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The Green’s function (GF) of two localized magnetic moments embedded in the electron gas is calculated
exactly. The electrons are treated in the effective mass approximation and the magnetic moments are coupled
with electrons by a deltalike s-d interaction. The resulting GF is obtained as a result of the exact summation of
the Born series using a generalization of the method developed by Slater-Koster and Ziman to noncommuting
spin operators with the use of the Woodbury identities. For small s-d coupling J the exact GF reduces to the
Ruderman-Kittel-Kasuya-Yosida (RKKY) case, for which the first two terms of the Born series are included. In
contrast to the standard RKKY, for the exact GF there is no symmetry between positive and negative values of
J . The exact GF crucially depends on the value of the one-electron Green’s function at the origin, denoted as
g0. The Born series is convergent only if g0 is finite, which holds for electrons in parabolic energy bands in one
dimension, but not in two and three dimensions. For this reason, a simple model of RKKY interaction deserves
to be reconsidered since the second term of the perturbation series is finite, and gives the standard RKKY
interaction, while the sum of remaining terms is divergent. A finite value of g0 can be obtained once a cutoff for
the energy integration is introduced. The exact GF includes nonlinear combination of localized spin operators
and a method of calculating matrix elements of these operators is given. For spins Ŝa, Ŝb = 1

2 the exact GF is
expressed as a linear combination of components of Ŝa, Ŝb, and the exact range function J (rab) is obtained as a
double integral over analytical expression. For electron energy E = 0 and Jg0/2 � 2 or Jg0/2 � − 2

3 , the range
function and GF are singular. Poles of GF occur in the vicinities of singularity points and the resulting energies
of bound states are calculated. The origin of asymmetry between positive and negative J values is explained.
For small |J| the range function J (rab) resembles the RKKY one: it has the same period π/kF , the same decay
character, and a slightly different amplitude, usually within a few percent. This regime occurs most frequently in
the nature. For |J| comparable to |g0|−1, the exact range function has much larger amplitude and nonoscillatory
character. For |J| � |g0|−1, the exact range function oscillates with the same period and powerlike decay as
the usual RKKY function but it has much lower amplitude decaying with growing |J|. In the limiting case of
|J| → ∞, the range function vanishes. A range of validity of the proposed model to real systems is discussed.

DOI: 10.1103/PhysRevB.101.205201

I. INTRODUCTION

In 1954 Ruderman and Kittel described interaction be-
tween nuclear magnetic moments of impurities in metals [1].
The interaction was mediated by conduction electrons and
had a long-range character. It was found that the second-
order correction to the energy of free-electron gas due to the
presence of two nuclei is proportional to the product of the two
spin operators and the range function JRK(rab) depended on
the distance rab between spins. The range function oscillates
in space with the period π/kF , where kF is the Fermi vector,
and for large distances it decays as 1/r3

ab. Sometime later,
Kasuya [2] and Yoshida [3] pointed out that exactly the
same interaction appears between magnetic atom impurities
in metals as a result of s-d or s- f hybridization.

During the last 60 years the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction was investigated both theoreti-
cally and experimentally in more realistic systems. The review
works of RKKY can be found in Ref. [4] and many textbooks
of solid state physics (see [5]).
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In this paper we propose a method of exact summation of
the Born series for two localized spins interacting with elec-
tron gas by the s-d interaction. Our calculations generalize the
RKKY theory by taking into account all terms of perturbation
series instead of retaining only terms of the second order in
the s-d coupling constant J . We calculate the exact Green’s
function (GF) of the system using a modification of the
method proposed by Slater-Koster-Ziman to potentials includ-
ing noncommuting spin operators [6]. Having calculated the
exact GF of the system we clarify the issues of convergence
of Born series and calculate the range function obtained from
the exact GF. We also clarify the issues related to behavior
of GF and the range function for small and large values
of |J| and discuss the possibility of existence of localized
states. It appears that these results have not been reported in
literature.

Our intention is to compare the exact results with those ob-
tained for standard RKKY theory. For this reason we consider
electrons in parabolic energy bands described by the effective
mass approximation. Within this approach we calculate the
impact of higher-order terms of the Born series on the GF and
range function of RKKY problem. We mostly concentrate on
the three-dimensional (3D) case at T = 0.
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The paper is organized as follows. Section II outlines the
derivation of RKKY using the second-order terms of the Born
series and discusses some properties of singular potentials.
Section III introduces the Dyson equation of the problem and
its solution with use of Woodbury identities. In Sec. IV we
express the exact GF for arbitrary spins as nonlinear combina-
tion of localized spin operators. Section V provides a method
of calculating matrix elements of exact GF in Sec. IV. Sec-
tion VI considers the case of spins Ŝa, Ŝb = 1

2 and expresses
the exact GF as a linear function of products of spin operators.
Section VII contains calculations of density of states obtained
from the exact GF, the grand canonical potential depending
on localized spin configuration and the corresponding range
function. Section VIII introduces a simplified model of exact
GF, grand canonical potential, and the range function valid
for fast-decaying one-electron GF. This approximation allows
us to understand the physical origin of several peculiarities
existing in the exact results. Section IX discusses one-electron
GF used in further calculations and introduces an energy
cutoff for one-electron GF at the origin. Section X contains
numerical calculations of the exact range function for several
values of key model parameters. In Sec. XI we discuss our
results. The work is concluded by the Summary. Appendices
and Supplemental Material [7] provide auxiliary information
related to the problems analyzed in this work.

