
PHYSICAL REVIEW B 101, 205310 (2020)

Experimental measurements of effective mass in near-surface InAs quantum wells
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Near-surface indium arsenide quantum wells have recently attracted a great deal of interest since they can
be interfaced epitaxially with superconducting films and have proven to be a robust platform for exploring
mesoscopic and topological superconductivity. In this paper, we present magnetotransport properties of two-
dimensional electron gases confined to an indium arsenide quantum well near the surface. The electron mass
extracted from the envelope of the Shubnikov–de Haas oscillations shows an average effective mass m∗ = 0.04
at a low magnetic field. Complementary to our magnetotransport study, we employed cyclotron resonance
measurements and extracted the electron effective mass in the ultrahigh magnetic-field regime. Both regimes
can be understood by considering a model that includes nonparabolicity of the indium arsenide conduction
bands.
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I. INTRODUCTION

Wafer-scale methods for the epitaxial growth of thin films
of aluminum (Al) on indium arsenide (InAs) heterostruc-
tures have recently been developed which yield uniform and
atomically flat interfaces [1–4]. Josephson junctions fabri-
cated on these materials yield a gate-controllable supercurrent
with highly transparent contacts between the Al top layer
and an InAs quantum well (QW) directly below the surface
[5–9]. Tuning of the semiconductor properties will affect
supercurrent and other superconducting properties due to the
wave-function overlap at the epitaxial interface. Josephson
junctions made out of Al-InAs have been used for tunable
superconducting qubits, the so-called “gatemon” where the
Josephson energy can be tuned in situ with an applied electric
field [10,11]. Furthermore, since InAs has large spin-orbit
coupling, it can host topological superconductivity and Majo-
rana bound states [12–15]. The key feature in this structure is
that the two-dimensional electron gases (2DEG) is confined
near the surface, in close proximity to the superconductor.
Although the epitaxial interface creates high contact trans-
parency, it is expected that electron mobility of the 2DEG de-
teriorates due to increased rates of surface scattering as com-
pared to isolated 2DEGs buried beneath the surface [1,16,17].
The myriad of possible applications with this platform im-
plores a deeper study of the characteristics and material
properties for near-surface InAs quantum wells. In this paper,
the transport experiments investigate the isolated semiconduc-
tor with the superconducting layer removed, and the optical
measurements are conducted on the semiconductor samples
which did not have a superconducting layer to begin with.

Two important material parameters of a 2DEG are the ef-
fective mass m∗ and the effective g factor g∗. These parameters
dictate the response of a material to external electric and
magnetic fields. Their effect on device performance should
be accounted for in the design of mesoscopic devices and
realistic theoretical modeling. Both m∗ and g∗ have been
measured and calculated for bulk InAs [18] and for InAs
QWs [19,20]. It is of particular interest that confinement of
the electron wave function can strongly affect these values.
Confinement becomes relevant when the 2DEG is placed near
the surface as is required for epitaxial contacts. In addition,
narrow gap semiconductors can lead to strong nonparabolicity
of the bands modifying m∗ and g∗. However, to date, very few
experimental studies have been performed to quantify the m∗
and g∗ in near-surface InAs QWs. Here, we report on these
properties using Shubnikov–de Haas (SdH) oscillations and
cyclotron resonance (CR) technique.

II. SAMPLE GROWTH AND PREPARATION

The samples were grown on a semi-insulating InP (100)
substrate using a modified Gen II molecular beam epitaxy
system. The InxAl1−xAs buffer is grown at low temperatures
to help mitigate formation of dislocations originating from
the lattice mismatch between the InP substrate and the higher
levels of the heterostructure [21–23]. The indium content of
InxAl1−xAs is step graded from x = 0.52 to 0.81. Next, a
δ-doped Si layer of ∼7.5 × 1011-cm−2 density is placed here
followed by 6 nm of In.81Al.19As. The quantum well is grown
next, consisting of a 4-nm-thick layer of an In0.81Ga0.19As
layer, a 4-nm-thick layer of InAs, and finally a 10-nm-thick
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top layer of In0.81Ga0.19As. A thin film of Al can be epitaxially
grown on the final InGaAs layer. For the transport studies of
the InAs quantum wells, Al films were selectively etched by
Transene type-D solution, whereas, for optical studies, Al was
not grown from the beginning.

