localized near the edge with an exponential decay into the
bulk. This is because the bulk Hamiltonian remains gapped in
this process (since the winding number does not change), so
the amplitude of the zero-energy mode must vanish far away
from the edge. For W < 0, we move A sites instead of B to
find |W | zero-energy edge modes on the A sublattice. The
A and B sublattices are just interchanged for the right edge.
It is concisely summarized as the following statement: The
sublattice difference �N = NA − NB is given by ∓W for the
left and right edges, respectively.
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FIG. 5. (a) Example of a semi-infinite system with irregular
terminal structure. We can count the number of zero-energy edge
states by changing the unit cell such that W = 0 and count the
sublattice difference �N = NA − NB in the remaining end portion
(green dashed line). (b) A junction of two or more semi-infinite
ribbons. The total number of zero-energy states localized at the
junction is given by the summation of the end states of the ribbon
and the sublattice difference in the central part.

The argument also applies to a system having an irregular
terminal structure as in Fig. 5(a), which cannot be regarded
as a part of the periodic structure. In this case, we separate
the system into the periodic semi-infinite part (gray) and the
irregular terminal part (yellow). For the periodic part, we
perform the operation described above—change the unit cell
such that W = 0. As argued, the sublattice difference in the
incomplete left end portion (gray triangles) is given by �N =
−W , where W is the winding number of the original unit cell.
For the terminal part (yellow trapezoid), we find �Nterm by
just counting the number of A sites and B sites of the island.
Now by switching off the intercell coupling in the periodic
part, we have a combined terminal island (green dashed line)
with the sublattice difference �Ntot = �N + �Nterm. The to-
tal number of the zero-energy edge modes is given by �Ntot ,
where the sign represents the sublattice A and B.

We can also consider the junction of two or more semi-
infinite ribbons as illustrated in Fig. 5(b). Again, we sepa-
rate the system into the periodic semi-infinite ribbons (i =
1, 2, . . .) and the central junction part. Then find �Ni for the
end of the ribbon i from its winding number and also �Ncenter

for the central part. Finally, the number of the zero-energy
edge modes localized at the junction is given by �Ntot =
�Ncenter + ∑

i �Ni.

FIG. 6. Atomic structure of the armchair GNR. A unit cell
(dashed square) consists of M atoms of the A sublattice (open
circles), M atoms of the B sublattice (solid circles).

III. GRAPHENE NANORIBBON JUNCTIONS

We consider the zero-energy bound states of various GNR
junctions using the argument in the previous section. For the
ribbon part, we take armchair GNRs to avoid a complication
arising from the zigzag edge states at the sides of the ribbon
[10]. We define the atomic structure of the armchair GNR as in
Fig. 6, where a unit cell (dashed square) consists of M atoms
of the A sublattice (open circles), M atoms of the B sublattice
(solid circles). For the electronic Hamiltonian, we consider
a single pz orbital tight-binding model on honeycomb lattice
with only the nearest neighbor hopping between A site and
B site, to make the system chiral symmetric. We can show
that the band structure of an infinite ribbon is semiconducting
when M = 6k − 2, 6k, 6k + 1, 6k + 3 (k: integer), where the
winding number is given by W = −k. We exclude the metallic
cases, M = 6k − 1, 6k + 2.

A. Two-ribbon junctions

First, we consider a direct connection of M = 7 ribbon
and M = 13 ribbon as in Fig. 7(a). Similar situations were
also considered in the previous works [15–17]. The winding
numbers of M = 7 and 13 are given by W = −1 and −2,
respectively. According to the argument above, the left edge of
the M = 7 ribbon has �N = 1, and the right edge of the M =
13 ribbon has �N ′ = −2. When connecting the two ends,
the total sublattice difference becomes �Ntot = �N + �N ′ =
−1, i.e., we have a single zero-energy localized mode on the
B sublattice.

We can also consider a junction as shown in Fig. 7(b),
which consists of the same ribbons but with an extra in-
termediate section. In this example, the middle part has 15
and 12 sites in the A and B sublattices, respectively, giving
�Ncenter = 3. The total sublattice difference becomes �Ntot =
�N + �N ′ + �Ncenter = 2, so that we have two zero-energy
modes on the A sublattice. In Fig. 7, the lower figures of each
panel show the actual zero-energy wave functions for the two
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FIG. 7. (a) Direct connection of M = 7 ribbon and M = 13
ribbon and (b) a junction of the same ribbons with an extra middle
section. The lower figures of each panel plot all the zero-energy wave
functions of the system, where the area of the circle represents the
squared wave amplitude, and red and cyan correspond to positive
and negative sign.

cases. There are |�Ntot| zero-energy modes as expected, and
the wave functions reside on the A(B) sublattice when �Ntot is
positive (negative). In the practical calculation, we truncated
the ribbons far way (at 15 unit cells from the joint part) with
armchair edges not to have zigzag edge modes.