II. PRELIMINARIES

Let us consider the Dyson equation Ĝ = ĝ + ĝV̂ Ĝ, where
V̂ = V̂a + V̂b, V̂a and V̂b are two nonoverlapping potentials, ĝ
is the GF in absence of V̂ , and Ĝ is the GF in the presence of
V̂ . Iterating the Dyson equation one obtains the Born series
Ĝ � ĝ + ĝV̂ ĝ + ĝV̂ ĝV̂ ĝ + · · · . The lowest-order terms of this
series depending on both V̂a and V̂b are

Ĝab � ĝV̂aĝV̂bĝ + ĝV̂bĝV̂aĝ + · · · . (1)

We consider the potentials V̂c with c = a, b in the form of
contact s-d interaction

V̂c(r) = Jδ(r − rc)Ŝcŝ, (2)

where J is the s-d coupling constant measured in J × mD

units, D is system dimensionality, ŝ = σ/2 is the electron spin
operator, and σ are the Pauli matrices in the standard notation.
The operators Ŝc describe localized spins of atomic nuclei or
magnetic impurities. Taking the trace of Ĝab one finds the den-
sity of states (DOS) of the system n(E ) and the correspond-
ing thermodynamic potential �[n(E )]. For the one-electron
Green’s function ĝ in the effective mass approximation, D = 3
and T = 0 one obtains the well-known result [1]

�� � JRKŜaŜb, (3)

JRK(rab) = J2

64π3r4
abζ

[2rabkF cos(2kF rab) − sin(2kF rab)],

(4)

where ζ = h̄2/(2m∗), kF is the Fermi vector, m∗ is electron
effective mass, and rab is the distance between Ŝa and Ŝb.
Equations (3) and (4) describe the RKKY Hamiltonian and
range function of electrons interacting with localized spins.

The RKKY interaction in Eq. (4) is of second-order effect in
terms of s-d coupling constant J .

There appear questions about the validity of Eqs. (3) and
(4). First, about the convergence of the Born series and the
impact of remaining infinite number of terms on the range
function in Eq. (4). Next, one may ask whether the Born series
converges for arbitrary J or is there a critical value of J above
which the perturbation series diverges. Finally, is it possible
that for sufficiently large |J| there appear localized or resonant
states.

Taking proper material band structure, reasonable physical
parameters, and including other effects appearing in solids
(as, e.g., phonons, disorder, many-body effects in electron gas
and in ion electrons), the RKKY theory correctly describes
experimental results [4]. This implies that for the RKKY
problem, the Born series converges and its higher-order terms
do not alter significantly the results in Eqs. (3) and (4).
Another implication is that even if there is a critical value of
J leading to divergence of the Born series, its magnitude is
much larger than |J| observed in real materials.

However, there are at least three hints indicating that the
impact of higher-order terms in the Born series is more com-
plicated and ambiguous. First, as pointed in Refs. [8,9], the
third-order term of the perturbation series for RKKY energy
is divergent. However, there exists a suggestion of Kittel that,
possibly the whole Born series is convergent irrespective of
the fact that some of its terms diverge if calculated separately
[10]. The second hint is that taking into account only spin
parts of the potentials V̂a and V̂b, the higher-order terms are
more complicated functions of localized spins in Eq. (3). The
last hint relates to analytical results obtained for the case of
single scalar deltalike potential. Let V̂b = 0 and V̂a = vaδ(r −
ra), where va is potential strength. Using the method proposed
by Slater, Koster, Ziman, and others [6,11–13] one can sum
the Born series to obtain

G(r1, r2) = g(r1, r2) + g(r1, ra)
va

1 − g0va
g(ra, r2), (5)

where g0 = g(ra, ra) is one-electron GF at the origin. The
GF in Eq. (5) exists only when the quantity g0 is finite. For
|g0va| � 1 one may neglect |g0va| in the denominator of
Eq. (5) and the GF is well approximated by its lowest-order
terms in va. By increasing |g0va| the corrections due to the
denominator in Eq. (5) are more pronounced. For vanishing
imaginary part of g0 and appropriate value of va there appears
a pole of GF, indicating an existence of localized states. For
|g0va| � 1 the second term in Eq. (5) gradually decreases and
for va → ∞ the GF does not depend on va. Finally, the GF
in Eq. (5) is not symmetric for positive and negative values
of va.

The above hints suggest that the RKKY interaction ob-
tained in a second order of perturbation expansion, as given in
Eqs. (3) and (4), may overlook some important properties of
the system. The potentials V̂a and V̂b are products of deltalike
potentials and spin interactions between conduction electrons
and localized moments. Therefore, the true GF of the system
should include spin effects, e.g., its dependence on relative
spin orientations and effects related to deltalike potentials,
similar to those following from Eq. (5).
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III. GREEN’S FUNCTION OF THE SYSTEM

We consider the electron gas perturbed by two localized
spins Ŝa, Ŝb placed in ra, rb, respectively. The potential of the
s-d interaction between the spins and the electron gas is

V̂ (r) = Ẑaδ(r − ra) + Ẑbδ(r − rb) ≡ V̂a + V̂b, (6)

where we defined Ẑa = JŜaŝ/2 and Ẑb = JŜbŝ/2 [see
Eq. (2)]. Note the sign convention in Eq. (6): positive sign of J
corresponds to antiferromagnetic coupling between impurity
and electron spins. Then,

Ẑc = J

2

(+Ŝz
c Ŝ−

c

Ŝ+
c −Ŝz

c

)
, c = a, b. (7)

The main differences between the scalar potential in Eq. (5)
and the spin-dependent potentials in Eqs. (6) and (7) are (i) the
x, y, z components of V̂a and V̂b do not commute and (ii) the
potentials V̂a and V̂b as given in Eq. (2) do not commute, which
can be demonstrated by direct calculations. Then, in further
calculation one has to ensure proper order of spin operators
and its components. Because of the nonzero commutator of
V̂a and V̂b in Eq. (6), we may not apply the results obtained for
the Kondo problem [14,15].

We treat the electron gas in the single-particle approxi-
mation and assume that the electron spin is a good quantum
number, i.e., the periodic potential of the lattice does not mix
electron states of different spins. The one-electron states are
then two-component spinors |kν〉 = |k〉 × |ν〉, where ν ∈ {↑,

↓} is the sz component of electron spin, and |k〉 is the Bloch
state of the conduction band.

The conduction band is filled by electrons up to the energy
EF and we neglect interactions between electrons. The energy
dispersion ε(k) may be arbitrary, but spin independent. Then,
the one-electron Green’s function is a 2 × 2 matrix diagonal
in spin variables

ĝ(r1, r2, ν1, ν2) = g(r1, r2)

(
1 0
0 1

)
, (8)

where

g(r1, r2, E ) =
∑

k

|k〉〈k|
E − εk

. (9)

The only assumption for GF in Eq. (9) is that, for all energies
E > 0, the GF at the origin g0 is finite and nonzero

|g0| = | lim
r1→r2

g(r1, r2, E )| ∈ (0,∞). (10)

In Sec. IX we consider the one-electron GF for parabolic
energy band in the effective mass approximation, which is a
special case of GF in Eq. (9).

