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We have simulated the time evolution of the photon number distribution in a semiconductor quantum-
dot–microcavity system driven by chirped laser pulses and compare with unchirped results. When phonon
interactions with the dot are disregarded—thus corresponding to the limit of atomic cavity systems—chirped
pulses generate photon number distributions that change their shape drastically in the course of time. Phonons
have a strong and qualitative impact on the photon statistics. The asymmetry between phonon absorption and
emission destroys the symmetry of the photon distributions obtained for positive and negative chirps. While
for negative chirps transient distributions resembling thermal ones are observed, for positive chirps the photon
number distribution still resembles its phonon-free counterpart but with overall smoother shapes. In sharp
contrast, using unchirped pulses of the same pulse area and duration wave packets are found that move up
and down the Jaynes-Cummings ladder with a bell shape that changes little in time. For shorter pulses and lower
driving strength Rabi-like oscillations occur between low photon number states. For all considered excitation
conditions transitions between sub- and super-Poissonian statistics are found at certain times. For resonant
driving with low intensity the Mandel parameter oscillates and is mostly negative, which indicates a nonclassical
state in the cavity field. Finally, we show that it is possible that the Mandel parameter dynamically approaches
zero and still the photon distribution exhibits two maxima and thus is far from being a Poissonian.
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I. INTRODUCTION

Semiconductor quantum-dot–cavity (QDC) systems con-
tinue to raise attention as highly integrable on-demand emit-
ters of nonclassical states of light. In particular, QDCs have
proven to be rather successful providing, e.g., reliable on-
demand high quality single photon sources [1–10] as well as
sources for entangled photon pairs [11–18]. Clearly, QDCs
support a much larger class of excitations when higher mean
photon numbers are reached. The additional degrees of free-
dom provided by higher number photon states obviously allow
for a rich variety of dynamical scenarios and may open the
way to new kinds of applications such as, e.g., the encoding of
quantum information in the photon number state distribution.
These possibilities are, however, far from being explored.

Often, the first step to characterize systems with photon
distributions ranging up to higher photon numbers is to record
a few characteristic numbers such as the mean photon number
[19] and/or the Mandel parameter [20]. In simple cases, the
mean photon number is indeed enough to capture the whole
information about the photon distribution even when the latter
is time dependent. This applies in particular when photons
are generated by classically driving an empty cavity without
a quantum dot (QD) where the photonic system is at all times
in a coherent state and thus the distribution is a Poissonian
[21,22], i.e., in this case the photonic excitation is always as
close as possible to a classical light field and thus nonclassical

states cannot be reached. Moreover, although the mean photon
number varies in time, the photon distribution keeps its shape
at all times.

The situation is different when a system with few discrete
levels near resonance to a cavity mode such as an atom
or a quantum dot is placed inside the cavity. When driving
transitions between these discrete levels deviations from the
coherent state may occur as is evident, e.g., by monitoring the
Mandel parameter,

Q(t ) = (〈�n2〉 − 〈n〉)/〈n〉. (1)

Q(t ) measures the deviation of the mean-square fluctuation
from the mean photon number normalized to the latter.
Therefore, Q vanishes for a Poisson distribution. A posi-
tive Q indicates a super-Poissonian distribution with larger
fluctuations than in a coherent state with the same mean
photon number while negative Q values correspond to the
sub-Poissonian regime which is known to have no classical
analog [23]. Indeed, deviations from the coherent state have
been reported for the stationary distribution obtained in an
atomic cavity with constant driving where different signs of
Q have been found for different ratios between cavity loss and
radiative decay rates [24]. In Ref. [25] it has been shown that
the statistics of photons emitted from the exciton-biexciton
system of a QD can be steered from sub- to the super-
Poissonian by varying the biexciton binding energy, the pump
strength or the temperature [26]. Although the experiments in
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Ref. [25] have been performed on QDs without cavity, the
number of modes in the theoretical modeling was restricted
to two which corresponds to the situation in a QDC. There-
fore, the results should also apply to QDCs. Simulations for
a pulsed excitation of a QDC indicate that Q can exhibit
oscillations and change its sign repeatedly in time [27].

It is clear, however, that in general the photon number
distribution contains much more detailed information than
captured by the mean photon number or the Mandel param-
eter. Recently, calculations of the stationary photon number
distribution in a constantly driven QDC revealed a strong
qualitative influence of phonons on the shape of the dis-
tribution [28,29]. While without phonons distributions with
many different shapes were found for different detunings, the
stationary distribution with phonons turned out to be close to
a thermal state with a high effective temperature. Note that the
case without phonons describes, e.g., a cavity with a trapped
atom.

Advances in measuring techniques have demonstrated pos-
sibilities for observing directly the photon number resolved
distributions in various systems without the necessity to per-
form quantum tomography to reconstruct the entire state [30],
ranging from bimodal microlasers [31] over QDs [32,33] to
exciton-polariton condensates [34]. Furthermore, a novel al-
gorithm for data evaluation free of systematic errors to obtain
number distributions has been successfully employed [35].
These achievements could pave the way to novel applications
where easy access to information encoded in the photon
number distribution is needed.