III. DEVICE FABRICATION AND MEASUREMENT SETUP

The samples used for our transport measurements were
patterned using photolithography. The pattern used was an
L-shaped Hall bar geometry allowing simultaneous measure-
ment of longitudinal resistances (Rxx and Ryy) and transverse
resistance (Rxy). Chemical wet etching was performed after
lithographic patterning leaving a 900-nm-tall mesa. A 50-
nm-thick aluminum oxide (Al2O3) gate dielectric was then
deposited on top of the Hall bar via atomic layer deposition.
Gate electrodes were realized by subsequent deposition of
5 nm of titanium and 70 nm of gold. All measurements were
performed inside a cryogen-free refrigerator with base tem-
perature of 1.5 K with maximum magnetic field of 12 T. Car-
rier densities are determined based on the slope of Hall data.

IV. MEASUREMENT RESULTS

A. Magnetotransport Measurements

Figure 1(a) shows the color-scale plot of longitudinal
magnetotransport Rxx as a function of top gate voltage VG.
The Landau-level fan diagram is evident from the plot with
crossings observed at near n = 1.3 × 1012 cm−2 and 8 T
and another near n = 2.2 × 1012 cm−2 and 12 T. At lowest
densities, we only observe well-developed integer quantum
Hall states up to n = 1.3 × 1012 cm−2 (VG < −3 V). The first
Landau-level crossing appears near VG ∼ −3 V where it sig-
nals occupation of the second electric subband. This is most
evident as ν = 6 stays the same before and after the crossing
in Fig. 1(a). Similar Landau-level crossings have been studied

extensively in GaAs 2DEGs [24–27]. Three magnetotrans-
port traces are shown in Figs. 1(b)–1(d). Longitudinal and
Hall resistances as functions of magnetic field are plotted
for n = 2.2, 1.3, and 0.68 × 1012 cm−2. The beating in SdH
oscillations clearly suggest occupation of two subbands at
n = 2.2 × 1012 cm−2 where below the crossing clear quantum
Hall states develop with vanishing longitudinal resistance at
n = 0.68 × 1012 cm−2.

In a noninteracting quantum Hall system, the Landau-
level spacing increases with magnetic field as h̄ωc with ωc =
eB/(m∗me), where B is the magnetic field, and me is the
bare electron mass. Hence, measurements of energy gaps
of integer quantum Hall states should be related to electron
mass. Figure 2(a) shows the temperature dependence of lon-
gitudinal resistance as a function of gate voltage near the
filling factor ν = 2 and at the magnetic-field B = 9.5 T. The
natural logarithm of the minimum in resistance in a system
with parabolic bands has a linear dependence on inverse
temperature as shown in Fig. 2(b) [28,29]. The energy gap
is directly proportional to the magnitude of the slope. We
repeated these measurements as we varied the density and,
hence, the position of ν = 2 in the magnetic field. The results
are shown in Fig. 2(c) where extracted energy gaps are plotted
as a function of magnetic field. For comparison, we also
plot the energy gap expected from h̄ωc as a black dashed
line. There is a large discrepancy between the measured and
the expected energy gap. If we allow electron mass to be
a fitting parameter, we obtain unrealistically high values of
m∗ > 0.2 for electrons. We have also studied the energy gaps
of filling factors ν = 3, 4, 6, 8, and 10. Figure 2(d) shows
the energy gaps are between 0 and 10 K. All these values
are much smaller than their corresponding h̄ωc. The energy
gaps for each filling factor first increase with magnetic field,
then decrease, and eventually disappear near the Landau-level
crossings. For odd integer quantum Hall states, the Landau
levels are split by the Zeeman energy g∗μB. Our data indicate
that odd integers are mainly absent and only begin to develop

(a) (b) (e)

(c)

(d)

