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We present a method to accurately and efficiently calculate many-body states of interacting carriers in
quantum nanostructures based on a combination of iterative selection of configurations and perturbation theory.
This method enables investigations of large excitonic complexes and multielectron systems with near full
configuration interaction accuracy, even though only a small subspace of the full many-body Hilbert space is
sampled, thus saving orders of magnitudes in computational resources. Important advantages of this method are
that the convergence is controlled by a single parameter, the threshold, and that ground and excited states can be
treated on an equal footing. On the example of InAsP nanowire quantum dots described using a million-atom
tight-binding approach, we demonstrate the extreme efficiency of the method by numerical studies of large
excitonic complexes filling up to the fourth electronic shell. We find that the method generally converges fast
as a function of the threshold, profiting from a significant acceleration due to the perturbative corrections. The
role of the choice of single-particle basis states is discussed. It is found that the algorithm converges faster in
the Hartree-Fock basis only for highly charged systems, where Coulomb repulsion dominates. Finally, based
on the observation that second-order perturbative energy corrections only depend on off-diagonal elements of
the many-body Hamiltonian, we present a way to accurately calculate many-body states that requires only a

relatively small number of Coulomb matrix elements.

DOLI: 10.1103/PhysRevB.101.205308

I. INTRODUCTION

Quantum nanostructures such as quantum dots [1-4],
quantum rings [5], and nanoplatelets [6] are workhorse sys-
tems for the development of semiconductor-based quantum
technology devices, such as single-photon emitters [7-9]
or sources of entangled photon pairs [10—13]. Due to the
confinement of electrons to a small volume, quantum dots
can be viewed as artificial atoms. When two or more atoms
are brought together they form molecules. Similarly, more
complex devices can be built from quantum dots by fabri-
cating systems with multiple dots that are close enough to
introduce interdot tunneling [14—17]. These systems can be
used, e.g., to realize two- or three-dot spin qubits [18-21].
Complexity is also added when a quantum dot is loaded
with multiple charge carriers [22-25]. In analogy to transition
metal elements, occupation of dots with multiple electrons
can lead to the formation of correlated magnetic states for
partially filled shells [26]. In quantum dots, multiexcitonic
complexes [27] are interesting, as they can be easily probed by
photoluminescence at high intensities [28—30]. The biexciton
is particularly relevant for the generation of entangled photon
pairs in the biexciton-exciton cascade [31] and the emis-
sion from the lowest-energetic three-exciton complex, which
necessarily involves occupation of the p shell, and contains
information about the lateral confinement in the quantum dot
[32,33]. Similarly, the d and f shells can be probed via the
emission of the lowest-energetic states of 7- and 13-exicton
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complexes, respectively. Charged excitonic complexes such
as trions [34,35] can be used for the generation of highly
entangled photon cluster states [36,37] that are required for
measurement-based quantum computation [38]. The proposal
of implementing a synthetic Haldane chain [39], which pos-
sesses an exotic quantum phase with a quadruply degenerate
symmetry-protected topological ground state protected by a
gap, in a quantum dot array with half-filled p-shell states
combines the complexities of multiple carriers within one dot
with that of multidot systems.

A quantitative theoretical description for such applications
is highly desirable. However, the direct numerical calculation
of many-body states of multiple interacting carriers in a semi-
conductor nanostructure is difficult because of the curse of
dimensionality, i.e., the fast growth of the many-body Hilbert
space H with the number of carriers and single-particle states.
For an excitonic complex composed of n, electrons and ny,
holes distributed on a set of N, confined electron and N,
hole states, the dimension of H is (2’) X (2’;) Dozens of
single-particle states might be needed in full configuration
interaction (CI) calculations [40], as shown in Fig. 1(b),
which depicts the positions of the spectral lines emitted from
the lowest exciton and biexciton state as a function of the
number of single-particle states N, = N, for a hexagonal
InAsy,Pys quantum dot with diameter 18 nm and height 4
nm in a wurtzite InP nanowire [41] as sketched in Fig. 1(a).
In particular, relative quantities such as the biexciton binding
energy AEp = (Ery — Ex) — Ex converge slowly because
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FIG. 1. (a) Hexagonal InAs,P;_, quantum dot (red) inside a
segment of an InP nanowire. (b) Positions of the spectral lines
emitted from the lowest biexciton and exciton states as a function of
the number of single-particle states in conduction and valence band
used in a full CI calculation.

larger complexes generally converge more slowly than smaller
complexes.