The focus of the present paper is on the transient behavior
of the photon number distribution in a QDC system driven
by chirped pulses in comparison to the unchirped case. Our
most striking result is the finding that the shape of the num-
ber distribution changes dynamically when driving the QDC
with chirped pulses. In sharp contrast, for sufficiently strong
unchriped excitations a wave packet which keeps a bell shape
for all times moves up and down the Jaynes-Cummings ladder.
Phonons have noticeable effects on the photon statistics for all
excitation conditions that we compare. Notably, for chirped
excitation the phonon impact induces qualitative changes of
the shape of the distribution in particular for negative chirps.

II. THEORY

A. Model and methods

We study a self-assembled QD, e.g., GaAs/In(Ga)As, with
strong electronic confinement, such that only the lowest con-
duction and the highest valence band states need to be taken
into account. Furthermore, we consider only situations where
the system is well represented by a two-level model. The latter
applies, e.g., for resonant driving of the exciton by circularly
polarized light when the fine-structure splitting is negligible
or when all other states such as the biexciton are sufficiently
far from resonance. Then the Hamiltonian for the laser driven
dot reads

HDL = −h̄�ωLX|X 〉〈X | − h̄

2
f (t )

× (
e−iϕ(t )|X 〉〈G| + eiϕ(t )|G〉〈X |), (2)

where the detuning between the exciton and central laser
frequency �ωLX := ωL − ωX is introduced. Here, the ground
state |G〉 is chosen as the zero of the energy scale. Note that the
usual dipole and rotating wave approximations are employed
and the Hamiltonian is written down in a frame co-rotating
with the laser frequency ωL. The real amplitude f (t ) and the
phase ϕ(t ) are related to the instantaneous Rabi frequency
�(t ) by

�(t ) := 2M0 · E(t ) = f (t ) e−i(ωLt+ϕ(t )), (3)

where M0 is the dipole matrix element of the transition
between the QD ground |G〉 and exciton state |X 〉 and E is
the positive frequency part of the laser field.

To enhance the coupling between the QD and the electro-
magnetic field, the dot can be placed into a microcavity. We
account for a single cavity mode with frequency ωC far from
the electromagnetic continuum and a QD coupled to that mode
close to resonance via

HC = h̄�ωCLa†a + h̄g
(
a†|G〉〈X | + a|X 〉〈G|), (4)

where the cavity photons are created (annihilated) by the
bosonic operator a† (a) and are detuned by �ωCL := ωC − ωL

from the laser frequency. The QD is coupled to the cavity with
a strength of h̄g.

The subsystem of interest comprising the dot laser and the
cavity Hamiltonian HDL and HC, respectively, is not an ideal
few-level system, since it is embedded into the surrounding
solid-state matrix. Even at cryogenic temperatures of a few
Kelvin, the QD exciton is prone to the coupling to phonons.
In strongly confined excitonic systems, the most important
phononic contribution usually results from the deformation
potential coupling to longitudinal acoustic (LA) phonons and
is of the elastic pure dephasing type [36–39],

HPh = h̄
∑

q

ωqb†
qbq + h̄

∑
q

(
γ X

q b†
q + γ X∗

q bq
)|X 〉〈X |, (5)

where the bosonic operator b†
q (bq) creates (destroys) phonons

with frequency ωq. γ X
q denotes the coupling constant between

the exciton state and the bosonic mode labeled by its wave
vector q which is adequate for bulk phonons. Here, we use
the fact that in GaAs/In(Ga)As the lattice properties of the
dot and its surroundings are similar, such that phonon confine-
ment is negligible. Other QD-phonon interaction mechanisms
like, e.g., the piezoelectric coupling to LA and transverse
acoustic (TA) phonons can become important in strongly polar
crystals such as, e.g., GaN-based QDs [40,41], but are of
minor importance for GaAs-type structures.

Finally, we account for Markovian loss processes by phe-
nomenological decay rates for the radiative decay and cavity
losses, respectively, that are incorporated into the model as
Lindblad-type superoperators L|G〉〈X |,γ • +La,κ• with

LO,�• = �

(
O • O† − 1

2
{•, O†O}+

)
, (6)

where {·, ·}+ denotes the anticommutator. O is a system
operator and � the decay rate of the associated loss process,
i.e., in our case γ stands for the radiative decay rate while κ is
the cavity loss rate.
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The dynamical equation to be solved is the Liouville-von
Neumann equation for the density matrix,

∂

∂t
ρ = − i

h̄
{H, ρ}− + L|G〉〈X |,γ ρ + La,κρ, (7)

with the total Hamiltonian H = HDL + HC + HPh and {·, ·}−
denotes the commutator.