A. Dyson equation

Within the model described above we solve the Dyson
equation for the exact GF of the system. Let Ĝ be the Green’s
function of the electron gas in the presence of external poten-
tial given in Eq. (6). The functions Ĝ and ĝ are related to each
other by the Dyson equation: Ĝ = ĝ + ĝV Ĝ. In the position
representation there is

Ĝ12 = ĝ12 +
∫

ĝ13V (r3)Ĝ31d3r3. (11)

In Eq. (11) and below we use the notation Ĝ12 = Ĝ(r1, r2) and
ĝ12 = ĝ(r1, r2). Since the potential V (r3) in Eq. (6) is the sum
of delta functions multiplied by spin operators one obtains

Ĝ12 = ĝ12 + ĝ1aẐaĜa2 + ĝ1bẐbĜb2, (12)

where ĝ±
12, ĝ±

1a, ĝ±
1b are given in Eqs. (8) and (9). The function

Ĝ12 is a 2 × 2 matrix and the main objective of this paper is
to obtain its four components in the analytical form.

To find Ĝ12 we generalize the method proposed by Slater-
Koster and Ziman to sum the Born series for neutral deltalike
impurity embedded in the noninteracting electron gas [6,11–
13]. By setting in Eq. (12) r1 → ra and r1 → rb one obtains
two coupled equations for Ĝa2 and Ĝb2:

Ĝa2 = ĝa2 + ĝaaẐaĜa2 + ĝabẐbĜb2, (13)

Ĝb2 = ĝb2 + ĝbaẐaĜa2 + ĝbbẐbĜb2. (14)

We may rewrite Eqs. (13) and (14) in a matrix form(
Î − ĝaaẐa −ĝabẐb

−ĝbaẐa Î − ĝbbẐb

)(
Ĝa2

Ĝb2

)
=

(
ĝa2

ĝb2

)
. (15)

In the above equation the matrix is a 4 × 4 operator. We write
formally(

Ĝa2

Ĝb2

)
=

(
Î − ĝaaẐa −ĝabẐb

−ĝbaẐa Î − ĝbbẐb

)−1(
ĝa2

ĝb2

)
. (16)

To find the matrix in Eq. (16) we consider two 4 × 4 operators:
Ŷ and T̂ = Ŷ

−1
. Let Ŷ be the matrix in Eq. (15),

Ŷ =
(

Î − ĝaaẐa −ĝabẐb

−ĝbaẐa Î − ĝbbẐb

)
=

[
Â B̂

Ĉ D̂

]
, (17)

and T̂ be the matrix in Eq. (16),

T̂ =
(

Î − ĝaaẐa −ĝabẐb

−ĝbaẐa Î − ĝbbẐb

)−1

=
(

T̂
A

T̂
B

T̂
C

T̂
D

)
. (18)

In Eq. (18) the operators T̂
A
, T̂

B
, T̂

C
, T̂

D
are undeterminate

yet, and they are complicated functions of Â, B̂, Ĉ, D̂ (see
below). From Eqs. (16) and (18) one has(

Ĝa2

Ĝb2

)
=

(
T̂

A
T̂

B

T̂
C

T̂
D

)(
ĝa2

ĝb2

)
. (19)

The exact Green’s function in Eq. (12) is

Ĝ12 = ĝ12 + ĝ1a[Ẑa T̂
A
] ĝa2 + ĝ1a[Ẑa T̂

B
] ĝb2

+ ĝ1b[Ẑb T̂
C

] ĝa2 + ĝ1b[Ẑb T̂
D

] ĝb2. (20)

Equation (20) describes the Green’s function of the two-
impurity problem and it has a form of the Dyson equation
for the T̂ operator: Ĝ = ĝ + ĝT̂ ĝ [11]. In Eq. (20), ĝ1a, ĝ1b,
and ĝ12 are scalars so below we omit the matrix signs. The

operators Ẑa, Ẑb, T̂
i

with i ∈ {A, B,C, D} are 2 × 2 matrices.
The operators Ẑa, Ẑb are given in Eq. (7). To determine
T̂

A
, T̂

B
, T̂

C
, T̂

D
we use the Woodbury identities.
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B. Matrix inversion by Woodbury identities

Let Â, B̂, Ĉ, D̂ be noncommuting operators in Eq. (17).
Then, the Woodbury formula states [16]

T̂ = Ŷ
−1 =

[
+�̂

−1
1 −�̂

−1
1 B̂D̂

−1

−�̂
−1
2 ĈÂ

−1 +�̂
−1
2

]
, (21)

where

�̂1 = Â − B̂D̂
−1

Ĉ, (22)

�̂2 = D̂ − ĈÂ
−1

B̂. (23)

Turning to Eq. (17) we note that in this case Â commutes
with Ĉ, and B̂ commutes with D̂. This gives �̂1 = D̂

−1
F̂1 and

�̂2 = Â
−1

F̂2, where

F̂1 = D̂Â − B̂Ĉ, (24)

F̂2 = ÂD̂ − ĈB̂, (25)

respectively. Then, from Eq. (21) one has

T̂ =
[
+F̂

−1
1 D̂ −F̂

−1
1 B̂

−F̂
−1
2 Ĉ +F̂

−1
2 Â

]
. (26)

From Eqs. (16), (18), and (24)–(26) there is

T̂ =
[

F̂
−1
1 (Î − g0Ẑb) F̂

−1
1 gabẐb,

F̂
−1
2 gbaẐa F̂

−1
2 (Î − g0Ẑa)

]
, (27)

where gaa = gbb ≡ g0. We assume that g0 is finite (see
Sec. IX). From Eqs. (20) and (27) we have