FIG. 1. (a) Measured longitudinal resistance Rxx vs magnetic field over a range of densities from 3.9 × 1011 to 3.1 × 1012 cm−2. The dashed
lines indicate the traces that are shown in (b)–(d). Integer quantum Hall states are labeled from complementary Rxy data. (b)–(d) Longitudinal
Rxx and transverse Rxy magnetotransport data at particular densities. The various integer quantum Hall states are labeled. The left axis (blue
trace) shows the longitudinal resistance Rxx , and the right axis (red trace) shows the transverse resistance Rxy.
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(a) (b)

(d)

(c)

FIG. 2. (a) Lifting of ν = 2 integer quantum Hall state longitudinal resistance as a function of gate voltage (density) at various temperatures
between 1.5 and 12 K. (b) The natural logarithm of the minima in longitudinal resistance traces shown in (a). The higher-temperature range
data are linearly fitted, and the gap is extracted from the slope. (c) The gap energy shown on a logarithmic scale. The ν = 2 gap is plotted for
various magnetic fields. This scale is used to highlight the large difference in the expected range for the gap versus the measured gap. (d) The
gap energy shown for various quantum Hall states ν = 2, 3, 4, 6, 8, 10. The gaps are extracted in the manner exemplified in (a) and (b). These
gap energies when fit to the usual linear field dependance yield values for m∗ ∼ 0.2–2.1 which are, at least, one order of magnitude higher than
electron effective masses in general and Landau-level broadening of 10 K or less which does not represent the strong disorder expected from
a two-dimensional electron gas near the surface.

at higher magnetic field (ν = 3 near 12 T) as shown in
Fig. 1(a). Given the bulk g factor in InAs (g = −14), the odd
integers should have large enough energy gaps to be clearly
observed. Their very weak presence is due to either modified
g∗ or Landau-level broadening due to disorder. To address
this and the discrepancy of energy scales for gaps in even
integer quantum Hall states, we next measure the temperature
dependence of the low magnetic-field SdH oscillations where
only free electrons contribute to the transport.

The SdH oscillation amplitude can be isolated by sub-
tracting the background trend of the longitudinal resistance
Rxx. Figure 3(a) displays the amplitude of SdH, ASdH for a
carrier density of n = 1.22 × 1012 cm−2. Taking the points for
a single minimum or maximum, normalized by our lowest-
temperature value, we can fit them to the formula x/sinh(x)
with x = 2π2T/�E , where T is the temperature and �E
is the gap. This allows us to calculate m∗ = h̄eB/(me�E ).
Figure 3(b) shows the data and fit for the oscillation near B =
4.2 T from Fig. 3(a). We have repeated these measurements
for various filling factors to extract m∗ as shown in Fig. 3(c).
The experimental values range between 0.035 and 0.05 with
an average value near m∗ = 0.04. This is slightly higher than
bulk values of our quantum well consisting of InAs and
In0.81Ga0.19As with m∗ = 0.023 and 0.03, respectively. From
the exponential envelope of the SdH oscillations, we can also
obtain the quantum lifetime and calculate the Landau-level
broadening � = h̄/τq. Figure 3(d) shows � for carrier density
n = 1.22 × 1012 cm−2. The Landau-level broadening range is
close to 180 K for n = 1.22 × 1012 cm−2. The broadening

in the near-surface InAs 2DEG is significantly larger than
in buried InAs 2DEGs, where � is measured to be 5 K
[23]. Here, the surface scattering clearly dominates the other
scattering mechanisms [1]. Thankfully, the smaller electron
mass in InAs enhances the energy scales and, therefore,
enables us to resolve quantum Hall states. Our measured
Landau-level broadening could qualitatively describe the large
discrepancy between energy gap measurements in the quan-
tum Hall states and h̄ωc.