We employ a path-integral formalism for simulating the
dynamics in the above-defined model in a numerically com-
plete fashion. By tracing out the phonon degrees of freedom
analytically, a non-Markovian memory kernel decaying on a
time scale of a few picoseconds is obtained that manifests
in experiments as, e.g., non-Lorentzian line shapes in linear
and nonlinear spectra [37,38,42,43] or in characteristic de-
pendencies of the phonon-induced damping of Rabi rotations
[44–47]. Therefore, this memory cannot be neglected in cal-
culating the QD dynamics which takes place on a similar
time scale. We call a numerical solution complete if a finer
time discretization or a longer cutoff of the phonon-induced
memory kernel does not change the results noticeably.

Most current implementations of the real-time path-
integral approach are based on the pioneering work of Makri
and Makarov [48,49], who introduced an iterative scheme for
the augmented density matrix of the subsystem of interest. We
are using an extension of this scheme that allows the inclusion
of non-Hamiltonian Lindblad-type contributions into the path-
integral algorithm without the loss of precision with respect
to the phonon-induced part of the dynamics by formulating
the iterative scheme not in a Hilbert, but a Liouville space
[50]. In the present study, the system that couples to the
phonons is represented by a large number of basis states of
the form |G, n〉 and |X, n〉 where n denotes the photon number
and G or X indicates whether the dot is in its ground or
excited state. A numerically complete study of such systems
is currently impossible with the Makri-Makarov algorithm
due to the extreme growth of the numerical demand with
rising number of system states. Nevertheless, we are able to
present numerically complete results because we are using a
recently developed reformulation of the algorithm that iterates
a partially summed augmented density matrix [28]. Note that
this reformulation of the path-integral algorithm does not
introduce any additional approximations. For details on the
methods, consider the supplement of Ref. [28]. The photon
number distribution is obtained by taking the corresponding
matrix element of the subsystem’s reduced density operator
ρ̄ = TrPh[ρ], with TrPh denoting the trace over the phonon
degrees of freedom,

Pn(t ) =
∑

ν=G,X

〈ν, n|ρ̄(t )|ν, n〉. (8)

B. Chirped pulses and laser-dressed states

In order to generate a chirped pulse one usually starts with
a Gaussian pulse with an envelope and phase:

f0(t ) = �√
2πσ

e− (t−t0 )2

2σ2 , (9)

ϕ(t ) = const., (10)

where � denotes the pulse area and σ determines the duration
corresponding to a full width at half maximum (FWHM) of
FWHM = 2

√
2 ln(2)σ and t0 marks the time of the pulse

maximum. We shall assume in the following a resonant ex-
citation where ϕ(t ) = 0 in Eq. (3) for an unchirped pulse.
We note in passing that also other pulse shapes are possible
as a starting point for the generation of chirped pulses. In
particular, secant hyperbolic pulses may have advantages in
certain circumstances [51].

Passing the initial pulse in Eq. (9) through a Gaussian chirp
filter [52] yields a chirped pulse with envelope and phase:

fchirp(t ) = �chirp√
2πσchirp

e
− (t−t0 )2

2σ2
chirp , (11)

ϕ(t ) = a (t − t0)2/2, (12)

pulse area �chirp = �
√

σchirp/σ and duration σchirp =√
(α2/σ 2) + σ 2. The phase in Eq. (3) has acquired a quadratic

time dependence, which corresponds to an instantaneous laser
frequency ωL + ϕ̇ = ωL + a (t − t0) that changes linearly in
time and for ωL = ωX crosses the exciton resonance at the
pulse maximum t = t0. The strength of the chirp is commonly
expressed in terms of the chirp parameter α which is related
to the coefficient a in Eq. (12) by a = α/(α2 + σ 4). Note
that the pulse area and in particular the pulse length increases
drastically when chirps are introduced (cf. the definition of
σchirp).

III. NUMERICAL RESULTS ON TRANSIENT PHOTON
STATISTICS

For the numerical calculations, we assume a QD with 6-nm
diameter and standard GaAs parameters [28,41]. The cavity is
coupled to the QD exciton with a strength of h̄g = 0.1 meV
while it is on resonance, i.e., �ωCX := ωC − ωX = 0. The
cavity losses are taken to be h̄κ = 6.6 μeV, which corre-
sponds to a quality factor ≈105 assuming a mode frequency
of h̄ωC = 1.5 eV. The radiative decay rate of the QD exciton
is set to h̄γ = 2 μeV.

A. The chirp-free situation

Let us first concentrate on the chirp-free case. Figures 1(a)
and 1(c) display photon number distributions at different times
for a QDC driven by an unchirped Gaussian pulse with a pulse
area of 5π and a duration of 2.4 ps FWHM. Figure 1(a) shows
results without phonons while in Fig. 1(c) the corresponding
simulations with phonons are depicted assuming the phonons
before the pulse to be in thermal equilibrium at a temperature
of T = 4 K. The initial state for the cavity photons is taken
to be the vacuum, i.e., the n = 0 Fock state and the QD is
initially in the ground state.