Ĝ12 = g12 Î + g1a[ẐaF̂
−1
1 (Î − g0Ẑb)]ga2

+ g1a[gabẐaF̂
−1
1 Ẑb]gb2 + g1b[gbaẐbF̂

−1
2 Ẑa]ga2

+ g1b[ẐbF̂
−1
2 (Î − g0Ẑa)]gb2. (28)

Introducing operators Q̂1 = F̂
−1
1 and Q̂2 = F̂

−1
2 we rewrite

Eq. (28) as

Ĝ12 = g12 Î + g1a[ẐaQ̂1(Î − g0Ẑb)]ga2

+ g1a[gabẐaQ̂1Ẑb]gb2 + g1b[gbaẐbQ̂2Ẑa]ga2

+ g1b[ẐbQ̂2(Î − g0Ẑa)]gb2. (29)

From Eqs. (16) and (24) and (25) we find

F̂1 = [(Î − g0Ẑb)(Î − g0Ẑa) − gabgbaẐbẐa] = Q̂
−1
1 , (30)

F̂2 = [(Î − g0Ẑa)(Î − g0Ẑb) − gabgbaẐaẐb] = Q̂
−1
2 . (31)

Equations (29)–(31) describe the exact GF of the considered
system. The operators Q̂1 and Q̂2 are 2 × 2 matrices defined as
the inversions of F̂1 and F̂2 matrices, which are combinations
of Ŝa and Ŝb operators. In two limiting cases of small and large
|J|, the operators F̂1 and F̂2 can be inverted explicitly. For
arbitrary J we must invert F̂1, F̂2 using the general form of
Woodbury identities in Eq. (21) (see below).

For small s-d coupling there is g0Ẑa � Î , g0Ẑb � Î ,
gabgbaẐbẐa � Î , so one can disregard these terms. Then, one

obtains in Eqs. (30) and (31) F̂1 � Î , F̂2 � Î , and, conse-
quently, Q̂1, Q̂2 � Î . Then, Eq. (29) reduces to

Ĝ12 � ĝ12 + g1aẐaga2 + g1agabẐaẐbgb2 + g1bgbaẐbẐaga2

+ g1bẐbgb2. (32)

Equation (32) describes the first and second order terms of the
Born series for two-point spin-dependent potential

Ĝ � ĝ + ĝ(Va + Vb)ĝ + ĝ(Va + Vb)ĝ(Va + Vb)ĝ + · · · . (33)

Calculating the range function J (rab) with use of GF in
Eq. (32) one obtains the standard result for RKKY interaction
(see Appendix B).

For the strong coupling there is g0Ẑa � Î , g0Ẑb � Î ,
and gabgbaẐbẐa � Î , so that one can disregard the identity
operator Î in Eqs. (30) and (31). Then, the expressions in
Eqs. (30) and (31) reduce to products of two operators, that
can be inverted in the standard way. The GF in Eq. (29) and
the range function in this limit are obtained and discussed in
Appendix C.

IV. EXACT GREEN’S FUNCTION FOR ARBITRARY SPINS

Let F̂1 =
[

f̂ 1A f̂ 1B

f̂ 1C f̂ 1D

]
, in which

f̂ 1A = p2
(
Ŝ−

b Ŝ+
a + Ŝz

bŜz
a

) − p1
(
Ŝz

b + Ŝz
a

) + 1, (34)

f̂ 1B = p2
(
Ŝz

bŜ−
a − Ŝ−

b Ŝz
a

) − p1(Ŝ−
b + Ŝ−

a ), (35)

f̂ 1C = p2
(
Ŝ+

b Ŝz
a − Ŝz

bŜ+
a

) − p1(Ŝ+
b + Ŝ+

a ), (36)

f̂ 1D = p2
(
Ŝ+

b Ŝ−
a + Ŝz

bŜz
a

) + p1
(
Ŝz

b + Ŝz
a

) + 1, (37)

and

p1 = 1
2 Jg0, (38)

p2 = 1
4 J2

(
g2

0 − gabgba
) ≡ J2 pab

2 . (39)

To obtain F̂2 one should exchange a and b indices in
Eqs. (34)–(37). Let

Q̂1 ≡ F̂
−1
1 =

[
q̂1A q̂1B

q̂1C q̂1D

]
. (40)

Using Eq. (21) we find

Q̂1 =
[

�̂−1
1A −�̂−1

1A f̂ 1B( f̂ 1D)−1

−�̂−1
1D f̂ 1C ( f̂ 1A)−1 �̂−1

1D

]
, (41)

in which

�̂1A = f̂ 1A − f̂ 1B( f̂ 1D)−1 f̂ 1C, (42)

�̂1D = f̂ 1D − f̂ 1C ( f̂ 1A)−1 f̂ 1B. (43)

Similarly, let

Q̂2 ≡ F̂
−1
2 =

[
q̂2A q̂2B

q̂2C q̂2D

]
. (44)

Using Eq. (21) we find

Q̂2 =
[

�̂−1
2A −�̂−1

2A f̂ 2B( f̂ 2D)−1

−�̂−1
2D f̂ 2C ( f̂ 2A)−1 �̂−1

2D

]
, (45)
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in which

�̂2A = f̂ 2A − f̂ 2B( f̂ 2D)−1 f̂ 2C, (46)

�̂2D = f̂ 2D − f̂ 2C ( f̂ 2A)−1 f̂ 2B. (47)

Then, one obtains from Eqs. (29), (40), and (44)

Ĝ = Ĝ
aa + Ĝ

ab + Ĝ
ba + Ĝ

bb
, (48)

which can be rewritten as a 2 × 2 matrix equation

(
(Ĝ)11 (Ĝ)12

(Ĝ)21 (Ĝ)22

)
=

(
(Ĝaa)11 (Ĝaa)12

(Ĝaa)21 (Ĝaa)22

)
+

(
(Ĝab)11 (Ĝab)12

(Ĝab)21 (Ĝab)22

)
+

(
(Ĝba)11 (Ĝba)12

(Ĝba)21 (Ĝba)22

)
+

(
(Ĝbb)11 (Ĝbb)12

(Ĝbb)21 (Ĝbb)22

)
, (49)

where

(Ĝaa)11 = g1a

{
−J2

4
g0

(
Ŝ−

a q̂1CŜz
b − Ŝ−

a q̂1DŜ+
b − Ŝz

aq̂1AŜz
b − Ŝz

aq̂1BŜ+
b

) + J

2

(
Ŝ−

a q̂1C + Ŝz
aq̂1A

)}
ga2, (50)