Therefore, for larger complexes full CI calculations be-
come prohibitively demanding and one has to resort to ap-
proximate methods. A common principle of many such ap-
proximations is that, in most situations, only a small subspace
of the full Hilbert space contributes significantly to the many-
body states of interest, e.g., to the ground state. The Hartree-
Fock method is a fast and easy approximation that seeks to
find the optimal description in terms of a single configuration.
It may also help to speed up the convergence of larger CI
calculations if they are performed starting from Hartree-Fock
single-particle states [42]. If the nanostructure possesses sym-
metries [43], the full Hilbert space can be decoupled into
different blocks, each of which has a much smaller dimension
than the full problem. Similarly, one may also exploit hidden
symmetries [28,44] to investigate large excitonic complexes.
In quantum chemistry, configuration interaction with single
and double excitations or coupled cluster approaches [45]
are commonly used to calculate many-body states in large
Hilbert spaces. Lately, also representations of many-body
states in terms of matrix product states have been shown to
perform well [46-48], especially for ground states and for
one-dimensional systems.

In this paper, we present a general method for the numer-
ical calculation of correlated many-body states in quantum
nanostructures that does not require any strong assumption
about the wave functions such as particular symmetries and
also enables the calculation of excited states. In light of the
analogy between quantum dots and atoms, it is suggestive
to take inspiration from quantum chemistry. Concretely, we
implement a version of the CIPSI (configuration interaction
by perturbation with multiconfigurational zeroth-order wave
function selected by iterative process) method [49-52] for the
solution of problems involving interacting carriers in quantum
nanostructures such as quantum dots, and demonstrate its
efficiency. This method consists of diagonalizing the many-
body Hamiltonian in a reduced space of configurations that
are selected iteratively by a criterion based on perturbation
theory. After diagonalization in the relevant subspace, the
effects of the configurations outside of the selected subspace
are accounted for perturbatively. A major advantage of CIPSI
is that it is a controlled approximation as there exists a single

convergence parameter, the threshold &, that controls the ac-
curacy, where the full CI result is obtained in the limit & — 0.
In quantum chemistry, selected CI methods have been applied
to large, strongly correlated molecules, such as the chromium
dimer, correlating 28 electrons in 198 orbitals, leading to a
total Hilbert space of 10*? using 10° variational states and 10'?
perturbative states [53].

Here, we describe the application of the CIPSI method in
the context of quantum nanostructures. While typical appli-
cations in quantum chemistry aim at an accurate description
of a few interacting atoms, modeling quantum nanostructures
often involves hundreds of thousands to millions of atoms
and the effects due to strain, alloying, and the underlying
crystal structure have to be included. These effects are usually
accounted for on the level of single-particle states in effective
mass approximation, k - p theory, or empirical pseudopo-
tentials [54]. To facilitate its general use beyond a specific
single-particle calculation method, we formulate the many-
body calculation method for arbitrary single-particle states.
For concrete examples of InAsP nanowire quantum dots,
we obtain single-particle states using a tight-binding based
atomistic description [41]. We present numerical calculations
to test the accuracy and numerical demands of the selected
CI method for multiexciton complexes. We find that the
algorithm converges fast as a function of the threshold, so
that results with near full CI accuracy are obtained while
only a small fraction of configurations of the full Hilbert
space has been selected, reducing the numerical demands
by many orders of magnitude. A large part of the efficiency
of the CIPSI algorithm can be attributed to the perturbative
corrections.

We then use the selected CI method to simulate the emis-
sion spectra of three-exciton complexes, which requires the
calculation of many excited biexciton states. Subsequently, we
investigate the role of the choice of the basis of the single-
particle states and find that starting from the Hartree-Fock
basis can lead to an enhanced convergence for highly charged
many-body complexes, but building Slater determinants from
eigenstates of a single-particle Hamiltonian turns out to be
favorable for charge neutral systems.

Finally, having found that the perturbative corrections are
responsible for a large part of the accuracy of the CIPSI
algorithm and observing that the perturbative terms only
contain off-diagonal matrix elements, we devise a method
to accurately calculate many-body states that requires the
knowledge of only a small fraction of the Coulomb matrix
elements constructed from all single-particle states. This is
especially relevant when single-particle states are obtained
from atomistic simulations, since the calculation of Coulomb
matrix elements is one of the most time-consuming steps
in the overall procedure of the simulation of many-body
states in quantum nanostructures. Therefore, this approach,
which potentially reduces the total number of Coulomb matrix
elements by orders of magnitude, is extremely useful by itself.

The paper is structured as follows: First, we describe the
theoretical background and the implementation of the selected
CI method with perturbative corrections. Then, we demon-
strate the convergence for ground states of complexes of up to
13 excitons. Subsequently, we apply the method to the simu-
lation of three-exciton emission spectra, and, after discussing
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the role of single-particle basis states, we demonstrate how
accurate calculations can be performed with a limited set of
Coulomb matrix elements.

