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Excitons in Cu2O: From quantum dots to bulk crystals and additional
boundary conditions for Rydberg exciton-polaritons
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We propose schemes for calculation of optical functions of a semiconductor with Rydberg excitons for a
wide interval of dimensions. We have started with a zero-dimensional structure (quantum dot), then going
to one-dimensional (quantum wire), two-dimensional (quantum wells and wide quantum wells), and finally
three-dimensional bulk crystals; our analytical findings are illustrated numerically, showing an agreement with
available experimental data. Calculations including exciton-polaritons are performed; the case of a large number
of polariton branches is discussed, and obtained theoretical absorption spectra show good agreement with
experimental data.
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I. INTRODUCTION

Since 2014 the Rydberg excitons (REs) in cuprous oxide,
first observed by Kazimierczuk et al. [1], have been the
subject of extensive research. Unusual properties of REs [2,3]
manifested in their interaction with external fields below [4–7]
and above the gap energy [8] in linear and nonlinear [9,10]
regimes have been studied, both experimentally [1,11,12] and
theoretically [13–15], the list being far from complete.

In recent years, there has been a dedicated effort to describe
the spectroscopic and optical properties of REs, and several
methods have been applied. Calculations based on group
theory have been used to obtain the dependence of the spectra
on the geometry of external fields [6,11] for REs up to n =
5, while application of the mesoscopic real density-matrix
approach (RDMA) has turned out to be fruitful for description
of the optical function of semiconductor crystals including
REs for the case of indirect interband transitions, as it was
shown in the series of papers by Zielińska-Raczyńska et al.
[13–15]. This approach has turned out to be very flexible
and general; it allows one to obtain detailed description of
RE resonances in various external field configurations and
for all excitonic states. This, in turn, provides data necessary
for potential implementations of REs such as high power
excitonic masers [16] and tunable electromodulators [17].

The majority of papers on REs in Cu2O considered REs in
bulk crystals or in plane-parallel slabs with dimensions much
greater than the incident wavelength and the effective Bohr
radius. However, cuprous oxide nanostructures have recently
received attention [18]. It seems that quantum-confined struc-
tures with REs may be of interest both to research scientists
who would be able to explore uncharted areas of fundamental
physics of REs in semiconductors in confined geometry and
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to engineers who might use their unique properties for device
applications in the future, paving the way for a whole
new class of apparatus such as detectors and optoelectronic
switches. The growing interest in optical properties of low-
dimensional systems (LDSs), such as quantum wells, wires,
and dots, with Rydberg excitons is noticeable [19,20]. Taka-
hata et al. [19] have begun studies on REs in low-dimensional
structures, performing observations of nonlocal response of
weakly confined REs in plane-parallel Cu2O films, the thick-
nesses of which ranging from 16 to 2000 nm, which are much
smaller than those from first experiments, i.e., in Refs. [1,11],
where the bulk dimension was around 30–50 μm. Konzel-
mann et al. [20] have studied theoretically the optical prop-
erties of LDSs with Rydberg excitons, focusing their attention
on the impact of confinement potentials on the energy shifts
of REs in Cu2O LDSs. Inspired by these novel LDSs in Cu2O,
we aim to analyze their optical properties, taking into account
multiple Rydberg states.

Quantum size effects become important when the thickness
of the layer L becomes comparable with the de Broglie wave-
length of the electrons or holes. The structures with quantum-
confinement effects include zero-dimensional quantum dots
(QDs), one-dimensional (1D) quantum wires (QWWs), and
two-dimensional (2D) quantum wells (QWs)—wide quan-
tum wells (WQWs) ending with three-dimensional (3D) bulk
samples. In each case the theoretical description should be
different, since the various relations between the optical con-
finement (characterized by the ratio between wavelength and
dimension λ

L ), the quantum-mechanical confinement (the ratio
of a size in the growth direction to the effective exciton
Bohr radius), and the coherence length have to be taken into
account. In the present paper we will discuss the examples
of QDs, QWWs, QWs, WQWs, and bulk crystals, assuming
in all the cases cylindrical symmetry. We extend the RDMA
to examine systems with various dimensionality, and in all
cases the analytical expressions for susceptibility will be
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derived, which enable one to calculate the absorption spectra.
Moreover, in the bulk system, the role of polaritons, being the
superposition of electromagnetic field and quantum coherence
modes, will be considered and the influence of their relative
contribution on matching the experimental and calculated
resonance positions will be presented.

The paper is organized as follows. In Sec. II we recall the
basic equations of the RDMA. In Sec. III we explicitly derive
the formula for susceptibility for quantum dots, while Sec. IV
is devoted to detailed analysis of the case of quantum wires.
The formulas derived in Sec. II are applied in Secs. V and
VI, which are devoted to presentation of optical properties for
Cu2O quantum wells and wide quantum wells. In Sec. VII we
consider the case of bulk crystals, where the optical properties
for exciting energies near the fundamental gap are dominated
by exciton-polaritons and show the dispersion relation in
such a situation. Section VIII contains illustrative numerical
results, while a summary and conclusions of our paper are
presented in Sec. IX.