B. Three-ribbon junctions

Now let us consider triple junctions as illustrated in Fig. 8.
Here we connect three semi-infinite M = 7 ribbons to the
central section with various different structures, which are
indicated by blue hexagons in the leftmost panels. The shaded
parallelograms in the central section represent the region
where the numbers of A and B sites are equal, so that �Ncenter

can be found from the numbers of sites in the remaining

triangular part at the center. Noting the end of each M = 7
ribbon gives �N = 1, the total sublattice difference of the
junction is �Ntot = �Ncenter + 3. From Figs. 8(a) to 8(f), the
central part is enlarged such that �Ncenter increases from −2
to 3, so �Ntot increases from 1 to 6.

Since the three-ribbon junctions considered here have C3

(120◦) rotational symmetry, the zero-energy modes can be
classified by the eigenvalues of C3 = 1, ω, ω∗, where ω =
exp(2π i/3). Such a consideration will be useful to consider
the band structure of junction networks in the next section.
The sublattice difference �Ntot can be divided into three
sectors as �N (C3=1),�N (C3=ω),�N (C3=ω∗ ), which are inde-
pendent topological invariants [58]. Table I shows �N (C3 ) as
a function of �Ntot . For �Ntot = 4, for instance, the numbers
(2, 1, 1) indicate that there are two zero-energy modes of C3 =
1, and a single zero-energy mode for each of C3 = ω,ω∗, all
in the A sublattice.

Table I can be obtained by the following symmetry ar-
gument without considering a specific lattice structure. In a
C3 symmetric lattice, any atomic site is either a member of
triplets (i.e., three sites located 120◦ apart) or the central site
at the rotation origin. If we let ψ1, ψ2, ψ3 be three carbon-pz

orbitals in a triplet (ordered in anticlockwise direction), then
ψ1 + ψ2 + ψ3, ψ1 + ω∗ψ2 + ωψ3 and ψ1 + ωψ2 + ω∗ψ3 are
eigenstates of 120◦ rotation with C3 = 1, ω, ω∗, respectively.
If there are nA and nB triplets in the A and B sublattices,
respectively, we have the sublattice difference of nA − nB in
each sector of C3 = 1, ω, ω∗. On top of that, the central site, if
any, always belongs to C3 = 1 as it is invariant in the rotation,
so that the C3 = 1 sector adds an extra sublattice difference
of 1,−1, and 0, when the rotational center is at A, B, and
void (the center of the hexagon), respectively. Therefore, the
total sublattice difference is �Ntot = 3(nA − nB) + 1, 3(nA −
nB) − 1 and 3(nA − nB), respectively. Table I is obtained by
replacing nA − nB with n.

The right figures in Fig. 8 plot the actual wave functions of
the zero-energy modes in each junction. We see that the set of
states obey the C3 classification in Table I. Generally, the zero-
energy junction modes are given by hybridization of the zero-
energy modes of the central island and the edge modes of the
ribbons. In the systems of �Ntot � 4, however, we can see that
some of the zero energy states are perfectly confined to the
central island with no penetration to the ribbons, as indicated
by “CL” (completely localized) in Fig. 8. The completely-
localized mode is a feature of the present nearest-neighbor
hopping model. It occurs when a zero-energy state of the
central island (before connected to the ribbons) is localized
to the A(B) sublattice while the outermost sites of the island
are the B(A) sublattice. It remains an exact eigenstate of the
Hamiltonian even when the outermost sites are connected to
the external sites, because the state has zero amplitudes for the
outermost sites.

IV. 2D NETWORK OF TOPOLOGICAL ZERO
MODES IN GNR

By arranging the chiral-symmetric junctions in a periodic
manner, we can have a 2D crystal of the topological bound
states. Here we consider the honeycomb lattice of armchair
GNRs by connecting the Y-shaped junctions argued in the
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FIG. 8. Three-way junctions with from �Ntot = 1 to 6. In the leftmost panel, a blue line defines the central section and three shaded
parallelograms inside represent the regions where the numbers of A and B sites are equal, so that �Ncenter can be found by counting the
numbers of sites in the unshaded triangular part at the center. The right figures plot all the zero-energy wave functions, where the area of the
circle represents the squared amplitude and the color indicates the complex phase shown in the top. “CL” represents the completely-localized
states (see the text).
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TABLE I. Distribution of the sublattice difference to three C3

sectors, as a function of �Ntot .