(Ĝaa)12 = g1a

{
−J2

4
g0

(
Ŝ−

a q̂1CŜ−
b + Ŝ−

a q̂1DŜz
b − Ŝz

aq̂1AŜ−
b + Ŝz

aq̂1BŜz
b

) + J

2

(
Ŝ−

a q̂1D + Ŝz
aq̂1B

)}
ga2, (51)

(Ĝaa)21 = g1a

{
−J2

4
g0

(
Ŝ+

a q̂1AŜz
b − Ŝ+

a q̂1BŜ+
b + Ŝz

aq̂1CŜz
b + Ŝz

aq̂1DŜ+
b

) + J

2

(
Ŝ+

a q̂1A − Ŝz
aq̂1C

)}
ga2, (52)

(Ĝaa)22 = g1a

{
−J2

4
g0

(
Ŝ+

a q̂1AŜ−
b + Ŝ+

a q̂1BŜz
b + Ŝz

aq̂1CŜ−
b − Ŝz

aq̂1DŜz
b

) + J

2

(
Ŝ+

a q̂1B − Ŝz
aq̂1D

)}
ga2, (53)

(Ĝab)11 = g1a

{
J2

4
gab

(
Ŝ−

a q̂1CŜz
b + Ŝ−

a q̂1DŜ+
b + Ŝz

aq̂1AŜz
b + Ŝz

aq̂1BŜ+
b

)}
gb2, (54)

(Ĝab)12 = g1a

{
J2

4
gab

(
Ŝ−

a q̂1CŜ−
b − Ŝ−

a q̂1DŜz
b + Ŝz

aq̂1AŜ−
b − Ŝz

aq̂1BŜz
b

)}
gb2, (55)

(Ĝab)21 = g1a

{
J2

4
gab

(
Ŝ+

a q̂1AŜz
b + Ŝ+

a q̂1BŜ+
b − Ŝz

aq̂1CŜz
b − Ŝz

aq̂1DŜ+
b

)}
gb2, (56)

(Ĝab)22 = g1a

{
J2

4
gab

(
Ŝ+

a q̂1AŜ−
b − Ŝ+

a q̂1BŜz
b − Ŝz

aq̂1CŜ−
b + Ŝz

aq̂1DŜz
b

)}
gb2, (57)

(Ĝba)11 = g1b

{
J2

4
gba

(
Ŝ−

b q̂2CŜz
a + Ŝ−

b q̂2DŜ+
a + Ŝz

bq̂2AŜz
a + Ŝz

bq̂2BŜ+
a

)}
ga2, (58)

(Ĝba)12 = g1b

{
J2

4
gba

(
Ŝ−

b q̂2CŜ−
a − Ŝ−

b q̂2DŜz
a + Ŝz

bq̂2AŜ−
a − Ŝz

bq̂2BŜz
a

)}
ga2, (59)

(Ĝba)21 = g1b

{
J2

4
gba

(
Ŝ+

b q̂2AŜz
a + Ŝ+

b q̂2BŜ+
a − Ŝz

bq̂2CŜz
a − Ŝz

bq̂2DŜ+
a

)}
ga2, (60)

(Ĝba)22 = g1b

{
J2

4
gba

(
Ŝ+

b q̂2AŜ−
a − Ŝ+

b q̂2BŜz
a − Ŝz

bq̂2CŜ−
a + Ŝz

bq̂2DŜz
a

)}
ga2, (61)

(Ĝbb)11 = g1b

{
−J2

4
g0

(
Ŝ−

b q̂2CŜz
a − Ŝ−

b q̂2DŜ+
a − Ŝz

bq̂2AŜz
a − Ŝz

bq̂2BŜ+
a

) + J

2

(
Ŝ−

b q̂2C + Ŝz
bq̂2A

)}
gb2, (62)

(Ĝbb)12 = g1b

{
−J2

4
g0

(
Ŝ−

b q̂2CŜ−
a + Ŝ−

b q̂2DŜz
a − Ŝz

bq̂2AŜ−
a + Ŝz

bq̂2BŜz
a

) + J

2

(
Ŝ−

b q̂2D + Ŝz
bq̂2B

)}
gb2, (63)

(Ĝbb)21 = g1b

{
−J2

4
g0

(
Ŝ+

b q̂2AŜz
a − Ŝ+

b q̂2BŜ+
a + Ŝz

bq̂2CŜz
a + Ŝz

bq̂2DŜ+
a

) + J

2

(
Ŝ+

b q̂2A − Ŝz
bq̂2C

)}
gb2, (64)

(Ĝbb)22 = g1b

{
−J2

4
g0

(
Ŝ+

b q̂2AŜ−
a + Ŝ+

b q̂2BŜz
a + Ŝz

bq̂2CŜ−
a − Ŝz

bq̂2DŜz
a

) + J

2

(
Ŝ+

b q̂2B − Ŝz
bq̂2D

)}
gb2. (65)

Equations (49)–(65) describe the exact GF of electron gas
in the presence of two pointlike impurities with arbitrary spins
Ŝa and Ŝb. The operators q̂1α, q̂2α with α = A, B,C, D are
defined in Eqs. (40) and (44), respectively. The terms Ĝab and
Ĝba correspond, roughly, to interactions between spins, while
Ĝaa and Ĝbb describe one-site properties. By taking the limit
Jg0 → 0 in Eqs. (34)–(39) (corresponding to p1, p2 → 0)
we find f̂ 1A, f̂ 2A, f̂ 1D, f̂ 2D � 1, while the remaining terms
vanish. There is also q̂1A, q̂1D, q̂2A, q̂2D � 1, and the remain-

ing terms vanish. Assuming gab = gba one obtains for the
electron density n(E )

n(E ) = − 1

π
ImTr(Ĝ)

= −J2

π

(
Im

∫
g1agb1gabd3r

)
ŜaŜb, (66)
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which is the density of states obtained for the RKKY interac-
tion (see Appendix B). In Eqs. (50)–(65) there is no symmetry
between positive and negative values of the coupling constant
J because of the linear terms in J . The expressions in curly
brackets in Eqs. (50)–(65) are the matrix elements of the T̂
operator.