II. BASIC EQUATIONS

We will use the real density-matrix approach, applied
to systems with reduced dimensionality, showing the phe-
nomenon of Rydberg states. In this approach the optical prop-
erties are described by equations for the coherent amplitudes
Y12 of the electron-hole pair of coordinates r1 = rh and r2 =
re, and for a pair of conduction and valence bands

−i(h̄∂t + �)Y12 + HehY12 = ME, (1)

where E is the electric field, � is a phenomenological damping
coefficient, M(r) is a smeared-out transition dipole density
which depends on the coherence radius r0 = (Eg/2μh̄2)

−1/2

where Eg is the fundamental gap, μ is the reduced effective
mass of the electron-hole pair, and r is the relative electron-
hole distance [13]. Specific forms of M(r) will be defined in
subsequent sections.

RDMA, adopted for semiconductors by Stahl and Balslev
[21], is a mesoscopic approach [7] which, in the lowest
order, neglects all effects from the multiband semiconductor
structure, so that the exciton Hamiltonian becomes identical
to the two-band effective mass Hamiltonian Heh, which in-
cludes the electron and hole kinetic energy, the electron-hole
interaction potential, and the confinement potentials [22]. In
consequence, the Hamiltonian Heh is given by

Heh = Eg + p2
h

2mh
+ p2

e

2me
+ Veh(1, 2) + Vh(1) + Ve(2), (2)

where the second and the third terms on the right-hand side
are the electron and the hole kinetic-energy operators with ap-
propriate effective masses, the fourth term is the electron-hole
attraction, and the two last terms are the surface confinement
potentials for the electron and hole. The total polarization of
the medium is related to the coherent amplitude by

P(R) = 2Re
∫

d3r M(r)Y (R, r) (3)

where R is the center-of-mass coordinate. This, in turn, is used
in Maxwell’s field equation:

c2∇2E(R) − εbË = 1

ε0
P̈(R). (4)

The excitonic susceptibility χ is then given by

P(ω, k) = ε0χ (ω, k)E(ω, k) (5)

where ω is the frequency of the incident field and the absorp-
tion coefficient can be calculated from

α = 2
h̄ω

h̄c
Im

√
εb + χ, (6)

where εb is the background dielectric constant. Analyzing an
LDS, we will consider cylindrical symmetry of the system
with the z axis parallel to the incident field. Under this
assumption, the constitutive equation (1) for an LDS takes the
form {

Eg − h̄ω − iΓ + p2
ez

2me
+ p2

hz

2mh
+ p2

e‖
2me

+ p2
h‖

2mh

+Veh[(ρe − ρh), ze − zh] + Ve(ze) + Vh(zh)

+Ve(ρe) + Vh(ρh)

}
Y (ρe, ρh, ze, zh)

= M(ρe, ρh, ze, zh)E(R), (7)

where Ve,h(ze,h) and Ve,h(ρe,h) are the confining potentials in
the z direction and in x-y plane, respectively, while Veh is the
electron-hole interaction potential. The ρ =

√
x2 + y2 is the

radial coordinate. The excitonic amplitude Y , obtained from
Eq. (7), is then inserted into Eq. (3), giving the polarization
and, finally, the susceptibility, from which all the optical
functions of the system can be calculated.

III. QUANTUM DOTS

Quantum dot systems are semiconductor structures which
exhibit a fully discrete spectrum due to the size confinement
in all directions. QDs, mostly based on semiconductors like
Si, InAs, GaAs, and other II-VI and III-V compounds, have
been largely investigated and interpreted (for a review see
Ref. [23]).

Among various shapes of QDs (spherical, Gaussian profile,
pyramids, etc.) we have chosen the ones characterized by a
cylindrical symmetry, in particular a disk with the symmetry
axis z, height L, and infinite hard wall potentials for electrons
and holes in the x-y plane at the radius R. The incident elec-
tromagnetic wave is linearly polarized in the x direction. We
assume a parabolic confinement in the z direction and take the
lowest electron and hole states in this direction. To derive the
linear optical properties of quantum dots we need the simul-
taneous solutions of the constitutive interband equation (7)
and of Maxwell’s equations outside and inside the QD, where
the excitonic polarization is given by Eq. (3), including the
boundary conditions (BCs). In that case, constitutive equation
(7) refers to a six-dimensional configuration space (re, rh),
with appropriate BCs for the motion of electrons and holes,
whereas the definition of P(R) (R in Maxwell’s equations)
refers to the excitonic center-of-mass coordinate within the
QD. The complexity of the problem can be reduced with some
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simplifying assumptions. When the carriers (electron or hole)
differ in their effective mass, one possible simplification is to
“immobilize” the quasiparticle with a larger mass in the center
of the dot, and consider the motion of the other quasiparticle
[24]. Contrary to the case of GaAs QDs where the heavier
particle was the hole, in Cu2O it is the electron, so the term
p2

e‖/2me vanishes in the effective mass Hamiltonian (7). The
average position of the electron is in the center of the disk but
it is free to move in the z direction. Both assumptions, i.e., of
the electron bounded at the z axis and of the infinite potential
for the hole, allow us to obtain analytical expressions for the
disk susceptibility. To sum up, in the constitutive equation (7)
we omit the term p2

e‖/2me while the confinement potentials
have the following form:

Ve,h(ze,h) = 1

2
me,hω

2
e,hz2

e,h,

Vh(ρh) =
{

0 for ρh � R,

∞ for ρh > R,
(8)

where 1/2h̄ωe,h are the lowest confinement energies of the
electron and hole in the z direction. We also use the long-wave
approximation, neglecting the spatial distribution of the elec-
tromagnetic wave within the quantum disk. The left-hand side
operator in Eq. (7) includes two one-dimensional harmonic
oscillator Hamiltonians and the two-dimensional Coulomb
Hamiltonian. Therefore the solution for the amplitude Y is
expressed in terms of eigenfunctions:

Yne =
∑

Ne,Nh, j,m

cneNeNh, j,�ψ
(1D)
αez,Ne

(ze)ψ (1D)
αhz,Nh

(zh)ψ jm(ρh, φ),

(9)

where ψ
(1D)
αz,N

(z) (Ne,h = 0, 1, . . .) are the quantum oscillator
eigenfunctions for electron and hole, respectively,

ψ
(1D)
αz,Ne,h

(z) = π−1/4

√
αz

2N
e,hNe,h!

HN (αzz)e− α2
z
2 z2

,

αz =
√

mωz

h̄
, (10)

HN (x) are Hermite polynomials, and m is the effective
mass. In particular, we consider the lowest confinement
state Ne = Nh = 0. The normalized eigenfunctions of the
two-dimensional Coulomb Hamiltonian have different forms,

depending on the sign of the eigenvalue (energy). For the
negative energy we obtain

ψ jm(ξ, φ) = C ξ |m| e−ξ/2M

(
m + 1

2
− λ, 2m + 1, ξ

)
eimφ

√
2π

,

(11)

where j and m are the principal and magnetic quantum
numbers of the excitonic state,

λ = 2

α
, ξ = αρ, α2 = −2mh

h̄2 a∗2
h E ,

M(a, b, z) is the Kummer function (confluent hypergeometric
function) [25], and C is a normalization factor. The eigenfunc-
tion, due to the no escape BCs, satisfies the equation

ψ jm(αR, φ) = 0, (12)

giving the eigenenergies Ejn, j = 0, 1, . . . , n = 1, 2, . . .. In
the region of positive eigenenergies, one obtains

ψ (ξ ) = Ce−iξ ξ |m|M
(

|m| + 1

2
+ i

1

α
, 2|m| + 1, 2iξ

)
. (13)

We use the transition dipole density in the form [7]

M(ρ, ze, zh, φ) = M0

2ρ3
0

ρ e−ρ/ρ0
eiφ

√
2π

δ(ze − zh), (14)

with the integrated strength M0 and the coherence radius
ρ0 = r0/a∗. The coefficient M0 and the coherence radius r0 are
connected through the longitudinal-transversal energy �LT as
[13]

(M0ρ0)2 = 4

3

h̄2

2μ
ε0εba∗ �LT

R∗ e−4ρ0 . (15)

Using the above equations and considering the lowest con-
finement energies Ne = Nh = 0 in the z direction, we obtain
the expansion coefficients (9) in the form

cne00, j,m =
〈
M(ρ, ze, zh, φ)|ψ (1D)

αez,0
(ze)ψ (1D)

αhz,0
(zh)ψ jm(ρ, φ)

〉
Eg + We0z + Wh0z + Eh jn − h̄ω − iΓ

.

(16)

Inserting Yne from Eq. (9) with the above expansion coef-
ficients into Eq. (3) we compute the mean quantum disk
susceptibility. Performing integration in Eq. (16) we obtain
the following expression for the quantum disk susceptibility:

χ̄QD = 72
∑
j=0,1

εb

(
a∗

h

L

)
αezαhz

p
erf

(
L
√

p

2

)(
1 − 8ν jρ0

3(λ j + ρ0)

)2(mh

μ

)(
2

λ j

)4
[(

1 − 8ν j

3
+ 20ν2

j

9

)]−1

× �LT exp(−4ρ0)

Eg + We0z + Wh0z + Eh jn − h̄ω − iΓ
, (17)

where

αez = 1

a∗

√
me

μ

√
We0

R∗ ,

αhz = 1

a∗

√
mh

μ

√
Wh0

R∗ ,

p = 1

2

(
α2

ez + α2
hz

)
,
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We0z =
(

πa∗
e

L

)2

R∗
e ,

Wh0z =
(

πa∗
h

L

)2

R∗
h,

ν j = 3(2 j + 3)

4(2R − 3)
, R = R

a∗
h

,

λ j = j + 3

2
+ 3(2 j + 3)

4(2R − 3)
,

Eh j = − 1

λ2
j

R∗
h, (18)

where erf (z) is the error function [25]. Using the above
expressions, the QD absorption can be calculated from the
imaginary part of the susceptibility (17). It can be seen that
the above expressions are valid in the negative eigenenergies
region. The exciton energies Eh j include both the Coulomb
energy and the in-plane confinement energy.