�Ntot 0 1 2 3 4 5 6 7 8 3n 3n ± 1

C3 = 1 0 1 0 1 2 1 2 3 2 n n ± 1
C3 = ω 0 0 1 1 1 2 2 2 3 n n
C3 = ω∗ 0 0 1 1 1 2 2 2 3 n n

previous sections. Figure 9(a) shows an example, where the
1-electron junctions of Fig. 8(a) are connected by M = 7
ribbons of 4 unit cell long. We define α and β as the sublattices
in the superstructure as in the figure. We also define L1

and L2 as the primitive lattice vectors of the supercell and
λl (l = 1, 2, 3) as vectors from the center of the hollow to
three inequivalent β sites. The corresponding Brillouin zone
is shown in Fig. 9(b).

We consider honeycomb GNR networks connected by the
1-electron to 6-electron junctions [Figs. 8(a) to 8(f)]. Here we
change only the junction parts (shaded triangles in Fig. 9),
while we fix the ribbon parts to the M = 7 ribbon of 4 unit cell
long. Note that the signs of �Ntot of junctions at α and β are
opposite, so that the sublattice difference is zero in the whole
system. Figure 10 shows the band structures from �Ntot = 1
to 6. We see that the topological bound states form a cluster
of energy bands inside the semiconducting energy gap of the
GNR. For the 1-electron case [Fig. 10(a)], we have energy
bands analog to graphene. This is because the only bound
state at a single junction belongs to C3 = 1, and it works

λλ1

λ2

λ3

L2

L1

β α

FIG. 9. (a) Example of 2D network of GNR, where the 1-electron
junctions of Fig. 8(a) are connected by M = 7 ribbons of 4 unit cell
long. (b) The corresponding Brillouin zone and symmetric points.

like a carbon pz orbital in graphene. Since the wave function
of a single junction is well localized as shown in Fig. 8(a),
the system is very well approximated by an effective tight
binding model with the nearest neighbor hopping t between
the topological bound states. The energy bands are then given
by E (k) = ±t |∑3

l=1 eik·λl |, where t ≈ 30 meV in Fig. 10(a).
For the 2-electron case [Fig. 10(b)], we have an “hour-

glass” band structure composed of graphenelike bands and a
pair of flat bands at the top and bottom. This is also modeled
by an effective tight-binding model based on the symmetry
analysis. According to Table I, we have two zero-energy
bound states of C3 = ω and ω∗, which are denoted as orbital 1
and 2. If we consider only the nearest neighbor hoppings, the
Schrödinger equation can be written as

E 
�β (r) =
3∑

l=1

ĥl 
�α (r + λl ), (7)

where

ĥ1 =
(

t −t ′

−t ′ t

)
, ĥ2 =

(
t −t ′ω∗

−t ′ω t

)
,

ĥ3 =
(

t −t ′ω
−t ′ω∗ t

)
. (8)

Here 
�X (r) = (�1
X (r), �2

X (r)) is the wave amplitude at or-
bital 1 and 2, respectively, at the position r of the sublattice
X (=α, β ), t is the hopping amplitude between the same
orbitals (1 and 1, or 2 and 2) and t ′ is that between different
orbitals (1 and 2). We can show that t and t ′ must be real due
to the time reversal symmetry and C2 symmetry with respect
to the center axis of the ribbon. The effective lattice model is
schematically illustrated in Fig. 11. The Bloch Hamiltonian in
the basis of (�1

α,�2
α,�1

β,�2
β ) is

H (k) =
(

0 h†(k)

h(k) 0

)
, h(k) =

3∑
l=1

ĥl eik·λl . (9)

Actually, t and t ′ are almost equal in the system, because
the hopping integral between the localized states is dominated
by wave overlap in the ribbon part, where the wave functions
of orbital 1 and 2 are identical except for the overall phase
factor. When t = t ′, the eigenenergies of Eq. (9) become

E (k) = ±3t, ±t

∣∣∣∣∣
3∑

l=1

eik·λl

∣∣∣∣∣, (10)

which are flat bands and graphenelike bands, respectively. We
have t ≈ t ′ ≈ 22 meV in Fig. 10(b).