II. THEORY
A. Many-body Hamiltonian

The main goal of this paper is to assess the efficiency
and applicability of a variant of the CIPSI algorithm for
calculations of interacting carriers in quantum nanostructures.
Neglecting Auger processes [55], which are strongly sup-
pressed in gapped systems, the many-body Hamiltonian for
interacting electrons and holes in a quantum nanostructure is

H = ZE(E)CTC, + = Z i1j|Veelkl)c] el TCkCy

ljk[
+ D ES R, + 3 Z(PQIthIFS)hI,h;h,hS
pqrs
— 3" ((igIVimirt) — Gig Ve ln) e hihe, (1)

iqrl

where E and E{" are the single-particle energy eigen-
values of the ith conduction band electron state and of the
pth hole state (negative of the valence band electron energy
eigenvalue), respectively, and cj' and h; are the correspond-
ing creation operators for electrons and holes. (ij|V,.|kl),
(pq|Vinlrs), (iqlVe‘;lirlrl), and (ig|V|lr) are the electron-
electron, hole-hole, as well as the direct and the exchange
electron-hole Coulomb matrix elements, e.g.,

i1V k)
- / dr, / e O EDV (1, E W ED (), ()

where V (ry, ry) describes the screened interaction potential
between carriers at positions r; and r;.

A general many-body state in a semiconductor nanostruc-
ture composed of n, electrons and n;, holes can be described
by

/
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where w; and v; denote indices of electron and hole states,
respectively, |0) is the semiconductor ground state with a
full valence band and an empty conduction band, and A are
expansion coefficients. The prime on the summation indicates
that we sum only over indices with u; < p;; and v; < viy;.
Asetof indices {i1, ..., n,; V1, - .., Vy, } With the constraints
Wi < pir1 and v; < vy defines a single configuration and all
possible configurations together form a complete basis of the
many-body Hilbert space H. In order to keep the many-body
Hilbert space finite, one typically only accounts for a finite
number of N, electron and N, hole states.

The full CI method consists of constructing all possible

configurations cj, ...cj, A ---h} 0) in the expansion of

|¥) in Eq. (3) for a given number of electrons n, and holes
n, and for a given number of single-particle states N, and
N, and then solving the eigenvalue equation H|¥) = A|V) to
obtain the eigenvalues A and the eigenvectors in terms of the
expansion coefficients A.

B. CIPSI method

In practice, the CI method is limited by the fact that the
total dimension of the many-body Hilbert space H is given by
(ZZ) X (2’;), so that a full CI treatment is only possible for a
small number of interacting carriers and single-particle states.
One method to tackle the analogous problem in the context
of molecular physics is the CIPSI method [49,56]. There, the
Hamiltonian is diagonalized only in a small subspace Hy C H
of the full many-body Hilbert space H corresponding to the
most relevant states for the calculation. Which states are
selected as part of the relevant subspace is decided iteratively
by a criterion based on perturbation theory.

The CIPSI method has the advantage that it is a controlled
approximation as there is a single convergence parameter, the
threshold &, which defines the accuracy. In the limit & — O the
full CI method is obtained, but the number of selected states
approaches dim(7?). For finite £, only quantitatively important
configurations are explicitly taken into account. Additionally,
the states that are not selected are taken into account by
second-order perturbative corrections to the energy, which
significantly enhances the accuracy.

The algorithm is summarized in Table I: We start with an
initial small subspace H,, possibly a single configuration, and
diagonalize the many-body Hamiltonian in the subspace H,.
The resulting eigenstates, which we denote by [n(?), together
with all configurations |k©) outside of H, form a complete
basis of the full many-body Hilbert space #. In order to
improve the accuracy of [n(?)), we consider the interaction
with the configurations |[k©) outside of H, perturbatively.
Recall that the first-order perturbative correction |n‘") to the
approximate eigenstate |n?) is

nV) Zs k@), (4)

<k<°>|H|n(°>>

nk —

where £ ©) is the eigenvalue corresponding to the eigenstate
[n®) of the Hamiltonian in the subspace H, and E(O)
(kO |H|k®) is the diagonal energy of the configuration |k(0))

&, can be understood as the contribution from the con-
figuration |k?) to the eigenstates |n) of the full many-body
Hamiltonian approximated by the state |n?)). Therefore, in
the selected configuration interaction method CIPSI, a config-
uration k) is considered to be important for a more accurate
description of a target state |n?) if |&,| exceeds a given
threshold value &. Thus, we loop through the configurations
|k©@) outside of Hy and, if |&,| > &, we add the configuration
|k©@) to the selected state space H, for the next iteration. This
process is repeated until no new configurations are selected,
which typically requires five to ten iterations.