As expected the photons stay in the vacuum state until the
arrival of the pulse. At the end of the 5π pulse (cf. black
markers in Fig. 1) the QD is in the exciton state and the
resonant coupling to the cavity initiates vacuum Rabi oscilla-
tions [53–57], i.e., oscillations between the |X, n = 0〉 and the
|G, n = 1〉 states. This is reflected in the photon distribution
as oscillations between the n = 0 and n = 1 Fock states and
results in damped oscillations of the mean photon number
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FIG. 1. Transient photon number distributions for laser excitations with unchirped pulses with (a) and (c) pulse area � = 5π and duration
FWHM=2.4 ps, (b) and (d) pulse area � = 31.63π and duration FWHM = 94.22 ps. Panels (c) and (d) display results accounting for phonons
that are initially at equilibrium at a temperature of T = 4 K while the corresponding phonon-free results are shown in (a) and (b). The pulse
has its maximum at t = t0. Black markers indicate the FWHM of the pulse.

between zero and and a maximal amplitude that due to losses
and phonon effects is below one [cf. orange curve in Fig. 3(a)].
Quantitatively, a small occupation of the two-photon state |2〉
is observed, seen, e.g., for t − t0 = 10 ps in Figs. 1(a) and 1(c).
The reason lies in the re-excitation of the QD during the same
pulse, whereby effectively two photons can be put into the
single cavity mode.

The phonon impact on Rabi-type oscillations in a two-level
system has been extensively studied [29,44–47,58–64] and
shall therefore not be analyzed here in detail. We just note
that the main effects are a phonon-induced damping, which
depends on the driving strength, and a renormalization of
the Rabi frequency. The renormalization of g is reflected in
Figs. 1(a) and 1(c) by slightly different oscillation frequen-
cies. The damping seen in the orange curve in Fig. 3(a) is the
result of the combined effects of phonons, cavity losses, and
radiative decay.

For a fair comparison between unchirped and chirped
pulses, recall that the application of a Gaussian chirp filter in-
volves besides the time-dependent variation of the phase ϕ(t )
in Eq. (12) also a considerable increase of the pulse duration
and of the pulse area. Therefore, we show in Figs. 1(b) and
1(d) the photon distribution with and without the influence of
phonons for a pulse with pulse area � = 31.63π and duration

FWHM = 94.22 ps, which corresponds to the application of a
filter with an effective value of |α| = 40 ps2 in Eq. (11) but
keeping the phase ϕ(t ) = 0 constant. Most strikingly, with
this driving there are no traces of vacuum Rabi oscillations
visible. Instead, a wave-packet-type dynamics sets in, where
a bell-shaped distribution is found for all times. The mean
photon number rises monotonically in time to values n ≈ 12
[note that the blue curve in Fig. 3(a) is scaled down by a factor
of 5 for better visibility] and subsequently falls back to zero
after the pulse has vanished.

B. Finite chirps

Figure 2 displays transient photon number distributions
obtained for chirped pulses that are generated by passing
the Gaussian pulse used in Figs. 1(a) and 1(c) through a
chirp filter with α = ±40 ps2 [(a) and (c) α = −40 ps2,
(b) and (d) α = +40 ps2]. The upper panels correspond to
simulations without phonons while for the lower panels the
interaction with phonons has been included. Note that the
pulses used in Fig. 2 have the same pulse area and duration as
the unchirped pulses used in Figs. 1(b) and 1(d) which allows
us to compare excitation conditions where the only difference
is the frequency modulation.
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FIG. 2. Transient photon number distributions for laser excitations with chirped pulses with pulse area and FWHM before the chirp filter
of � = 5π and FWHM=2.4 ps, i.e., �chirp = 31.63π and duration FWHMchirp = 94.22 ps for |α| = 40 ps2. (a) and (c) Calculated with chirp
parameter α = −40 ps2, (b) and (d) α = +40 ps2. (c) and (d) Displayed are results accounting for phonons that are initially at equilibrium at
a temperature of T = 4 K while the corresponding phonon-free results are shown in (a) and (b). The pulse has its maximum at t = t0. Black
markers indicate the FWHM of the pulse after the chirp filter.

FIG. 3. The time-dependent (a) mean photon number and (b) Mandel parameter Q(t ) = (〈�n2〉 − 〈n〉)/〈n〉 for the cases indicated by the
labels. All curves are calculated with phonons initially at T = 4 K, except for the gray curves which correspond to the phonon-free case. The
blue curve is scaled down by a factor of 5 for better visibility. The inset in (b) corresponds to a zoomed-in scale.
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In the phonon-free case identical distributions are obtained
for positive and negative chirp [cf. Figs. 2(a) and 2(b)]. This
symmetry is removed when phonons are taken into account
[cf. Figs. 2(c) and 2(d)]. In contrast to the unchirped case with
the same pulse area and duration in Figs. 1(b) and 1(d), the
photon number is close to zero until the pulse maximum is
reached, which can be explained by noting that for chirped
pulses the instantaneous laser frequency is strongly detuned
from the QD resonance for times away from the pulse maxi-
mum. The most striking difference compared with Figs. 1(b)
and 1(d) is, however, that the photon distributions in Fig. 2
significantly change their shape in time. The distributions
found in the phonon free case have at early times after the
pulse maximum a bell shape with a single maximum and
transform into a bimodal distribution with two well-separated
bell-shaped contributions at later times [cf. t − t0 = 20 ps
in Fig. 2(a)]. Subsequently, at times t − t0 ≈ 30−50 ps the
distribution still has two peaks but looks rather jagged having
little resemblance with bell-shaped distributions. Eventually,
at later times only a single maximum is found which appears
at a finite photon number or at zero, depending on time.