For arbitrary spins Ŝa, Ŝb one can not find general expres-
sions for Ĝ in a closed form because the operators q̂1α, q̂2α

with α = A, B,C, D in Eqs. (49)–(65) are nonlinear functions
of Ŝa, Ŝb [see Eqs. (40)–(47)]. However, it is possible to
obtain matrix elements of Ĝ using a method described in
the next section. Additionally, for Ŝa, Ŝb = 1

2 it is possible
to find analytical expressions for q̂1α and q̂2α . This allows
one to express the exact GF in Eqs. (49)–(65) as a bilinear
combination of Ŝa, Ŝb components.

V. MATRIX ELEMENTS OF GF COMPONENTS

Here, we present a general method of calculation of the
matrix elements of Ĝ components, as given in Eqs. (49)–(65).
This method may be applied for arbitrary spin values Ŝa, Ŝb =
1
2 , 1, 3

2 , . . . and we illustrate it for Ŝa, Ŝb = 1
2 .

Consider the Zeeman basis B1/2 for spins Ŝa, Ŝb = 1
2 in

which each state |n〉 is labeled by two zth components the
spins |n〉 = |Sz

a, Sz
b〉. The basis B1/2 consists of four vectors

B1/2 = {|↑,↑〉, |↑,↓〉, |↓,↑〉, |↓,↓〉} (67)

≡ {|1〉, |2〉, 3〉, |4〉},

where the up and down arrows indicate states with Sz = + 1
2

and Sz = − 1
2 , respectively. For arbitrary spins such a basis

consists of (2Sa + 1)(2Sb + 1) elements. In the basis B1/2 the

spin operators Ŝ±
a , Ŝ±

b , Ŝz
a, Ŝz

b are 4 × 4 matrices

Ŝ+
a =

⎛
⎜⎝

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎠, (68)

Ŝ+
b =

⎛
⎜⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎠, (69)

and Ŝ−
a = (Ŝ+

a )†, Ŝ−
b = (Ŝ+

b )†. There is also Ŝz
a =

diag( 1
2 , 1

2 ,− 1
2 ,− 1

2 ) and Ŝz
b = diag( 1

2 ,− 1
2 , 1

2 ,− 1
2 ), where

“diag” represents the diagonal matrix. In this representation,
each state |n〉 with n = 1, . . . , 4 is a four-component column
vector with the nth element equal to unity and remaining
elements equal to zero. In the basis B1/2 the operators f̂1α, f̂2α

with α = A, B,C, D in Eqs. (34)–(37) are 4 × 4 matrices
[see Eqs. (S137)–(S140) in the Supplemental Material [7]].
Calculating appropriate products, sums and inverses of these
matrices [see Eqs. (S145)–(S152) and (S153)–(S192) in the
Supplemental Material [7]], one obtains the 4 × 4 matrices
describing the q̂1α , q̂2α operators. Inserting these matrices into
Eqs. (49)–(65) one obtains Ĝ, which is also a 4 × 4 matrix
in the representation B1/2. To find the matrix element of Ĝ
between two states |n〉 and |n′〉, with n, n′ = 1, . . . , 4 one
multiplies Ĝ by two appropriate four-element vectors.

As an example of the above procedure we consider the
third term of Eq. (50),

(Ĝab)11|3 = 1
4 g1agabgb2J2Ŝz

aq̂1AŜz
b ≡ C3Ŝz

aq̂1AŜz
b, (70)

where C3 = (J2/4)g1agabgb2 is a c number. Using Eqs.
(S145)–(S152) in the Supplemental Material [7] there is

(Ĝab)11|3 = C3

⎛
⎜⎜⎜⎝

1
2 0 0 0

0 1
2 0 0

0 0 − 1
2 0

0 0 0 − 1
2

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

q1A
11 0 0 0
0 q1A

22 q1A
23 0

0 q1A
32 q1A

33 0
0 0 0 q1A

44

⎞
⎟⎟⎠
⎛
⎜⎜⎜⎝

1
2 0 0 0

0 − 1
2 0 0

0 0 1
2 0

0 0 0 − 1
2

⎞
⎟⎟⎟⎠ = C3

4

⎛
⎜⎜⎝

q1A
11 0 0 0
0 −q1A

22 q1A
23 0

0 q1A
32 −q1A

33 0
0 0 0 q1A

44

⎞
⎟⎟⎠,

(71)

where q1A
22 , q1A

23 , q1A
32 , q1A

33 , q1A
44 are c numbers [see Eqs. (S153)–

(S192) in Supplemental Material [7]]. The matrix element of
(Ĝab)11|3 between two states |1〉 is then C3q1A

11 /4.
The procedure described above is convenient for calcula-

tion of the matrix elements of Ĝ for arbitrary spins. Since the
largest value of spin in stable isotopes is S = 5, corresponding
to 138La [17], the largest number of basis states is (2S + 1)2 =
121.

In the general case, the matrix form of Ŝ+
c , Ŝ−

c , Ŝz
c operators

(c = a, b) can be obtained with use of standard formulas

〈S, m′|Ŝz|S, m〉 = mδm′m, (72)

〈S, m′|Ŝ+|S, m〉 = δm′m+1

√
S(S − 1) − m′m, (73)

〈S, m′|Ŝ−|S, m〉 = δm+1′m
√

S(S − 1) − m′m, (74)

where S is an arbitrary spin whose Sz components are labeled
by m = −S,−S + 1, . . . , S. Using the above identities one
can construct operators Ŝ±

a , Ŝ±
b , Ŝz

a, Ŝz
b analogous to those

in Eqs. (68) and (69), which are now (2Sa + 1)(2Sb + 1) ×
(2Sa + 1)(2Sb + 1) matrices. Then, the matrix elements of
exact GF are obtained in the same way as those for Ŝa, Ŝb = 1

2
spins.