Note that, during the selection process, one already calcu-
lates all terms that enter the expression of the second-order
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TABLE I. Layout of the CIPSI algorithm.

CIPSI Algorithm

(1) Start with an initial set of selected configurations H,.

(2) Diagonalize many-body Hamiltonian H in Ho. Let £ be the nth eigenvalue and [n?) the corresponding eigenvector.
(3) For given target eigenstates |n?) and for configurations |k») outside of the selected state space H:

Calculate & = (kO|H|n®)/(EQ — E).
(4) If || > &: Add the configuration k to H,.
(5) Repeat from step (2) until no new states are added in step (4).

(6) Calculate the second-order perturbative corrections AEp, = 3, 5 [(kO1H|n )2/ (EQ — Ek(o)).

perturbative correction to the energy eigenvalues

|(kO1H [n©) 2
AEp =Y 5)
(0) o -
. B —E

so that the perturbative energy corrections, which will be
shown to improve the convergence significantly, can be ob-
tained with no additional numerical effort.

For large system sizes the numerically most demanding
part of the algorithm is the calculation of (k©|H |n®) in step
(3). This is due to the fact that the full many-body Hamiltonian
H connects states from H to a much larger space, henceforth
denoted by H., which consists of all configurations obtained
from configurations in #H, with additionally up to two excita-
tions. In practice, storing a vector of configurations in the large
connected space H, is the limiting factor of the algorithm in
terms of memory consumption.

Furthermore, the represention of a vector in the connected
space H. as a sparse vector in the full Hilbert space H
requires searches in a list of size dim(#, ). Because the lookup
is critical for the performance of the algorithm, here, we
implement it using hash tables, which have constant scaling
O(1) with respect to the length of the list, in contrast to, e.g.,
the search in an ordered list or in a binary tree that scales
as O[logdim(H,)] or a brute-force search of a state in a list
of states without preordering which requires linear time in
dim(H,).

The CIPSI algorithm described in Table I is formulated on
the level of configurations, irrespective of the single-particle
basis from which the configurations are constructed. However,
the choice of the basis states may influence the convergence
of the method. Due to the strong confinement in quantum
nanostructures like quantum dots, here, we choose to work
most of the time in the basis of eigenstates of a single-particle
Hamiltonian that captures the details of the structure, such as
the confinement potential, alloying, strain, and the underlying
crystal lattice. In the present case, we use the spds* tight-
binding Hamiltonian Hrg described in Appendix A, but other
effective single-particle methods such as empirical pseudopo-
tentials [54] might be used as well. Because in some scenarios
ClI calculations have been shown [42] to converge faster using
a single-particle basis consisting of Hartree-Fock orbitals, we
also test the convergence in the Hartree-Fock basis in a later
section.

Finally, we note that the CIPSI method allows us to treat
ground and excited states on the same footing. For example,
for calculations of the lowest ngy states, we use the same
subspace Ho for all states. We diagonalize the Hamiltonian

in the subspace H,, take the ngy lowest eigenstates and add
in step (4) of the algorithm all configurations |k?) to the
selected state space for the next iteration if |£,;| > & for any
n < ngy.

III. RESULTS

We now test the CIPSI algorithm on the example of a
hexagonal InAsy ;P g/InP nanowire quantum dot with a di-
ameter of 18 nm and a height of 4 nm as depicted in Fig. 1(a).
The single-particle states are obtained using the tight-binding
model developed in Ref. [41] and briefly summarized in
Appendix A. From the single-particle eigenstates in the rep-
resentation as a linear combination of atomic orbitals, we
calculate Coulomb matrix elements assuming a dielectrically
screened Coulomb interaction

&2 1

V(r,rn)=
4mege(ry, 12) |1 — 12|’

6)

where the dielectric screening e(ry, r;) is modeled by un-
screened interactions € = 1 on the same atom and screening
with a static dielectric constant € = 12.4 for long-range terms.
In the many-body calculations, we account for up to N, =
N;, = 40 electron and hole states.