IV. QUANTUM WIRES

The next type of considered nanostructures is the quantum
wires. In principal they are mostly obtained from intersection
of quantum wells, so their main properties are quite similar
to those of quantum wells. We choose a quantum wire of
cylindrical shape with the radius R and the symmetry axis z.
In the wire geometry, at least in the x-y section, one cannot
separate the relative and the center-of-mass motion, so that
the system has a five-dimensional configuration space. In such
a case it is hard to solve the RDMA constitutive equations,
therefore we use some approximations. As in the case of
QDs, we take advantage of the fact that the effective electron
mass in Cu2O is much greater than the hole mass but the
electron is still allowed to move in the z-axis direction. With
this assumption the basic equation in the RDMA approach (7)
takes the form[

Eg�ene + p2
z

2μ
+ p2

Z

2(me + mh)
+ p2

h

2mh
− e2

4πε0εb

√
r2

h + z2

+Vh(rh) − h̄ω − iΓ

]
Y (rh, z, Z ) = M(rh, z)E(Z ),

(19)

with reduced mass in the z direction μ−1 = m−1
ez + m−1

hz . We
assume that the field has a component E in the z direction and
the transition dipole has a component M in the same direction.
In what follows we use scaled variables rh = ρa∗

h, z =
ζa∗

h, R = R/a∗
h, the confinement potential V in the form (8),

and the boundary condition

Y (ρ = R) = 0. (20)

We will solve the QWW constitutive equation (19) in two
limiting cases: for the strong and the weak confinements.

In the case of the strong confinement limit, we assume that
the confinement effects are larger than the Coulomb attraction
and we use a method analogous to that used in Ref. [7],
transforming Eq. (19) into a Lippmann-Schwinger-type equa-

tion:{
κ2 − mh

μ
∂2
ζ −

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂φ2

)
+ V (ρ)

}
Y

= 2mh

h̄2 a∗2
h M(ρ, φ, ζ )E + 2√

ρ2 + ζ 2
Y, (21)

where κ2 = Eg−h̄ω−iΓ
R∗

h
. Equation (21) can be solved

with the help of the appropriate Green’s function
Gne (ρ, ρ ′; ζ , ζ ′; φ, φ′):

Y = 2mh

h̄2 a∗2
h GM(ρ, φ, ζ )E + G

2√
ρ2 + ζ 2

Y, (22)

where

Gne (ρ, ρ ′; ζ , ζ ′; φ, φ′)

= 1

2π2R2

∞∑
�=0

ei�(φ−φ′ )
∞∑

n=1

J1
( x1,nρ

R
)
J1

(
x1,nρ

′

R

)
[J2(x1,n)]2

×
∫ ∞

−∞
dk

eik(ζ−ζ ′ )

(mh/μ)k2 + κ2
nen

,

κ2
n = κ2 +

(
x2

1,n

R

)2

, (23)

J1 and J2 are Bessel functions of first and second order, and
x1,n are the zeros of J1(x). In order to calculate the suscepti-
bility, we choose the following shape for the amplitude Y :

Y (ρ, z) = Y0

√
2

R |J2(x1,1)|−1J1

(
x1,1

ρ

R
)

× exp(−κ1

√
ρ2 + ζ 2)

eiφ

√
2π

. (24)

The coefficient Y0 is obtained from Eq. (21). In this case, we
use the transition dipole density in the form

M(ρ, φ, ζ ) = M0

ρ0ha∗3
δ(ρ − ρ0h)

eiφ

√
2π

δ(ζ ). (25)

Using the Green’s function (23), one arrives at the following
expression for susceptibility:

χQWW = 2

ε0

2mh

h̄2 a∗
h

MGM

1 − MGVY
MY

, (26)

where V = 2/
√

ρ2 + ζ 2, and

MY = Y0M0|J2(x1,1)|−1J1

(
x1,1

ρ0h

R
)

exp (−κ1ρ0h),

MGM =
(

mh

μ

)3/2

εb
�LT

R∗
1

R2

∞∑
n=1

[
J1

( x1,nρ0h

R
)

J2(x1,n)

]2
1√
κ2

n

,

MGVY = 4M0Y0

R

N∑
n=1

[
J1

( x1,nρ0h

R
)

[J2(x1,n)]2|J2(x1,1)|
1

κ2
n

×
∫ 1

0
du J1(x1,1u)J1(x1,nu)e−Rκnnu

]
. (27)
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In the weak confinement limit we assume that the exciton
center of mass is confined in the x-y plane while the elec-
tron and the hole move upon the action of the screened 3D
Coulomb potential. With the help of these assumptions, the
amplitude Y in Eq. (19) takes the form

Y (r, R) =
∑

j

∑
N

c jNψ j (r)�N (R), (28)

where we adopt the eigenfunctions ψ j (r) of the 3D
Schrödinger equation appropriate for the p excitons and for
a hard wall confinement potential. The eigenfunction �N (R)
has the form

��N (R) =
√

2

R

1

|J�+1(x�,N )|J�

(
x�,N

R⊥
R

)
exp(i��)√

2π
.

Then the susceptibility is given by

χQWW = εb

J∑
j=2

∑
N

f (3D)
j �LT/R∗

(ET j10 − E − iΓ j + WN )/R∗ 〈�0N (R)〉2,

(29)

where ET j10 are the excitonic resonance energies and [13]

f (3D)
j = 32

3

(
j2 − 1

j5

)
exp

[
ρ2

0

(
4

j2
− 1

)]
,

WN = μ

M

x2
0,N

R2
,

〈��N (R)〉 = 1

πR2

∫ 2π

0
d�

∫ R

0
R⊥ dR⊥��N (R).

V. QUANTUM WELL REGIME

In the cases of quantum wells and wide quantum wells the
higher-order states can be obtained when we consider a “two-
dimensional” form of the electron-hole potential:

Veh(ρ) = − e2

4πε0εbρ
. (30)

We use the coherent amplitudes Y of the form

Y (ρ, ze, zh, φ) =
∑
j,m

∑
Ne,Nh

c jmNeNh uNe (ze)uNh (zh)
eimφ

√
2π

ψ
(2D)
j (ρ)

(31)

with confinement functions uNe and uNh . The ψ
(2D)
jm (ρ) are the

eigenfunctions of the Schrödinger equation with the potential
(30) and have the form

ψ jm = 1

a∗
eimφ

√
2π

e−2λρ/a∗
(4λρ)m 4λ3/2 1

(2m)!