All numerical results obtained in Figs. 1–3 and Tables II
and III in Section X can be derived using the method described
above. We checked that they agree with results obtained using
expressions in Sec. VII. However, despite the fact that the
described method is suitable for numerical calculation, it gives
little understanding of the physical nature of exact GF and
its dependence on the four physical parameters: m∗, J , rab,
and EF . For this reason, for the special case Ŝa, Ŝb = 1

2 we
reexpress exact GF in terms of components of spin operators,
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which allows us to reduce the range function J (rab) to inte-
grals of analytical expressions.

VI. SPIN-OPERATOR FORM OF GF COMPONENTS

Here, we express the operators Ĝ11, Ĝ12, Ĝ21, Ĝ22 in
Eqs. (49)–(65) as linear combinations of spin operators Ŝ±

a ,
Ŝ±

b and Ŝz
a, Ŝz

b. This form of exact GF is more convenient for
analysis the range function properties.

In the representation of Eq. (67), both components of Ŝa, Ŝb

spins and matrices q̂1α, q̂2α have at most 14 nonzero elements.
For all these matrices the elements (1,4) and (4,1) vanish.
Then, each term on the right-hand side of Eqs. (50)–(65)
can be expressed as a linear combination of 14 linearly
independent 4 × 4 matrices 
̂mn having only one nonzero
element (m, n) except elements (1,4) and (4,1) which are
always zero. In the next step, one expresses the matrices 
̂mn

as combinations of operators Ŝ±
a , Ŝ±

b , Ŝz
a, Ŝz

b and their products
[see Eqs. (68) and (69)]. Then, one obtains


̂11 = Î/4 + Ŝz
a/2 + Ŝz

b/2 + Ŝz
aŜz

b, (75)


̂12 = Ŝ+
b (Î/2 + Ŝz

a), (76)


̂13 = Ŝ+
a

(
Î/2 + Ŝz

b

)
, (77)


̂21 = Ŝ−
b

(
Î/2 + Ŝz

a

)
, (78)


̂22 = Î/4 + Ŝz
a/2 − Ŝz

b/2 − Ŝz
aŜz

b, (79)


̂23 = Ŝ+
a Ŝ−

b , (80)


̂24 = Ŝ+
a

(
Î/2 − Ŝz

b

)
, (81)


̂31 = Ŝ−
a (Î/2 + Ŝz

b), (82)


̂32 = Ŝ−
a Ŝ+

b , (83)


̂33 = Î/4 − Ŝz
a/2 + Ŝz

b/2 − Ŝz
aŜz

b, (84)


̂34 = Ŝ+
b

(
Î/2 − Ŝz

a

)
, (85)


̂42 = Ŝ−
a

(
Î/2 − Ŝz

b

)
, (86)


̂43 = Ŝ−
b

(
Î/2 − Ŝz

a

)
, (87)


̂44 = Î/4 − Ŝz
a/2 − Ŝz

b/2 + Ŝz
aŜz

b, (88)

where Î is the 4 × 4 identity matrix and 
̂14, 
̂41 = 0. Having
defined operators 
̂mn one can expand the functions Ĝαβ

i j in
Eqs. (50)–(65), with c, d = a, b and i, j = 1, 2 in linear com-
binations of 
̂mn operators. Finally, using Eqs. (75)–(88), one
expresses each term on the right-hand side of Eqs. (50)–(65)
as a linear combination of products of components of Ŝa, Ŝb

operators. The formulas are shown in Eqs. (S1)–(S124) in
the Supplemental Material [7]. These equations represent the
exact GF of a free-electron gas interacting with two localized
spin moments Ŝ = 1

2 . They are bilinear combinations of spin
operators {Ŝ+

a , Ŝ−
a , Ŝz

a, Ŝ+
b , Ŝ−

b , Ŝz
b}. In contrast, the expressions

in Eqs. (50)–(65) are nonlinear combinations of spin operators
because of the presence of q̂1α , q̂2α operators.

Analytical expressions for elements of q̂1α , q̂2α matrices
are shown in Eqs. (S153)–(S192) in the Supplemental Mate-
rial [7]. The elements of these matrices, denoted as q1α

i j and
q2α

i j , are complex numbers depending on p1 and p2 only [see
Eqs. (38) and (39)]. Both p1 and p2 depend on the value of
the one-electron GF at the origin g0, which we assumed to be
finite and nonzero [see Eq. (10)].

To continue the example from Eqs. (70) we apply the above
procedure to (Ĝab)11|3 in Eq. (71) and obtain

(Ĝab)11|3 = C3

4

[

̂11q1A

11 − 
̂22q1A
22 − 
̂33q1A

33 + 
̂44q1A
44

+ 
̂23q1A
23 + 
̂32q1A

32

]
. (89)

Taking explicit forms of operators 
̂11, 
̂22, 
̂23, 
̂32, 
̂33,

̂44 [see Eqs. (75)–(88)], one finds

(Ĝab)11|3 = C3

4

(
1

4
Î + 1

2
Ŝz

a + 1

2
Ŝz

b + Ŝz
aŜz

b

)
q1A

11

− C3

4

(
1

4
Î + 1

2
Ŝz

a − 1

2
Ŝz

b − Ŝz
aŜz

b

)
q1A

22

− C3

4

(
1

4
Î − 1

2
Ŝz

a + 1

2
Ŝz

b − Ŝz
aŜz

b

)
q1A

33

+ C3

4

(
1

4
Î − 1

2
Ŝz

a − 1

2
Ŝz

b + Ŝz
aŜz

b

)
q1A

44

+ C3

4
Ŝ+

a Ŝ−
b q1A

23 + C3

4
Ŝ−

a Ŝ+
b q1A

32 . (90)

In Eq. (90), the quantity Gab
11|3 is a combination of products of

localized spin components. The remaining terms of the exact
GF are calculated in analogous way, and they are shown in
Eqs. (S1)–(S124) in the Supplemental Material [7].

VII. GRAND CANONICAL POTENTIAL AND RANGE
FUNCTIONS

Having obtained the exact GF one can calculate observ-
ables measured experimentally. We calculate the density of
states (DOS), the grand canonical potential, the range func-
tion, and the energy of localized states. All calculations are
performed for T = 0 but they can be generalized to nonzero
temperatures using standard GF techniques (see Discussion,
Sec. XI).