A. Convergence of excitonic ground states

The lowest-energetic many-body states for systems con-
sisting of 1, 2, 3, 7, and 13 excitons calculated using the
CIPSI method with (SCI 4+ PT) and without (SCI) second-
order perturbative corrections are depicted in Figs. 2(a)-2(e)
as a function of the threshold &£. Note that smaller values of &
lead to the selection of more states and therefore correspond to
results closer to full CI. The convergence with respect to & is
qualitatively similar for most complexes, although the energy
scales are different. To highlight the general features, we plot
in Fig. 2(f) the CIPSI ground-state energies for all complexes
up to 13 excitons normalized according to

Eg&pr(§) — Efdypr(00)
| AERE (00))|

El?(ﬁmalized (5) = (7)
Here, Ef . pr(6) = EX(E)+ AEM(§) is the result of a
CIPSI calculation of the gound state of the complex comprised
of n excitons for the threshold & including the perturbative
correction AE{,L%( (£). The reference energy scale |AE{£¥ (00)]
is given by the perturbative correction to the single configura-
tion constructed from the lowest single-particle states, where
no configurations are added in step (4) of the algorithm.
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FIG. 2. Energies of the ground states of complexes comprised of
1 (a), 2 (b), 3 (c), 7 (d), and 13 (e) excitons as a function of the
CIPSI threshold &. SCI (purple) denotes the energy eigenvalue of the
many-body Hamiltonian projected onto the subspace of selected con-
figurations; SCI + PT (green) includes the perturbative corrections
from higher-energetic configurations. (f) shows the ground states
from 1 to 13 excitons normalized according to Eq. (7), where brighter
lines with shorter dashes correspond to larger complexes.

Except for the single exciton, for which the full Hilbert
space is comparatively small with dim(#) = 1600, the differ-
ent excitonic complexes converge with respect to the threshold
& in a similar way. The energy increases and reaches a
plateau at a threshold between £ = 0.1 and & = 0.01. The
value of the final energy indicates that the perturbative cor-
rection |AEJX (00)| from a single configuration overestimates
the influence of the remaining configurations by 30%—-50%.
The overestimation of the correction is a typical feature of
perturbation theory in which higher-order corrections often
have alternating signs.

In order to assess the efficiency of the CIPSI algorithm
for quantum nanostructures, we plot in Fig. 3 the number of

Dimension
—_
o
>,
o
T
|

0.001

0.01 0.1 1
threshold &

100 L
0.0001

FIG. 3. Number of selected configurations dim(#,), dimension
of connected space dim(#,), and dimension of the full many-body
Hilbert space dim() constructed from 40 electron and hole states
as a function of the threshold & for the ground-state calculation of
excitonic complexes composed of 1 to 5 and 13 excitons.

selected states, i.e., the dimension of the subspace Hy, the
dimension of the connected subspace H., which determines
the memory consumption of the algorithm, and the dimension
of the full many-body Hilbert space H constructed from up
to 40 electron and hole states for calculations of excitonic
complexes composed of 1 to 5 and of 13 excitons. We find
that, except for the smallest complexes, the dimensions of
the different spaces differ by many orders of magnitude. For
example, for the five-exciton complex at a threshold of & =
0.01, one only has to diagonalize the many-body Hamiltonian
in a space with dimension dim(?) ~ 400 while perturbative
corrections due to 7.4x10% other configurations have to be
performed out of the total many-body Hilbert space with
the dimension dim(#) ~4.3x10'!. It is noteworthy that, al-
though the full many-body Hilbert space grows very fast with
the number of particles (about two orders of magnitude when
one additional exciton is added), the number of selected states
as well as the dimension of the connected Hilbert space, which
limits the calculations, increase much more slowly. Therefore,
the CIPSI algorithm is particularly useful for systems with a
large number of particles.

B. Convergence of optical spectra

So far, we have only considered the convergence of the
selected CI algorithm for ground states, but it can equally
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FIG. 4. Spectral lines emitted from the three-exciton complex
for different thresholds &. Additionally indicated are the positions
of the lowest bright exciton (X) and biexciton (2X) lines as well as
the biexciton transtion energy shifted by electron and hole s-p-shell
splittings (2X + P).

well be used to calculate excited states. This enables, e.g.,
calculations of emission spectra from higher excitonic com-
plexes. The spectroscopy of the three-exciton complex is par-
ticularly interesting, as already the lowest three-exciton state
requires the occupation of p-shell electron and hole states,
whereas emission from single excitons and biexcitons after
thermalization predominantly originates from s-shell states.
Therefore, from the spectral lines emitted by the three-exciton
complex one can infer information about the quantization and
lateral confinement in quantum nanostructures. Although due
to thermalization only a small number of three-exciton states
contribute to the spectrum, the simulation of transitions in
the spectral range that contains three-exciton emission from
the s shell as well as from the p shell is a good testing
ground for selected CI calculations of excited states, as it
requires the calculation of a large number of excited biexciton
states.