Phonons change the situation qualitatively for negative
chirp [cf. Fig. 2(c)], where now the photon number distri-
bution has a single maximum at n = 0 for all times. The
shape of the transient distribution resembles thermal photon
occupations, which due to mean photon numbers around n =
2 [cf. Fig. 3(a)] corresponds to an effective temperature above
Teff ≈ 40 000 K for photon energies h̄ωC ≈ 1.5 eV. A similar
impact of phonons on the photon number distribution has been
reported previously for the stationary distribution found at
long times for permanent driving [28]. The phonon impact
for positive chirp is less dramatic [cf. Fig. 2(d)]. As in the
phonon-free case, there are still times where the distribution is
bi-modal while at other times only a single maximum is found.
Overall, the irregular looking shape appearing at certain times
in Figs. 2(a) and 2(b) is smoothened. Moreover, there is a
tendency to build up a maximum near n = 0.

Further differences between the number distributions in
Figs. 1 and 2 are revealed by looking at the time evolution of
the corresponding Mandel parameters Q(t ) in Fig. 3(b). For
a Fock state the number fluctuation disappears, leading to a
negative Mandel parameter, except for the n = 0 Fock state,
where the Mandel parameter approaches an expression of the
form zero divided by zero. We see from the orange curves in
Fig. 3 that for weakly driven unchirped pulses the damped
oscillation of the mean photon number between 0 and at
most 1 is accompanied by damped oscillations of the Mandel
parameter ranging down to almost −1 and up to essentially 0.
The negative values of the minima correspond to times where
the system is close to the n = 1 Fock state. If the dynamics
would exclusively involve states with photon numbers 0 or 1
such that only P0 and P1 are different from zero, it is easy to
show that for all times, where P1 �= 0, the Mandel parameter
is Q(t ) = −〈n〉. Therefore, Q should approach 0 when the
n = 0 Fock state is approached. We see, however, from the
orange curve in Fig. 3(b) that the first maxima of the Mandel
parameter Q are a bit above 0, indicating small admixtures of
higher number states.

For higher pulse areas Q is positive for most of the time for
chirped as well as for unchirped pulses. Interestingly, although

the bell-shaped distributions in Figs. 1(b) and 1(d) at first
glance resemble much more Poissonian distributions than the
somehow irregular ones found for chirped pulses in Figs. 2(b)
and 2(d) their deviation from a Poissonian as measured by the
Mandel parameter is much larger than for chirped pulses [note
that the blue curve in Fig. 3(b) is scaled down by a factor of
5]. But most remarkably, in the calculation with finite chirp
without phonons [cf. the gray line in Fig. 3(b)] the Mandel
parameter decays extremely fast after its initial rise to positive
values compared with the other situations considered. Most
notably, already at around ∼40 ps after the pulse maximum it
has dropped close to zero. In sharp contrast to the common
interpretation that a Mandel parameter near zero implies a
distribution with a shape close to a Poissonian, Fig. 2(b) shows
a jagged distribution with two maxima at ∼40 ps after the
pulse maximum. Therefore, using the Mandel parameter as
a measure for the deviation from a Poisonian is not valid in all
physically relevant situations.

We further note that the Mandel parameter calculated for
all excitation conditions studied in this paper changes its sign
during the course of time. Without chirp and low intensities
(orange curve) this happens near the first maxima of the Q
oscillations, as discussed above, but also for higher driving
strength (blue curve) a sign change occurs indicating that
before the pulse maximum is reached the photon distribution
is sub-Poissonian and switches at the pulse maximum to
super-Poissonian. Also for the chirped excitations Q exhibits
sign changes as revealed by the inset in Fig. 3(b). Actually,
the Mandel parameter calculated for high pulse areas falls
below zero before approaching its asymptotic value of zero
from below for chirped as well as for unchirped excitations.
Indeed, also the blue curve in Fig. 3(b) falls below zero at
t − t0 = 1090 ps (not seen in the plotted range). This sign
change of Q shortly before cavity losses have relaxed the
photon distribution to the empty cavity, can be understood
as follows. The maximal photon numbers that are transiently
reached for high pulse areas are well above one. The cavity
losses remove photons from the cavity such that eventually
the limit of n = 0 with zero fluctuations is reached. However,
since the cavity losses for a state with n photons scale like
∼n, the relaxation from states with n > 1 to lower states is
faster than the final relaxation from the n = 1 to the n = 0
states. Therefore, before the final relaxation is completed the
photons preferably occupy the n = 1 state which results in
a negative Mandel parameter before the asymptotic value of
zero is reached. Note that this effect presumes only κ �= 0
and thus should be robust with respect to variations of this
parameter.