B. Cyclotron Resonance Measurements

A more direct way to measure m∗ is through infrared
CR measurements using pulsed ultrahigh magnetic fields
(<150 T) generated by the single-turn coil technique [30–32].
The external pulsed magnetic field was applied along the
growth direction and measured by a pick-up coil around the
sample. The sample and the pick-up coil were placed inside a
continuous flow helium cryostat. In this paper, we employed
infrared radiations from a CO2 laser with wavelengths ranging
from 9.2 to 10.6 μm. The sample in this measurement has
a density of n = 3.6 × 1011 cm−2. The changes in transmis-
sion through the sample were collected using a fast liquid-
nitrogen-cooled HgCdTe detector. A multichannel digitizer
placed in a shielded room recorded the signals from the
detector and pick-up coil.

The spin-resolved CR at 10.6 μm indicated by the two
arrows in Fig. 4(a), separated by ∼4 T, was observed at T =
300 K. This fact can be expected, as the Landau levels above
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(a)

(c)

(b)

(d)

FIG. 3. (a) The amplitude of SdH oscillations obtained by subtracting the polynomial background from the longitudinal resistance. Traces
with largest amplitude (blue) were taken at a temperature of 1.5 K, and traces with lowest amplitude (red) were taken at a temperature of 30 K.
Traces of intermediate amplitude (and color) span the temperature range from 1.5 to 30 K in steps of approximately 2 K. Labeled quantum Hall
states are extracted from Hall resistance. (b) The normalized amplitude of SdH oscillations at B = 4.2 T. The points are data, and the dashed
lines are fits. The energy gap is extracted from the fits, and the effective-mass, m∗, is calculated using the energy gap. A value of m∗ = 0.04 is
found for this oscillation extrema near B = 4.2 T. (c) m∗ values extracted from all reasonable oscillations. (d) The Landau-level broadening �

calculated from the quantum lifetime τq extracted for each temperature where an exponential envelope is fitted to the oscillations.

FIG. 4. (a) The normalized transmission of 10.6-μm excitation showing CR taken at T = 300 K (electron active). The sample in this
measurement has a density of n = 3.6 × 1011 cm−2. The transitions indicated by arrows are attributed to the spin-resolved CR transitions.
(b) The CR measurement displays a sharper transitions at T = 20.5 K. Unlike the measurements at 300 K, the spin-resolved CR cannot be
resolved, but the broader resonance at 55 T (the Landau-level transition n = 1 to n = 2), observed at 300 K, shifts to lower fields and narrows
down. (c) The effective-mass m∗ as a function of magnetic field at T = 300 and T = 20.5 K demonstrates the nonparabolicity. (d) The absolute
value of effective g-factor g∗ as a function of magnetic field at 20.5 K.
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the Fermi level can be occupied at T = 300 K, allowing the
transitions between n = 0 and n = 1 for two different spins. In
addition, in Fig. 4(a), the broad resonance at ∼55 T represents
a transition between n = 1 and n = 2 which is possible when
the carrier lifetime allows time for a finite population of
Landau-level n = 1. This transition is not predicted from the
fixed Fermi energy but can be attributed to the nonequilibrium
electron distribution [33,34].

In Fig. 4(b), we present the CR measurements at 20.5 K
with an excitation of 10.6 μm. The spin-resolved CR was
not observed indicating the states above the Fermi energy
are no longer occupied. On the other hand, the broad reso-
nance observed at ∼55 T and T = 300 K, which is due to
the transition from n = 1 to n = 2, remained and narrowed.
Figure 4(c) summarizes our measurements for m∗ as a func-
tion of magnetic field at T = 300 K (crosses) and T = 20.5 K
(filled circles). We note that, although the single-turn coil
is destroyed in each shot, the sample and pick-up coil re-
main intact, making it possible to carry out temperature and
wavelength dependence measurements on the same sample.
Figure 4(c) shows that the m∗ varied and increased mono-
tonically with magnetic field. We measured m∗ = 0.04 near
B = 40 T and m∗ = 0.061 near 70 T. Correspondingly, we
can estimate g∗ as a function of magnetic field using an
appropriate Landau-level index using Eq. (1). In Fig. 4(d), we
present an absolute effective g factor at 20.5 K as a function
of magnetic field.