In Fig. 4, the accumulated three-exciton emission spectrum
for all polarization directions (cf. Appendix B for details on
definition and computation) is depicted for different values
of the threshold £ in a spectral region that captures emission
from s- and p-shell states. The many-body eigenstates for both
initial three-exciton states and final biexciton states are calcu-
lated using the selected CI algorithm and we add perturbative
corrections to the respective energy eigenvalues. As reference
points we also mark the spectral positions of the bright
emission lines for the s-shell exciton-to-ground-state (X) and
biexciton-to-exciton (2X) transitions obtained from full CI
calculations. In addition, we indicate the energy obtained by
adding the splittings between the lowest s and p shells for
electrons and holes AE, = [E{,) — E\] + [El(f,) —E"] to
the position of the biexciton-to-exciton transition (2X + P).

Two peaks dominate the three-exciton spectra, one close to
the lowest exciton transition, which corresponds to recombi-
nation of s-shell electrons with s-shell holes, and one that is

shifted by approximately the s-p splitting AE,, which stems
from the recombination of p-shell electrons with p-shell holes.
Additionally, a number of very small peaks in the spectrum
indicate dark states that are optically forbidden either due to
spatial symmetries, such as recombination from p-shell elec-
trons with s-shell holes, or spin selection rules. Here, we find
that the s-shell three-exciton transition line is found between
the biexciton and exciton lines. Furthermore, the distance
between the two main peaks in the three-exciton spectrum
43.6 meV is about 13% smaller than the sum of the electron
and hole s-p splittings AE, = 50.3 meV. We attribute this
significant deviation from the single-particle picture to the
fact that the spectral proximity of nearly degenerate p orbitals
makes it easier to reorganize charge densities to minimize
Coulomb repulsion, so that the many-body contribution to
biexcitons with p-shell carriers can be reduced compared to
biexcitons with only s-shell carriers. This finding implies that
s-p splittings and confinement energies are typically under-
estimated when they are derived from the distance between
three-exciton emission lines.

Regarding the convergence of the selected CI algorithm
we find that, similar to the case of ground states of excitonic
complexes discussed earlier, the spectra are well converged
at £ = 0.01. Furthermore, note that, in order to fully capture
the s-shell emission peak, more than 60 biexciton states have
to be calculated. To this end, calculations of the 120 lowest
biexciton states have been performed. As we work with a
single selected state space H, for ground and excited states,
a larger number of states are selected when 120 states are
requested compared with the calculation of only the ground
state. For smaller values of the threshold &, however, the ratio
between the number of selected states in both cases is more
and more reduced and is found to be ~10 for £ = 107,

It is also noteworthy that we can make use of synergies
in the calculation of multiple eigenstates: The approximate
eigenstates @) = > ;oyili) are stored as linear combina-
tions of single configurations |i) € Hy. Then, the off-diagonal
matrix elements required in step (3) of the algorithm are
calculated by (kQ|H[n®) =Y, a,,;(kV|H]|i). For different
eigenstates, only the coefficients «,; change, but the numer-
ically costly matrix elements in terms of single configurations
(k@|H i) have to be calculated only once. Therefore, calcu-
lating more eigenstates only leads to a marginal increase in
computation time, which makes the selected CI in practice
very efficient for the calculation of a large number of eigen-
states, as long as enough memory for the simultaneous storage
of &, is available.

C. CIPSI in Hartree-Fock basis

In quantum dots charged with many electrons, it was shown
[42] that CI calculations converge faster with the number
of single-particle states when configurations are constructed
from Hartree-Fock single-particle states instead of eigenstates
of a single-particle Hamiltonian. This is due to the fact that
Hartree-Fock calculations already capture the redistribution
of charge densities due to Coulomb repulsion. To investigate
whether also the convergence of the CIPSI method can be
enhanced by working in the Hartree-Fock basis, we present in
Fig. 5 the absolute error |Ecips; — Ecy| of the CIPSI algorithm
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FIG. 5. Convergence of CIPSI calculations in the basis of single-
particle eigenstates compared with calculations starting from the
Hartree-Fock basis for (a) the lowest biexciton and (b) the lowest-
energetic complex composed of five holes. The absolute error with
respect to a full CI calculation is shown as a function of the number
of selected states on a double-logarithmic scale.

with respect to the full CI calculation of the lowest biexciton
state [Fig. 5(a)] and of the ground state of a many-body system
comprised of five holes [Fig. 5(b)] as a function of the number
of selected states dim(7?{y) for calculations in the basis of
eigenstates of the single-particle Hamiltonian (SP) as well as
in the Hartree-Fock basis (HF) with and without perturbative
corrections (PT).