Finally, we note that Q exhibits small amplitude oscilla-
tions for chirped pulses which are absent in the unchirped
case. A similar but less pronounced tendency is seen in the
mean photon number.

C. Interpretation in terms of laser-dressed states

A popular application of driving QDs with chirped laser
pulses is the robust preparation of exciton or biexciton
states by invoking an adiabatic rapid passage (ARP) process
[65–75]. ARP exploits the adiabatic theorem of quantum me-
chanics which predicts a time evolution through instantaneous

205304-6



TRANSIENTLY CHANGING SHAPE OF THE PHOTON … PHYSICAL REVIEW B 101, 205304 (2020)

FIG. 4. Time evolution of the upper and lower laser-dressed state energies with respect to the excitation pulse maximum at t = t0. While
for negative chirps (a) phonon emission is probable (represented by black arrows), for positive chirps (b) phonon absorption is suppressed at
low temperatures, which is indicated by the dashed arrows. Green curly arrows indicate transitions between laser-dressed states due to the QD
cavity feeding.

eigenstates (dressed states) of the system provided the external
driving fulfills the restrictions of the adiabatic regime [76].
In order to comply with these restrictions for a two-level
system driven by Gaussian chirped pulses with a frequency
modulation given by Eq. (12), it is advisable to transform the
QD-laser Hamiltonian HDL in Eq. (13) to a frame co-rotating
with the phase ϕ to get rid of a possibly rapidly changing
coupling. The transformed Hamiltonian reads

H̃DL = − h̄(�ωLX + a (t − t0))|X 〉〈X |

− h̄

2
f (t )(|X 〉〈G| + |G〉〈X |). (13)

The laser-dressed states can now be defined as the instanta-
neous eigenstates of H̃DL. The corresponding eigenenergies
are plotted in Fig. 4, where the left panel corresponds to a
negative chirp while the result for positive chirp is shown in
the right panel. The distinctive feature of ARP is that when the
system is in the ground state |G〉 long before the pulse (i.e.,
for t → −∞) it will evolve adiabatically towards the exciton
state |X 〉 after the pulse (i.e., for t → +∞) independent of
the sign of the chirp. However, it is important to note that
the evolution proceeds along the lower (upper) branch for
positive (negative) chirp. This affects in particular the impact
of phonons. In general phonons can efficiently induce transi-
tions between the two branches. However, at low temperatures
phonon absorption is strongly suppressed and phonon emis-
sion can invoke only transitions from the upper to the lower
branch (cf. the black arrows in Fig. 4). That is why phonons
have little effects on the ARP dynamics for positive chirp
while for negative chirp the ARP-based exciton preparation
is strongly disturbed [68,70,73,74]. In order to preserve an
efficient exciton preparation also at negative chirps, it has been
recently demonstrated that high pulse areas can be used since
this effectively decouples the phonons from the electronic
system [29,75].

When also a cavity is coupled to the QD, then the cou-
pling leads to Rabi-type rotations between states |X, n〉 and

|G, n + 1〉 with different numbers n of cavity photons. In
particular for times when the laser is far off-resonant and
the laser-dressed states are close to the undressed states, the
effect of coupling the QD to a cavity can be understood as
inducing a transition between the dressed states similar to
the coupling to phonons. To be a bit more specific, when the
system is in the exciton state the QD-cavity coupling leads to a
feeding of the cavity by an additional photon accompanied by
a transition from the |X 〉-like branch to the |G〉-like branch (cf.
the green curly arrows in Fig. 4). At early times, the reverse
process, where one photon disappears from the cavity while
transferring the system from the ground to the exciton state is
suppressed since there are initially no photons in the cavity.

We shall now try to interpret the pertinent features of the
photon dynamics in some more detail using the simplified
picture where the system evolves adiabatically through the
laser-dressed states in Fig. 4 while phonons and cavity feeding
induce transitions between these states.

In the case of a negative chirp [cf. Fig. 4(a)] transitions
form the upper branch to the lower branch of the laser-dressed
states accompanied by phonon emission are possible before
and after the pulse maximum at t = t0. Thus, phonons should
have a profound impact on the resulting photon statistics dur-
ing the entire pulse. In fact, this explains why the distribution
is close to a thermal one at all times [cf. Fig. 2(c)]. For times
before the pulse reaches its maximum, cavity feeding can
occur form the excitonlike lower branch to the upper branch,
which has a large ground-state contribution. Subsequently, the
system can again decay to the lower branch by phonon emis-
sion followed by another cavity feeding process back into the
upper branch and so on. Because of this constructive interplay
between phonon and cavity feeding processes, higher photon
states can be reached compared with the phonon-free situation
for t � t0 [cf. Figs. 2(a) and 2(c)]. In the time interval shortly
after the pulse maximum the upper branch becomes the state
with the excitonlike characteristics and cavity feeding now
takes place from the upper branch into the ground-state-like
lower branch of the laser-dressed states. Thus, after the pulse
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FIG. 5. (a) Linear absorption spectrum of the QDC system. (b) Time-dependent instantaneous frequency, blue (red) for positive (negative)
chirp. �t marks the time elapsed between the crossing of the two resonances. (c) and (d) Time evolution of the occupations of the lowest
excited eigenstates of the QDC system [(c) for positive and (d) for negative chirp]. (e) and (f) Photon number distribution at t − t0 = 20 ps
(gray); red, accounting only for |n,+〉 (e) or |n, −〉 (f) states. Here, only phonon-free results are shown.