V. LANDAU LEVEL MODELING

Next, we provide a simple theoretical model to understand
m∗ and the Landau-level fan diagram in InAs which has a
nonparabolic conduction band. Unlike the wide gap semicon-
ductors, such as GaAs, CR m∗ and g∗ may vary with sub-
band index, Landau-level index, and external magnetic field.
Beginning with expectations from the bulk and introducing
confinement, we can arrive at expressions for m∗ and g∗ (the
details are presented in the Appendix),

g∗
j,n =

(
ε+

j,n − ε−
j,n

)
μBB

, (1)

where ε j,n is the energy of the nth Landau level, for the
jth subband index, and at magnetic-field B. Plus and minus
superscripts represent higher and lower Zeeman split energy
bands, respectively. As shown in Fig. 5(a), g∗ depends on
the subband index j, the Landau-level n, as well as the
magnetic-field B. At zero magnetic field, the absolute value
of g∗ = 12 is reduced from the bulk value of g∗ = 14 due
to confinement and monotonically decreases as the magnetic
field is increased. The rate depends on the Landau-level index.

Similarly, one can define m∗ obtained by CR as

m∗,±
j,n = h̄eB/me(

ε±
j,n+1 − ε±

j,n

) . (2)

We find that m∗ as shown in Fig. 5(b) also depends on the
nth Landau level, the jth subband index, and the magnetic-
field B [we plot only the (−) solution for clarity]. At zero mag-
netic field, we see m∗ = 0.027 is larger than the bulk value of
m∗ = 0.023 and increases monotonically as the magnetic field

FIG. 5. (a) Absolute values for the effective g-factor g∗ for the
n = 0, . . . , 5 Landau levels for the lowest subband for an InAs
infinite square well with an effective well width of 20 nm. One can
see the sensitivity of g∗ to the magnetic field and the Landau-level
index. (b) The effective-mass m∗ (in units of the bare electron mass)
for the n = 0, . . . , 5 Landau levels for the lowest subband for an InAs
infinite square well with a 20-nm effective well width. Similar to
g∗, m∗ varies as a function of the magnetic field and the Landau-level
index.

is increased. These values are in close agreement with values
derived from magnetotransport (over a small region 3–5 T)
and CR (40 T < B < 70 T).

VI. CONCLUSION

We have performed magnetotransport and ultra-high-field
cyclotron resonance characterization of surface InAs quan-
tum wells. The density of these structures can be tuned,
and our magnetotransport measurement provides insight into
the Landau-level broadening and the quantum Hall energy
gaps. By combining magnetotransport and CR measurements,
we can obtain conduction-band effective-mass m∗ at both
low and high magnetic fields, respectively. A band-structure
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model which includes the effects of strong nonparabolicity
and quantum confinement can describe the extracted m∗ from
magnetotransport and CR measurements. We used our exper-
imental CR m∗ values to determine the effective g-factor g∗
as a function of magnetic fields and Landau-level index, and
these values are in good agreement with the model presented
here.
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APPENDIX: SIMPLE MODEL FOR ELECTRON MASS AND
THE g FACTOR IN A NONPARABOLIC SEMICONDUCTOR

The derivation of the theoretical model accounting for
nonparabolicity is described in this Appendix. In the absence
of an external magnetic field (and quantum confinement), a
narrow gap semiconductor, such as InAs has a conduction-
band energy, ε vs wave-vector k given by the dispersion
relationship, is given by

ε(1 + αε) = h̄2k2

2m∗
o

= h̄2
(
k2

x + k2
y + k2

z

)
2m∗

o

. (A1)

Here, α is the nonparabolicity factor given by

α = 1/εg, (A2)

with εg being the band gap and m∗
o is the CR m∗me at the band

edge (k = 0). For small αε, the energy depends quadratically
on k, whereas for large αε, the energy depends linearly on k.