The emergence of the flat bands is closely related to the
existence of a localized eigenstate analog to a ring state in
the kagome lattice [59]. In the present case, the eigen wave
function is given by six spinors on site 1 to 6 in Fig. 11,


�(1) =
(

1
1

)
, 
�(2) = ±

(
ω∗
ω

)
, 
�(3) =

(
ω
ω∗

)
,


�(4) = ±
(

1
1

)
, 
�(5) =

(
ω∗
ω

)
, 
�(6) = ±

(
ω
ω∗

)
,

(11)
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FIG. 10. Band structures of 2D GNR networks composed of the 1-electron to 6-electron junctions [Figs. 8(a) to 8(f)]. In panels of (a) 1-
electron and (b) 2-electron junctions, the left and right figures plot the same energy bands in wide and narrow energy regions. Orange numbers
in (d), (e), and (f) indicate the number of bands (per spin).

where ± correspond to the eigenenergy E = ±3t . This is
an eigenstate of the Hamiltonian with t = t ′, because the
six spinors vanish on the operation of the outgoing trans-
fer matrices, i.e., ĥ1 
�(1) = ĥ3 
�(2) = ĥ2 
�(3) = ĥ1 
�(4) =
ĥ3 
�(5) = ĥ2 
�(6) = 0, and therefore the state never spreads
out to the outer sites when the Hamiltonian is operated.

The energy band of the 3-electron network [Fig. 10(c)]
is composed of a pair of kagome-type three-band clusters in

FIG. 11. Schematic picture of the effective model for the 2-
electron lattice, Eq. (7). Numbered circles indicate the localized ring
state which is an eigenstate of the Hamiltonian (see the text).

upper and lower energies, which are also explained by a tight-
binding model. In this case, each junction accommodates a set
of zero-energy bound states of C3 = 1, ω and ω∗ according to
Table I. By taking an appropriate linear combination, those
three states can be rearranged to orbitals 1, 2, and 3, which
are related by 120◦ rotation as shown in Fig. 12(a). In a hon-
eycomb network, the tight-binding Schrödinger equation for
those three orbitals can be written in the form of Eq. (7), where

�X (r) = (�1

X (r), �2
X (r), �3

X (r)) (X = α, β ) is the wave am-
plitude at orbital 1, 2, and 3, respectively, and ĥl (l = 1, 2, 3)
are 3 × 3 hopping matrices,

ĥ1 =
⎛
⎝t s s

s 0 0
s 0 0

⎞
⎠, ĥ2 =

⎛
⎝0 s 0

s t s
0 s 0

⎞
⎠,

ĥ3 =
⎛
⎝0 0 s

0 0 s
s s t

⎞
⎠. (12)

Here t is the hopping parameter between the nearest neigh-
boring pair, and s is for the second nearest pair of orbitals, as
defined in Fig. 12(b). Other hopping parameters are tiny and
negligible. The effective lattice structure can be viewed as a
tight-binding realization of the Archimedean lattice (3, 122)
[60], while the nearest neighbor hopping among the orbital 1,
2, and 3 is absent in the present case. The Bloch Hamiltonian
is again written in the form of Eq. (9), and its eigenenergies
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FIG. 12. (a) Three orbitals at a 3-electron junction, obtained by
taking linear combinations of the C3 eigenstates in Fig. 8. (b) Corre-
sponding effective lattice model.

are given by

E (k) = ±(t − 2s), ±
[

t + s ± s

∣∣∣∣∣
3∑

l=1

eik·λl

∣∣∣∣∣
]
. (13)

The band structure in Fig. 10(c) is given by t ≈ 48 meV and
s ≈ 3.9 meV. The emergence of a pair of kagome bands can
be interpreted as follows. By considering only the strongest
coupling t , we have the bonding and antibonding states cen-
tered at the midpoint between neighboring junctions. Those
states are weakly coupled by s. Since the midpoints between
neighboring sites in the honeycomb lattice form a kagome
lattice, we have a pair of kagome bands from the bonding
states and the antibonding states.

The same argument applies to the case of four or more
electron junctions. For the 4-electron network [Fig. 10(d)],
a single junction has a triplet of zero-energy bound states of
C3 = 1, ω and ω∗, and also C3 = 1 completely-localized states
as argued. The triplet gives a pair of kagome lattices just as in
the 3-electron network, but here the parameter s happens to be
very small due to an accidental phase cancellation, resulting in
almost flat bands at ±t . The remaining C3 = 1 state generally
gives the graphenelike band as in the 1-electron network, but
in the present model, we have degenerate flat bands at E = 0.
This is because the corresponding zero-energy junction state
is a completely-localized state argued in the previous section,
so its hopping amplitude is exactly zero. The situation is
similar in the 5- and 6-electron networks [Figs. 10(e) and
10(f)], where a triplet forms a pair of kagome lattices, while
the rest of the completely-localized states gives a bunch of
zero-energy flat bands.