For the highly charged five-hole complex, the calculation
in the Hartree-Fock basis indeed generally leads to a smaller
error for the same number of selected states. However, the
errors in both bases are of the same order of magnitude, in
particular when more than a few states 210 are selected. For
the biexciton state, the first data point corresponds to a single
configuration comprised of two electrons and two holes in
the lowest s shells. The energy of this state in the basis of
eigenstates of the single-particle Hamiltonian is ~8.2 meV
above the full CI value taking into account 40 electron and
holes states while a Hartree-Fock optimization of single-
particle states reduces this value to ~6.6 meV. It is note-
worthy that including perturbative corrections to the single
s-shell configuration in the basis of single-particle eigenstates
already yields a more accurate result than the Hartree-Fock
calculation without corrections. With perturbative corrections,
the respective Hartree-Fock state is found to be even more
accurate by one order of magnitude. Thus, the Hartree-Fock
basis has a slight advantage over the single-particle Hamilto-
nian eigenstates when only a few states are selected. However,
reducing the threshold to select more states, we find that
at 2100 states the single-particle eigenstates become more
favorable for convergence and the additional Hartree-Fock
step required for the calculation is eventually detrimental.
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FIG. 6. Full CI calculation of the lowest biexciton state using M
single-particle states with and without perturbative correction in the
Hilbert space of up to 40 single-particle states.

D. Reduced number of Coulomb matrix elements

As we have shown so far, the CIPSI algorithm reduces the
numerical demands for calculations of the many-body states
of interacting carriers in quantum dots significantly compared
to full CI calculations. However, for practical purposes, a
major problem that remains is the calculation of Coulomb
matrix elements. This is due to the fact that the number of
matrix elements, e.g., of (ij|V,.|kl), scales as O(N*) with the
number of single-particle states that are accounted for in the
calculation. Furthermore, even when only two-center terms
are taken into account, the calculation of a single Coulomb
matrix element scales as O(Na2t) with the number of atoms
Nai. Therefore, the numerical demands of the calculation of
Coulomb matrix element often limit the overall accuracy of
the calculation. One approach to attack this problem is linear
scaling methods [57] with respect to Nyoms to reduce the
calculation time for a single matrix element. Alternatively,
one can speed up the calculation by vectorization [58] or
parallelization [41].

Here, in light of the effectiveness of perturbative cor-
rections, we propose another way to reduce the numerical
demands for the calculation of Coulomb matrix elements:
Calculating many-body states in a restricted Hilbert space
consisting of at most M single-particle states per band and
adding the effects of a much larger Hilbert space with up
to N single-particle states perturbatively requires only the
knowledge of matrix elements, e.g., {ij|V,|kl) with i, j < N
and k, [ < M. Thus, as long as the influence of configurations
containing states i > M is well described by perturbation
theory, one only needs to calculate O(N 2M?) instead of O(N*)
Coulomb matrix elements.

In Fig. 6 we show the results of full CI calculations of
the lowest-energy biexciton states in a Hilbert space with up
to M single-particle states per band. Then, we add perturba-
tive corrections from higher-lying states with up to N = 40
single-particle states per band (CI+ PT). It turns out that
the calculation is practically converged at M = 6 states when
perturbative corrections are included. Note that in this case
only about (M/N)?> ~ 2% of all possible Coulomb matrix
elements from N = 40 single-particle states had to be used.
Therefore, using perturbative corrections not only speeds up
the calculation of many-body states, but also allows for a dras-
tic reduction of the computational resources for the Coulomb
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matrix element calculation without significantly reducing the
overall accuracy.

IV. CONCLUSION

We have presented a selected configuration interaction
method with perturbative corrections that enables highly ac-
curate and efficient calculations of many-body states of inter-
acting charge carriers in quantum nanostructures. This method
has a number of advantages: It is controlled by a single
convergence parameter & and yields full CI results in the
limit £ — O; it is applicable in very general settings without
requiring special conditions like symmetries; it also allows an
efficient calculation of excited states, and reduces the com-
putational effort for obtaining Coulomb matrix elements. The
fast convergence is demonstrated numerically for the ground
states of complexes comprised of up to 13 excitons. We find
that the calculations are typically converged for thresholds &
between 0.01 and 0.1 and within about five to ten iterative
state selection steps. A similar convergence is found of excited
states, which we have tested by calculating the emission spec-
tra from three-exicton complexes. Finally, we have analyzed
the choice of single-particle states and we have demonstrated
a method for accurate many-body calculations with a signifi-
cantly reduced number of Coulomb matrix elements.