maximum has appeared phonon and cavity feeding processes
are now in direct competition with each other. Therefore,
compared with the phonon-free situation, the mean photon
number should be reduced. Altogether, for negative chirp, the
phonon impact on the photon distributions is visible at all
times leading to nearly thermal distributions. At times before
the pulse maximum the interaction with phonons increases
the mean photon number because of a constructive interplay
between phonon and cavity feeding processes. This effect
is reversed after the pulse maximum and the mean photon
number is reduced compared with the phonon-free situation
due to the phonon interaction, as can be seen comparing the
red with the gray curve in Fig. 3(a).

The situation is different when the chirp is positive as
seen in Figs. 2(b) and 2(d). Here, a phonon influence on
the photon statistics can be hardly seen before the pulse
maximum. This can again be explained by inspection of the
branches of the laser-dressed states. Starting in the ground
state the system evolves adiabatically alongside the lower
branch. Since phonon absorption processes are suppressed at
low temperatures, transitions to the excitonlike upper state
are unlikely to occur. Also cavity feeding is hardly possible
[cf. Fig. 4(b)] and, like in the phonon-free situation, the
system remains essentially in the ground state without photons
and phonons have almost no visible effect. This observation
changes after the pulse maximum. Now, cavity feeding pro-

cesses accompanied by transitions from the excitonlike lower
branch to the upper branch appear. Subsequently, phonon
emission processes take place, resulting in a transition back to
the lower branch. Thus, now, a constructive interplay between
phonon emission and cavity feeding is possible, leading to
a thermalization of the photon distribution. Therefore, after
a transition time of a few 10 ps the distribution resembles
a thermal distribution. Because of the constructive interplay
the mean photon number is increased compared with the
phonon-free situation, as can be seen comparing the cyan with
the gray curve in Fig. 3(a). Consequently, only for a finite
time interval after the pulse maximum photon distributions
can be detected which are similar to the distributions in the
phonon-free situation and display irregular behavior or several
maxima.

D. Interpretation in terms of cavity-dressed states

Finally, we would like to explain why chirped pulse exci-
tation leads to photon number distributions where the number
of maxima changes dynamically from one to two and back
to one. To this end we have to go beyond the laser-dressed
state picture and recall that the linear absorption of a QDC
comprises two lines split by �ω = 2g [cf. Fig. 5(a)]. Thus,
the instantaneous frequency of a pulse with positive chirp first
crosses the energetically lower resonance and then, delayed
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by a time �t = 2g/a, the higher one [cf. Fig. 5(b)]. Each
crossing of these resonances initiates a wave packet climbing
up the Jaynes-Cummings ladder. This behavior is efficiently
described in the picture of the cavity-dressed states, i.e., the
eigenstates of the dot-cavity Hamiltonian, which relate to the
bare QD states by

|n,+〉 = 1√
2

(+|X, n〉 + |G, n + 1〉),

|n,−〉 = 1√
2

(−|X, n〉 + |G, n + 1〉), (14)

in the case of a resonant cavity mode ωX − ωC = 0.
Starting from the state |G, 0〉 only the two states |0,±〉

can be reached directly by the laser coupling and thus climb-
ing up the Jaynes cummings ladder one has to pass these
states. Since the corresponding eigenenergies are separated
by 2g, the transitions to these states are in resonance with
the instantaneous frequency of a chirped pulse at different
times. Indeed, Fig. 5(c) reveals that the occupation of the
lowest excited eigenstate of the QDC system |0,−〉 rises
before the upper state |0,+〉 acquires a noticeable occupation.
The maximum occupation of |0,−〉 is reached ≈ 5 ps after
the instantaneous frequency has crossed the lower resonance,
revealing the reaction time of the system. |0,+〉 is maximally
occupied delayed exactly by �t from the maximal occupation
of |0,−〉. The time ordering of the excitation of the |0,±〉
states is reversed when reversing the sign of the chirp [cf.
Fig. 5(d)] since now the upper resonance is crossed first.