V. DISCUSSION

In realistic graphene samples, the chiral symmetry is bro-
ken by the additional effects neglected here, such as the
second nearest neighbor hopping (from A site to A site, B
site to B site, of the order of 0.1 eV [61]). The topological
junction states are influenced by those extra terms, but they
would survive around zero energy as long as these additional
terms are smaller than the semiconducting energy gap of
GNR (∼1 eV for the M = 7 ribbon). For the GNR networks
considered in Sec. IV, the effective nearest-neighbor tight-
binding model for the topological bound states is expected
to be valid even in the presence of the chiral-symmetry
breaking terms, because it is based on the C3 symmetry (the
real symmetry of the system) and also the vanishing of far
hopping parameters in the effective lattice is guaranteed by the
localizing feature of the topological bound states. Including
the additional effects neglected in the ideal model would shift
the existing parameters in the effective tight-binding model,
while they are not expected to change the model qualitatively.
It should be noted that the completely-localized state found in
Figs. 7(d) to 7(f) is a special feature of the nearest-neighbor
tight-binding models of graphene, so the resulting full-flat
zero-energy bands in Figs. 10(d) to 10(f) should have some
energy dispersion when the further hoppings are included
in graphene. The realistic band calculation using the density
functional approach is left for future research.

The existence of the isolated topological bands inside
the bulk energy gap is a major characteristic of our GNR
network systems, which are not seen in graphene superlat-
tices with nanoscale holes in the previous studies [33–47].
One exception is the phenalenyl-phenyl honeycomb network
proposed in a recent study [49], where an isolated narrow
band was predicted using the density functional band calcu-
lation. In our language, this is interpreted as a special case of
the topological-bound state crystal, where the central island
(phenalenyl) with �Ncenter = 1 and the M = 3 armchair rib-
bon (phenylene) with �N = 0 give the total topological num-
ber �Ntot = 1. Indeed, the predicted band structure exhibits a
graphenelike band near the zero energy [49], which is consis-
tent with our general argument. This example suggests that the
present theoretical framework based on the nearest-neighbor
tight-binding model is qualitatively valid in realistic systems.

The topological-state bands in the 2D GNR networks
are expected to be an ideal platform to emulate a strongly-
interacting fermion system on various type of lattices. Consid-
ering well-isolated energy bands and well-localized effective
orbitals, the electron-electron interaction in the topological-
state bands can be incorporated by the onsite Hubbard U in the
effective lattice model. In the junctions in Fig. 8, for example,
the spread of the wave function is about r ∼ 1 nm, where the
onsite Coulomb interaction becomes e2/(4πε0r) ∼ 1.4 eV.
On the other hand, the typical band width t is just 0.1 eV or
less, suggesting that the system is in the strong coupling limit
U/t � 1. It should also be noted that the effective hopping
t can be tuned by changing the ribbon length between the
junctions. Since the topological bound state exponentially
decays in space, the t exponentially decreases in longer
ribbons, pushing the system to even stronger coupling side,
and vice versa.
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In the literature, a number of theoretical studies have
been made on the Hubbard-type models on the honeycomb
lattice, where various types of exotic quantum phases were
proposed [62–66]. It was also predicted that the chiral d-wave
superconductivity emerges in the doped honeycomb lattice in
the limit of U/t � 1 [67,68], which is expected to be realized
in the current system of �Ntot = 1. The many body physics
in the “hour-glass” lattice (�Ntot = 2) and the kagome lattice
(�Ntot = 3) would also be intriguing problems, particularly in
relation to the flat band physics. Lastly, while we concentrated
on honeycomb GNR superlattices with varying the number
of electrons per junction, it would be interesting to consider
topological metamaterials on other types of networks, such as
triangular, square, kagome, and Archimedean lattices [60].

VI. CONCLUSION

We studied the topological bound states in general junc-
tion structures of chiral-symmetric systems. The general
formulation developed in this work allows us to estimate

the number of topological states in any multiway junctions
composed of an arbitrary number of channels. By using the
method, we calculate the zero-energy bound states in vari-
ous types of two-way and three-way junctions of graphene
nanoribbons. In the latter part, we calculated the energy bands
of 2D armchair GNR networks and demonstrated that the
topological junction states form ideal tight-binding bands
energetically isolated from the rest of the spectrum. The Z
number of a single junction determines the number of orbitals
in a single effective atom, and depending on it, we have
different types of nanoscale effective materials. We expect that
the system serves as a quantum simulator of the Hubbard-like
model in the strong coupling regime, and it would provide an
ideal platform to emulate interacting fermion systems.
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