[( j + 2m)!]1/2

[ j!]1/2

× M(− j, 2|m| + 1, 4λρ),

λ = 1

1 + 2( j + |m|) , (32)

corresponding to the eigenvalues

Ejm

R∗ = ε jm = − 4

[1 + 2( j + |m|)]2
, (33)

where a∗ and R∗ are the excitonic Bohr radius and Rydberg
energy, respectively. Note that the energy Ejm is usually
modified with a quantum defect δ, which replaces j with j − δ

[26], shifting mostly low- j states and better reflecting the
experimental data [1]. This empirical correction represents a
short-range modification of the Coulomb interaction between
electron and hole due to the complex band structure of Cu2O.
This, in turn, induces deviations of the exciton binding ener-
gies [27]. Following the computation scheme presented above,
we use the dipole density (14) in the same form as in QDs. In
the considered QW regime the typical wavelength of the input
electromagnetic wave is much larger than the QW dimension,
so one usually uses the long-wave approximation. Inserting
the formulas (30) and (31) into the constitutive equation (7)
and the polarization (3), we obtain the effective susceptibility
in the form

χ (2D)(ω) =
∞∑
j=0

∑
Ne,Nh

εb�LTa∗ f (2D)
j aNe,Nh

L
(
Eg − h̄ω + Ej + WNe + WNh − iΓ jNeNh

) ,

f (2D)
j1 = 48

( j + 1)( j + 2)(
j + 3

2

)5

1

(1 + 2λρ0)8

×
[

F

(
− j, 4; 3;

4λρ0

1 + 2λρ0

)]2

,

Ej = − 4

(2 j + 3)2
R∗,

aNe,Nh =
∫ ∞

−∞
uNe (z)uNh (z)dz, (34)

where WNe and WNh are the eigenvalues of the confinement
eigenfunctions, F (a; b; c; z) is the Gauss hypergeometric se-
ries [25], and the damping coefficients Γ jNeNh are specified for
any set of quantum numbers. In particular, we use the model
presented in Ref. [16], which takes into account a temperature
dependence and the effects of phonon scattering [28,29]. All
results are calculated for cryogenic temperature (T = 10 K).
Again, assuming the infinite steplike confinement potentials
Ve,h for the electrons and the holes, eigenfunctions of the
corresponding Schrödinger equation(

− h̄2

2me,h

d2

dz2
+ Ve,h

)
u = WNe,h u (35)

have the form

uNe,h (z) =
√

2

L
sin

(
Ne,hπz

L

)
(36)

and the eigenvalues are

WNe = μ

me

(
πa∗

L

)2

N2
e R∗,

WNh = μ

mh

(
πa∗

L

)2

N2
h R∗, (37)
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where Ne,h = 1, 2, . . .. Using the above expressions we obtain
the final form of the QW effective susceptibility:

χ (2D) =
(

a∗

L

) ∑
j,N

εb�LT f (2D)
j

Eg − h̄ω + Ej + WN − iΓ jN
,

j = 0, 1, . . . , N = 1, 2, . . . ,

WN =
(

πa∗

L

)2

N2R∗. (38)

The imaginary part of Eq. (38) is used to calculate the QW
absorption coefficient.

VI. WIDE QUANTUM WELL REGIME

When the thickness L of the considered QW becomes
larger than the wavelength of the propagating wave (300 nm),
the system enters the wide quantum well regime. The long-
wave approximation cannot be maintained, but we can use the
slowly varying envelope approximation [30–32]. Maxwell’s
equation for the relevant electric vector component inside the
WQW satisfies the equation

d2E

dz2
+ f (z)E = 0, (39)

with

f (z) = ω2

c2
[εb + χ (z)], (40)

and the susceptibility χ (z) can be obtained from the constitu-
tive equation (7). Maxwell’s equation then reads

E (z) = A1(z)eiβ(z) + A2(z)e−iβ(z), (41)

where

β(z) =
∫

[ f (z)]1/2 dz, Ai = ai[ f (z)]−1/4. (42)

The coefficients ai are obtained with the help of the Maxwell
boundary conditions for the electric field. Thus, the field E
within the QW allows one to calculate the optical functions
in the analytical form, including their dependence on the
confinement shape.

For the infinite confinement potential, using the eigenfunc-
tions (37), the space-dependent susceptibility has the form

χ (ω, z) = 2a∗

L

∑
j,N

εb�LT f (2D)
j

Eg − h̄ω + Ej + WN − iΓ jN
sin2 Nπz

L
.