Our investigations show that, due to its extreme efficiency
and accuracy, the selected configuration interaction method
with perturbative corrections can serve as a general purpose
tool for the calculation of many-body states of interacting
carriers in quantum nanostructures and it can yield quantita-
tively accurate results in cases far out of reach for full con-
figuration interaction calculations. However, it is noteworthy
that there exist optimized variants of the CIPSI method in
the context of quantum chemistry [59] that are even more
efficient and it will be interesting to investigate and analyze
their implementations for quantum nanostructure in the future.
In particular, the heat-bath CI variant [51-53,60] offers great
potential for accelerating the state selection process by using
a different selection criterion. There, configurations k are
selected if |(k|H |i)c;| < € for any i, where i and k are single
configurations, ¢; is the expansion coefficient of the target
eigenstate in terms of the configuration i, and € is an energy
threshold. This criterion has the advantage that by presorting
the matrix elements a large number of noncontributing terms
can be dropped in advance and do not have to be sampled
explicitly. This paves the way for simulations of even larger
systems of correlated electrons in quantum nanostructures.
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APPENDIX A: TIGHT-BINDING DESCRIPTION
OF SINGLE-PARTICLE STATES

The description of many-body complexes is based on inter-
acting carriers on a basis of single-particle states. To test the
CIPSI method, we choose to work with a concrete example of
single-particle eigenstates of an InAsP nanowire quantum dot
[12]. An atomistic tight-binding description for such systems
was derived from first principles in Ref. [41] and implemented
within our computational toolkit QNANO [5,32,41,61] suitable
for large-scale parallelized million-atom calculations on a
computer cluster.

At the core of the calculation of single-particle states is a
description in terms of the tight-binding Hamiltonian

Nyt Nory Na Noro
Hyg = Z Zéi.afg,ai’i,a + Z Z Aia,pCi o Cip
i=1 a=I i=1 a.p=1
Na nn(i) - Nom
T2 D D haisCiafip (A
i=1 j=1 a.p=1

where Eja is the creation operator for an electron in the local

orbital o on atom i. Ny is the number of atoms in the sample
and we use an spds* model with Ny, = 20 orbitals per atom.
€; o are the on-site energies, 1;  j g are the nearest-neighbor
hopping elements from orbital « on atom i to orbital 8 on
atom j, and A;, g describes the spin-orbit coupling at atom
i. To account for strain, the on-site and hopping parameters
are modified based on the local bond lengths and angles,
which we obtain by performing a valence-force-field strain
relaxation. A detailed description of the tight-binding param-
eters and strain corrections is given in Ref. [41]. The tight-
binding Hamiltonian Hrg is diagonalized, which yields the
energy eigenvalues as well as the single-particle eigenstates
Y;(r) in terms of expansion coefficients C(i, k, o) of a linear
combination of atomic orbitals ¢, (r — Ry),

Nat  Norn

Vi=) D Clik a)pa(r—Ry),

k=1 a=1

(A2)
where R is the position of atom k.

APPENDIX B: CALCULATION OF OPTICAL
EMISSION SPECTRA

The optical emission spectrum of an excitonic complex
can be described by Fermi’s golden rule. The intensity of the
emitted light with polarization direction € is [41]

F(E, €

= FOZ [({[P(e)If)PSIE — (Ef — EIni(1 — np), (B1)
i.f

where i and f denote the initial and final many-body states,
E; and E are the respective energies, (i|P(€)|f) is the dipole
matrix element between states i and f, n; and ny are the
occupations of the initial and final states, and Fy is a constant
depending on the light-matter interaction.

Here, we calculate the emission spectrum from three-
exciton complexes to biexciton states, where we assume
empty final states ny = 0 and a thermal distribution of the
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initial three-exciton states at a temperature 7 = 4 K. The §
functions in Eq. (B1) are broadened to Lorentzians with a
phenomenological linewidth of 0.1 meV. The dipole matrix
elements are calculated from the many-body eigenstates

N, N
@IPE)Nf) =D Y (ilel hl 1) (Ywle - Tl
w=1v=l
N, N
=Y "> (Yuwle-rlpy)
w=lv=l
/
X Z Al*(,bLl,..,,[,L/,,..,lban;
(i, ..., Mg
Viyeuns U"h}
Vi, ey Vi uy,)
x ATy, oo st e V), (B2)

where A’ and A’ are the many-body eigenstate expansion
coefficients as in Eq. (3). The dipole matrix elements (v, |e€ -
r|y, ) between valence and conduction band single-particle
states v, and v, are obtained in the representation Eq. (A2)
in terms of local atomic orbitals

Nat Noy

(Wwle - rlvy) ZZ C*(u' k. a)C(V .k, )Ry (B3)
k=1

Note that we use local atomic orbitals with defined spin states,
so that spin selection rules are automatically included via the
orthogonality relations used in the derivation of Eq. (B3).

Here, we are interested in the total emission of exci-
tonic complexes including all polarization directions. To this
end we add the emitted light F(E) = F(E, e,) + F(E, e;) +
F(E, e,) with polarizations along the three spatial coordinates
with unit vectors e,, e,, and e;.
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