In the presence of a magnetic field in the z direction, it can
be shown [35–37] that one can write

ε(1 + αε) = h̄2k2
z

2m∗
o

+
(

n + 1

2

)
h̄ωc0 ± 1

2
μBg∗

oB. (A3)

Here, n is the Landau-level index which can take on values
[0, 1, 2, . . .] ωc0 is the band-edge CR frequency, given by

ωc0 = eB

m∗
o

, (A4)

and

g∗
o = 2

[
1 +

(
1 − 1

m∗

)
�

3εg + 2�

]
(A5)

is the band-edge g∗. � is the valence-band spin-orbit splitting,
and μB is the Bohr magneton given by

μB = eh̄

2me
. (A6)

Note that, in the Bohr magneton, as opposed to the band-
edge CR frequency, it is the bare electron mass that enters the
expression.

To simplify, we set the right-hand side of Eq. (A3) to K ,

ε(1 + αε) = h̄2k2
z

2m∗
o

+
(

n + 1

2

)
h̄ωc0 ± 1

2
μBg∗

oB = K, (A7)

and then solve for the energy ε,

ε = −1 ± √
1 + 4αK

2α
. (A8)

The plus sign corresponds to the conduction band whereas
the minus sign corresponds to the light hole in the valence
bands. Quantum confinement will also affect both g∗ and
m∗ for narrow gap materials. To take into account quantum
confinement, one quantizes kz as

kz = 2π

λ
= jπ

L
, (A9)

with j as a positive integer and L as the effective width of the
quantum well. Substituting into Eq. (A3) yields

ε±
j,n

(
1 + αε±

j,n

) = h̄2 j2π2

2m∗
oL2

+
(

n + 1

2

)
h̄ωc0

± 1

2
μBg∗

oB = K±
j,n. (A10)

We assume an effective well width of 20 nm. The gap at low
temperatures is given by εg = 0.4180 whereas the spin-orbit
splitting is � = 0.38 eV and the low-temperature band-edge
effective mass is as follows: m∗

0 = 0.023m. From Eq. (A5), we
see this yields a band-edge g∗

o = −14.
The Landau fan energies in Eq. (A10) can lead us to

calculate and define g∗ for different Landau levels by

g j,n = (ε+
j,n − ε−

j,n)

μBB
. (A11)

EF
The states above EF
can be populated at RT

n=3.6x1011 cm-2

B (T)

FIG. 6. Calculated Landau levels (n = 0, . . . , 5) for the lowest
subband for a 20-nm InAs infinite square well in the simple model.
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We can see that g∗ depends on the subband index j, the
Landau-level n as well as the magnetic-field B.

Similarly, one can define m∗ by

m∗,±
j,n = h̄eB/me(

ε±
j,n+1 − ε±

j,n

) . (A12)

Figures 5(a) and 5(b) plot the m∗ and g∗ as a function of
magnetic field and the Landau-level index. We plot m∗ only
for the lowest (−) solution since g∗ will differ between Landau
levels for a nonparabolic system. The + and − effective
masses will differ slightly and will lead to spin-split cyclotron
resonance peaks under certain conditions. The calculation
shows that, in the presence of nonparabolicity, both of these
parameters depend on the subband index j, the Landau-level
n, and the magnetic-field B. We note that assuming a smaller
effective quantum well width (e.g., 12 nm) will shift m∗
to larger values (e.g., ∼0.035 at B = 0 T) and g∗ will shift
smaller values (∼ − 9.5 at B = 0 T).

As shown in Fig. 6, we have also calculated the Landau
levels for the first subband. With the effective g factor being
negative, Red lines are spin down, and black lines are spin up.
The solid green arrows indicate the predicted CR transitions at
10.6 μm and are in close agreement with experimental obser-
vations indicated by dashed green arrows. While, in the theory
presented here, we considered the infinite potential well, the
agreement between the theory and the experiment is better
at lower magnetic fields. We should note that the Fermi
level can be occupied at T = 300 K, allowing transitions
between n = 0 and n = 1 for two different spins. The spin-
resolved CR was not allowed at lower temperatures and the
resonances above 50 T in Figs. 4(a) and 4(b) were attributed
to the transitions between n = 1 and n = 2. These transi-
tions are possible where the photoexcited carrier lifetime
is long enough to populate the Landau-level n = 1, even
though the position of the Fermi level would not predict the
transitions.
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