(43)

By inserting the susceptibility in such a form into Eq. (40),
one obtains

β(ω, z) ≈ 1 + 1
2χ (z)

(
sin2 Nπz

L

)−1

[1 + χ (z)]1/2 kbz, (44)

where kb = √
εb

ω
c . With the help of β(ω, z) one is able to

calculate the electric field. By introducing the notation

r∞ = 1 − √
εb[1 + χ (2d )/εb]

1 + √
εb[1 + χ (2d )/εb]

,

� = 2L
√

εb[1 + χ (2d )/εb]

one obtains the effective refraction index nWQW:

nWQW = 1 − r2
∞ei� − r∞(1 − ei�)

1 − r2∞ei� + r∞(1 − ei�)
, (45)

which allows for the calculation of the absorption coefficient:

αWQW = 2
h̄ω

h̄c
Im nWQW. (46)

VII. THE EXCITON-POLARITON REGIME:
GENERALIZED ADDITIONAL BOUNDARY CONDITIONS

When the thickness of the slab exceeds largely the exci-
ton Bohr radius, the system is three-dimensional and some
new aspects, in comparison with the above discussed QWs
and WQWs, should be accounted for. For QWs and WQWs
the assumptions of microscopic boundary conditions for the
movement of electrons and holes, combined with a two-
dimensional Coulomb potential, were sufficient. In the three-
dimensional case, near the crystal surfaces the quasiparticles
move in the repulsing potential of the surfaces, which can
be modeled as a hard wall potential. At a certain distance
of the surfaces the e-h Coulomb interaction prevails and
bound states (excitons) are created. The interaction of excitons
with a propagating wave leads to the formation of polariton
waves. The combined treatment of the repulsing potential near
the surface and the polariton waves in the bulk is difficult
due to the different symmetries of the surface potentials
and the Coulomb potential, thus a lot of the effort over the
past decades has been devoted to the description of exciton-
polariton waves in the context of their interaction with crys-
tal surfaces [33]. The problem called the additional bound-
ary conditions (ABCs) has appeared with the discovery of
polaritons—joint electromagnetic field-matter quasiparticles,
which move in a medium as a superposition of the field and
quantum coherence. The simplest version of ABCs relies on
two polariton waves propagating in the half-space geometry.
When two polariton waves propagate in the crystal and one of
them is reflected, one has to determine three amplitudes. The
classical electrodynamics yield in this case only two boundary
conditions for the electric and magnetic field. Therefore, an
additional boundary condition is needed to obtain a sufficient
number of equations. The first proposal came from Pekar
(Pekar’s ABC) [34], which assumed the polarization to be
zero at the crystal surface. His ABC was then improved by
Hopfield and Thomas [35], who assumed that the polarization
vanishes at a certain surface inside the crystal.

The ABC problem becomes more complicated when more
than two polaritons can propagate (i.e., in GaAs- and GaAs-
based superlattices) or higher excitonic states are involved.
Various ABC models, going beyond the above mentioned,
have been proposed for this case [36–43]. The Rydberg ex-
citons and polaritons are an exceptional example, in which
a huge number of polariton waves can appear. It is well
known that Pekar’s ABCs are applied for an arbitrary surface
(0, L = z), but it is assumed that exciton-polaritons appear
at the distance of several Bohr radii from the surface. In the
case of j = 25, the critical distance is less then 1 μm, while
for states characterized by smaller j these distances are con-
siderably smaller. Therefore the exciton-polaritons might be
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observed in structures with the quantum confinement effects
[44], providing fine enough spectral resolution [33].

Here we propose a certain modification of the Pekar-
Hopfield-Thomas (PHT) model, which is applied for the case
of Rydberg exciton-polaritons. Since we will assume that the
polarization vanishes at the surface, this will correspond to
the “no escape” conditions for electrons and holes, defined
by Eq. (36). We start with the polariton dispersion relation
(taking into account only P excitons) [10]:

k2

k2
0

− εb = χ
(3D)
eff = εb

N∑
j=2

× f (3D)
j �LT/R∗(

ET j10 − E − iΓ j
)
/R∗ + (μ/Mtot )(ka∗)2

(47)

where Mtot is the total excitonic mass, and the energies of
exciton resonances ET j10 are known. Note the polaritonic
contribution (μ/Mtot )(ka∗)2, which shifts the excitonic en-
ergies. In order to apply the PHT model, we assume that
for exciting energy near a certain exciton resonance ET j10

the biggest contribution to the optical functions comes from
two polariton waves with wave vectors k( j)

1 and k( j)
2 , which

are the two solutions of Eq. (47) nearest to the axis E =
kbh̄c/

√
εb. With them, we define the partial contributions

χ
( j)
1,2 = χ

(3D)
eff (ET j10, E , k( j)

1,2) to the susceptibility and, in accor-
dance with Pekar’s model, we assume that the contribution to
the exciton polarization coming from these two waves with
amplitudes E ( j)

1 and E ( j)
2 vanishes at the crystal surface:

χ
( j)
1 E ( j)

1 + χ
( j)
2 E ( j)

2 = 0. (48)

The above equation, supplemented with Maxwell’s BCs for
the electric field, allows for calculating (in the half-space
geometry) the amplitudes of the polariton waves. This model
can be easily extended to include the polariton waves reflected
at the second crystal surface. The partial susceptibilities define
the indices of refraction of polariton waves, by the relation[

n( j)
1,2

]2 = χ
( j)
2 + εb. (49)

It follows from the above equation that the polariton waves
have different indices of refraction, a property which can be
used in separating polariton waves propagating through the
crystal.

Finally, to calculate the absorption coefficient it is neces-
sary to introduce an additional summation in Eq. (47) over
these partial wave vectors k( j)

1 and k( j)
2 , obtaining susceptibil-

ity which is then used in Eq. (6).