The laser driving couples |n,+〉 to |n,−〉 states. However,
when the instantaneous frequency is in resonance with transi-
tions between |n,+〉 states with adjacent n then the transitions
to |n,−〉 states are off-resonant and vice versa. Thus, it can be
expected that the packets running up the Jaynes-Cummings
ladder are essentially composed either of |n,+〉 or |n,−〉
states. Indeed, this is confirmed by Figs. 5(e) and 5(f) which
displays in gray the photon number distribution at time t −
t0 = 20 ps, i.e., the time where according to Fig. 2(b) the two
maxima are most pronounced. Also shown in red are photon
number distributions calculated according to

P(±)
n =

⎧⎪⎪⎨
⎪⎪⎩

1
2 (〈n,±|ρ|n,±〉 + 〈n − 1,±|ρ|n − 1,±〉)

for n > 0,

1
2 (〈0,±|ρ|0,±〉 + 〈G, 0|ρ|G, 0〉)

for n = 0

.

(15)

Recalling that for a cavity in resonance with the QD transition
the |n,±〉 states have a probability of 1/2 for finding n or
n + 1 photons, Eq. (15) yields, for n > 0, the probability for
having n photons when accounting only for either the |n,+〉
or the |n,−〉 states. For n = 0 the contribution from |G, 0〉 is
counted by 1/2 for the plus and minus branch, since this state
can be counted as lower or upper state. We note in passing
that P(−)

n [red bars in Fig. 5(e)] does not add up with P(+)
n

[red bars in Fig. 5(f)] to the total photon number Pn (gray
bars in Fig. 5), because Pn comprises coherences between the
|n,+〉 and the |n,−〉 states in addition to their occupations.
Nevertheless, Fig. 5 reveals that the two peaks in the photon
number distribution can be attributed unambiguously either to
the upper or lower branch of the QDC states.

Altogether this explains the time evolution of the peaks
in the photon number distribution. After crossing the first
resonance the distribution has a single peak since at first only
a single packet is climbing up the Jaynes-Cumming ladder.
When the second resonance is crossed a second packet is
initiated such that at t − t0 ≈ 20 ps two well-resolved packets
are observed. Both packets move up and down the Jaynes-
Cummings ladder similar to the single wave packet observed
for the unchirped excitation in Figs. 1(b) and 1(d). Since the
decline of the first packet starts while the second is still rising,
at some time both packets overlap. Although the packets are
no longer well resolved, two maxima are still found over an
extended time period [30 ps � t − t0 � 50 ps in Fig. 2(b)]. At
later times the relaxation drives both packets to low photon
numbers such that the maxima merge and a single-peaked
distribution is recovered.

Finally, we note that for a cavity in resonance with the
QD transition the energies of the QDC eigenstates |n,±〉
are found in the rotating frame at h̄ωn,± = ±g

√
n + 1 such

that the transition energies between states with adjacent n
are all different and decrease with rising n. Therefore, the
instantaneous frequency of a chirped pulse crosses all of these
resonances at different times which is likely to contribute to
the somewhat irregular looking time evolution of the photon
number distribution found in particular in the intermediate
time interval 30 ps � t − t0 � 50 ps in Fig. 2(b).

IV. CONCLUSION

We have studied transient photon number distributions
generated in a microcavity by a pulsed excitation of an em-
bedded quantum dot. We find qualitatively different photon
distributions for chirped and unchirped pulses. Phonons have
a noticeable influence on the photon distributions in particular
for negative chirps, where the phonon coupling introduces
qualitative changes of the shape of the distribution already
at a temperature of T = 4 K. To be more specific, phonons
lead in this case to almost thermalized photon distributions at
high effective temperatures for all times. For positive chirp,
the transient distributions are far away from a thermal one for
times after the pulse maximum until about 80 ps afterwards.

For all investigated cases, we find that the Mandel param-
eter changes its sign during the time evolution of the system,
indicating the ability to enter and leave a regime of genuine
nonclassical photon statistics in the course of time. Moreover,
cases were encountered where the Mandel parameter is zero,
but the photon number distribution has two peaks and is defi-
nitely not a Poissonian. Therefore, one has to be careful when
using the Mandel parameter as a measure for the deviation
from a Poissonian distribution, as it is often done [24,77–80].
This finding underlines the necessity to carefully consider the
definition of the Mandel parameter, which indeed yields zero
for a Poissonian distribution. But the reverse implication is
obviously not true for all cases.

Our most striking result is, however, that the shape of
the photon number distribution changes significantly during
the time evolution when the system is excited by chirped
pulses. In fact, when the excitation starts to populate states
with higher photon numbers, one observes at first bell-shaped
distributions with a single maximum that increases in time.
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Subsequently, two well-separated bell-shaped contributions
develop which at later times first evolve into a single broad
feature with two peaks and eventually merge into a distri-
bution with a single peak. This is in sharp contrast to the
unchirped case, where for the same high driving strengths the
photon number distributions keep a bell shape with a single
maximum for all times. Our analysis reveals that the transient
changes of the shape of the photon distribution in the chirped
case can be attributed to subsequent crossings of resonances
of the quantum-dot–cavity system by the instantaneous fre-
quency.

We believe that our findings deepen the understanding
of the transient behavior of photon distributions in a driven
quantum-dot–cavity system and its dependence on the driving

conditions. This might pave the way to targeted manipulations
of photon distributions which could result in new types of
photonic applications in the future.
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