VIII. RESULTS OF SPECIFIC CALCULATIONS

We have calculated the absorption from the imaginary part
of χ̄QD defined in Eq. (17), for a Cu2O QD system, and
compare our theoretical predictions with the experimental
results by Lee et al. [45] In the calculations the two lowest
exciton states j = 0, 1 and the lowest confinement states in
the z direction were accounted for. The parameters used in
the calculation are summarized in Table I. The results are
shown in Fig. 1. Since the experiments in Ref. [45] were
performed for spherical dots, we have slightly changed the

TABLE I. Band parameter values for Cu2O, masses in free-
electron mass m0, R∗ calculated from (μ/ε2

b ) × 13 600 meV, and
R∗

e,h = (me,h/μ)R∗, a∗
e,h = (μ/me,h )a∗.

Parameter Value Unit Reference

Eg 2172.08 meV [1]
R∗ 87.78 meV
�LT 1.25 × 10−3 meV [28]
me 0.99 m0 [18]
mh 0.58 m0 [18]
μ 0.363 m0

Mtot 1.56 m0

a∗ 1.1 nm [1]
r0 0.22 nm [13]
εb 7.5 [1]
R∗

e 239.4 meV
R∗

h 140.25 meV
a∗

e 0.4 nm
a∗

h 0.69 nm
� j 3.88/ j3 meV [1,16]

dimensions, using an effective radius R = 4/5Rspherical and the
disk height L = 1.6R. One can see that the contributions from
j = 0 and 1 states (dashed lines) overlap, forming a single
wide absorption maximum. Our calculated theoretical curves
agree very well with the experimental absorption curves from
Ref. [45]. We observe the increasing blueshift with decreasing
QD radius, and the increasing oscillator strength with lower-
ing the dimensions. As it was observed [46,47] for the case
of Cu2O-based QDs, the excitonic transition energies depend
strongly on the lateral extension.

Figure 2 shows the absorption coefficient (6) calculated
for the case of a quantum wire, using the susceptibility
given by Eq. (26). One can observe multiple excitonic states
which diverge towards the higher energy as the wire radius
approaches zero, and for small wire radius one may obtain a
strong enhancement of the binding energies. The confinement
states become more visible at low R. For sufficiently small
radius, these lines mix and overlap, producing a complicated

FIG. 1. Absorption spectra of cylindrical quantum dots calcu-
lated for four values of the disk radius. Black lines mark the experi-
mental data measured by Lee et al. [45].

205202-7



DAVID ZIEMKIEWICZ et al. PHYSICAL REVIEW B 101, 205202 (2020)

FIG. 2. The absorption coefficient α of Cu2O nanowire, calcu-
lated from Eq. (29), as a function of the wire radius R.

pattern. One can also observe that most of these confinement
states are located above the gap energy; lower excitonic states
are stronger bounded than the higher ones. These tendencies
are in agreement with available experimental and theoretical
results for Rydberg states of excitons in GaAs quantum wires
[48,49].

As a next step, we consider a quantum well in the form of
a plane-parallel slab of Cu2O. In our calculations, the dimen-
sions in the z direction varied from 20 nm to the micrometer
range, which corresponds to structures used in experiments by
Takahata et al. [19] (lower limit) and by Kazimierczuk et al.
[1] (upper limit). Such dimensions cover the QW, WQW, and
exciton-polariton regimes. For any regime the calculations
were performed by methods appropriate to the given regime.
The limits between these regimes are not sharply defined. For
example, the thickness L=200 nm is large compared to the
extension of the lowest exciton state (about 4 nm), but small
compared to the extension of states with j > 10. Therefore we
used the criterion of the relation between the slab thickness
and the wavelength of the wave propagating in the crystal,
which equals to about 200 nm. We consider the slabs with
L < 200 nm as QWs and use the long-wave approximation,
which, together with the assumption of infinite confinement
potentials, leads to the expression (38) for the effective dielec-
tric susceptibility and, in consequence, to the expression for
the absorption coefficient. The absorption line shape resulting
from Eq. (6) is shown in the lowest part of Fig. 3. We
observe the overlapping of exciton and confinement states. For
small j and N the exciton effect prevails, whereas for large
values of N the series of exciton resonances appears below
every confinement state. These peaks exhibit strong, roughly
parabolic shifts towards higher energy with decreasing L,
which is similar to the case of quantum wires and typical
for these structures in other semiconductors [50]. Eventually,
the lines cross and mix together, creating a complicated spec-
trum, especially for E > Eg. Interestingly, due to the large
number of confinement states present only in a thin crystal,
the absorption coefficient is decreasing with L. However, the
total absorption is still proportional to thickness, as shown in
Fig. 4. One can also observe that the absorption discontinuity

FIG. 3. The absorption coefficient α of Cu2O crystal, calculated
from Eq. (38), as a function of crystal thickness. The top and bottom
panels show cross sections for thickness L = 900 and 100 nm,
respectively.

at the band gap is smeared out and disappears completely for
L < 200 nm. The relative amplitude and shape of absorption
peaks and the strong mixing of higher states are consistent
with experimental observations by Khramtsov et al. for the
GaAs/GaAlAs quantum wells [51]. For L > 200 nm the long-
wave approximation is not valid, and the methods of Sec. VI
are used. The effect of confinement decreases, and the maxima
related to the exciton states with j = 2, 3 . . . are visible. This
effect is also observed in the central part of Fig. 3. When the
crystal thickness is considerably larger than the wavelength
inside the crystal, the reflection and transmission spectra will
be strongly influenced by Fabry-Perot interference. One can

FIG. 4. The absorption coefficient from Fig. 3, for selected val-
ues of thickness.
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FIG. 5. Polariton dispersion relation calculated from Eq. (47).

observe that the absorption maxima on Fig. 3 exhibit strong
mixing for L < 200 nm, which creates a very complicated
transmission pattern.

Figure 5 shows the exciton dispersion relation (47), includ-
ing polaritonic contribution, which is represented by the term
(μ/Mtot )(ka∗)2 in the denominator. Overall, the inclusion of
the polaritons gives a nonlinear shift to the position of the
resonances; the higher states, which are closer to Eg, are more
affected. It should be mentioned that such an effect could
explain some discrepancies observed in fitting a simple j−2

model to the available experimental data; Fig. 6 shows the
comparison between absorption maxima positions measured
by Kazimierczuk et al. and our absorption spectrum calculated
from Eq. (47) in the large thickness limit, e.g., L = 34 μm [1].
For our fit, we have used the Rydberg energy R = 91.5 meV
and quantum defect δ = 0.083. With these values, we have
obtained almost perfect fit to all excitonic peaks for j = 2–25.
Note that the quantum defect affects mostly low-energy states
but cannot explain the apparent deviation from the j−2 relation
for high states. This is easily visible in Fig. 7; even with proper
fitting values, the standard relation, represented by the straight

FIG. 6. Excitonic absorption in Cu2O crystal with polaritons
calculated from Eqs. (6) and (47), for L = 34 μm. Black lines are
peaks from experimental data by Kazimierczuk et al. [1].

FIG. 7. Absorption peaks position comparison between theory
with (47) or without polaritons to experimental data by Kazimierczuk
et al. [1]. Line j−2 added for reference.

line, cannot fit all the states. On the other hand, the nonlinear
curve provided by the polaritonic relation appears to be a
much better fit.

The above indicated agreement can be understood as an
indirect proof for existence of polariton waves. Another ar-
gument may come from experiment. At the early stage of
the research on Wannier-Mott excitons a number of exper-
iments have been performed to manifest the existence of
many transverse waves (polaritons) with fixed frequency and
polarization, distinguished by the index of refraction (see
Broser et al. [52]). In particular, for a CdS crystal, Lebedev
et al. [53] observed the simultaneous transmission of two
polariton waves through a wedge shaped crystal and spatially
separated them. As we have shown above [see Eq. (49)], a
similar situation occurs in a Cu2O crystal: near any exciton
resonance energy there are two polariton waves with wave
vectors k( j)

1,2, and different indices of refraction, propagating
through the crystal. So we hope that a similar experiment,
as for the CdS crystal, can be performed for a Cu2O crystal,
to give an unambiguous proof for the existence of polariton
waves.

IX. CONCLUSIONS

Theoretical solutions to model absorption spectra of low-
dimensional systems with Rydberg excitons in a wide range of
system dimensions are presented. The optical absorption spec-
tra of Cu2O quantum dots of different sizes—quantum wires,
quantum wells, and bulk crystals—are discussed. For each
system the calculations were performed using the method
appropriate to the considered regime; these approaches allow
one to obtain the analytical expression for the susceptibil-
ity. Results are compared with available experimental data,
showing a good agreement and confirming that a blueshift
in the optical spectra is an evidence of the quantum con-
finement effects. In particular, the calculated spectra of all
low-dimensional systems exhibit a smooth transition to the
bulk absorption in the limit of large size of the nanostruc-
ture. The presented calculations for bulk crystals, performed
in microscopic boundary condition approximation for the
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exciton motion inside a crystal of finite size, are in good
agreement with experimental spectra. Thus, we have shown
that the existence of polaritons can explain the positions of
exciton resonances with a higher accuracy than other existing
models.

ACKNOWLEDGMENTS

Support from National Science Centre, Poland (project
OPUS, Coherent Interaction of Rydberg Excitons with Light
Grant No. 2017/25/B/ST3/00817) is gratefully acknowl-
edged.

[1] T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M.
Bayer, Nature (London) 514, 344 (2014).

[2] J. Heckötter, M. Freitag, D. Fröhlich, M. Aßmann, M. Bayer,
M. A. Semina, and M. M. Glazov, Phys. Rev. B 96, 125142
(2017).

[3] M. Aßmann, J. Thewes, and M. Bayer, Nat. Mater. 15, 741
(2016).

[4] J. Thewes, J. Heckötter, T. Kazimierczuk, M. Aßmann, D.
Fröhlich, M. Bayer, M. A. Semina, and M. M. Glazov, Phys.
Rev. Lett. 115, 027402 (2015).

[5] F. Schone, S.O. Kruger, P. Grunwald, H. Stolz, S. Scheel, M.
Assmann, J. Heckotter, J. Thewes, D. Frohlich, and M. Bayer,
Phys. Rev. B 93, 075203 (2016).

[6] F. Schweiner, J. Main, G. Wunner, M. Freitag, J. Heckotter, C.
Uihlein, M. Assmann, D. Frohlich, and M. Bayer, Phys. Rev. B
95, 035202 (2017).
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