A. DOS and grand canonical potential

The continuous energy spectrum of the system is deter-
mined by the discontinuity of the Green’s function along the
cut of positive energy axis [18]. Then, the electron DOS is

n(E ) = − 1

π
Im

∫
Tr{Ĝ+

11}d3r, (91)
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where Ĝ
+
11 = Ĝ

+
(r1, r1) and

Tr{Ĝ+
11} = (Ĝ

aa+
)11 + (Ĝ

aa+
)22 + (Ĝ

ab+
)11 + (Ĝ

ab+
)22

+ (Ĝ
ba+

)11 + (Ĝ
ba+

)22 + (Ĝ
bb+

)11 + (Ĝ
bb+

)22.

(92)

Calculating the trace in Eq. (91) from Eqs. (50)–(65) or Eqs.
(S1)–(S124) in the Supplemental Material [7] we note that Ĝ
depends on spatial variables r1 and r2 by four products of one
electron GFs, namely, g1aga2, g1agb2, g1bga2, g1bgb2, while the
remaining terms do not depend on r1 or r2. Taking the trace,
one obtains three integrals

h+
ab = h+

ba = ∫
g+

1ag+
b1dDr1 = −∂g+

ab

∂E
, (93)

h+
0 = ∫

g+
1ag+

a1dDr1 = lim
b→a

h+
ab, (94)

where D = 1, 2, 3 is system’s dimensionality, and g+
ab = g+

ba.
In Eqs. (93) and (94) we assumed the translational symmetry
of the one-electron GF. To calculate quantities g+

ab, h+
ab, and

h+
0 one needs to specify the one-electron GF. We address this

point in Sec. IX.

B. Range function

For noninteracting particles the generalized grand canoni-
cal potential is

�̂ = −
∫

f (E )N (E )dE + μN, (95)

ant it satisfies the proper extremal properties of the total
energy [20]. Here, μ is the chemical potential, N is the number
of particles, f (E ) is the Fermi-Dirac distribution function, and
N (E ) is the integrated density of states

N (E ) =
∫ E

−∞
n(E ′)dE ′. (96)

Our calculations are limited to T = 0, and below we approxi-
mate f (E ) = 
(EF − E ), where 
(x) is the step function and
EF is the Fermi energy.

In Eq. (95) the grand canonical potential �̂ depends on a
configuration of spins Ŝa and Ŝb. For Ŝa, Ŝb = 1

2 one defines
the range function J (rab) as a difference between �̂ for
parallel and antiparallel configurations of Ŝa and Ŝb spins

J (rab) = �↑↑ + �↓↓ − (�↑↓ + �↓↑), (97)

where

�μ,ν = 〈μ, ν|�̂|μ, ν〉 (98)

is the grand canonical potential for a given configuration
μ, ν ∈ {↑,↓} of Ŝa and Ŝb. Then, one can calculate J (rab)
numerically with the use of Eqs. (50)–(65).

The range function J (rab) in Eq. (97) can be conveniently
calculated for representation of GF given in Eqs. (S1)–(S124)
in the Supplemental Material [7]. The derivation is based on
the observation that J (rab) defined in Eq. (97) selects from
Eqs. (S1)–(S124) in the Supplemental Material [7] only terms
proportional to Ŝz

aŜz
b. These terms we marked by � symbols.

There are 12 such terms, and the trace in Eq. (92) includes all
of them.

Let Ĝ
+Sz

aSz
b be the sum of terms proportional to Ŝz

aŜz
b and

�Sz
aSz

b be the part of the grand canonical potential including

Ĝ
+Sz

aSz
b . Then, we have from Eqs. (95) and (96)

�Sz
aSz

b = 1

π

∫ ∞

0
dE

∫ E

−∞
dE ′

[
Im

∫
Tr{Ĝ+Sz

aSz
b}d3r

]
. (99)

Calculating the sum of 12 components of Ĝ
+Sz

aSz
b , and taking

the explicit form of elements q̂1α and q̂2α matrices, with
α = A, B,C, D [see Eqs. (S153)–(S192) in the Supplemental
Material [7]], one obtains after some algebra

�Sz
aSz

b = �ab + �01 + �02. (100)

By �ab we denote the part of �Sz
aSz

b depending on the interspin
distance rab, and by �01 + �02 we denote the part of �Sz

aSz
b

which does not depend on rab. The indices 1 and 2 in �01 +
�02 indicate powers of the coupling constant J entering into
these expressions. Then, there is

�ab = J2

π
Ŝz

aŜz
b Im

∫ EF

0

[∫ E

−∞
gabhab ωabdE ′

]
dE , (101)

where gab is the one-electron GF at points ra and rb [see
Eq. (9)], and hab is defined in Eq. (93),

ωab = 16(2p2
1 − 4p1 − p2 + 4)

[8p1(3p2 − 4) − 9p2
2 + 8(p2 − 2)](4p1 − p2 − 4)

,

(102)

and p1, p2 are given in Eqs. (38) and (39). Similarly,

�01 = J

π
Ŝz

aŜz
b Im

∫ EF

0

[∫ E

−∞
h0 ω01dE ′

]
dE , (103)

�02 = J2

π
Ŝz

aŜz
b Im

∫ EF

0

[∫ E

−∞
g0h0 ω02dE ′

]
dE , (104)

in which

ω01 = 32[p1(p2 + 4) − 4p2]

[8p1(3p2 − 4) − 9p2
2 + 8(p2 − 2)](4p1 − p2 − 4)

,

(105)

ω02 = −16(2p2
1 − 4p1 − p2 + 4)

[8p1(3p2 − 4) − 9p2
2 + 8(p2 − 2)](4p1 − p2 − 4)

,

(106)

and h0 is given in Eq. (94).
First, we analyze �ab term that gives the main contribution

to the range function J (rab). For small J , we may expand
ωab in Taylor series. Assuming p2 = J2 pab

2 [see Eq. (39)], one
obtains

ωab � 1 − Jg0 + 9

8
J2g2

0 − 17

16
J3g3

0

+ 1

32
J4

[
35g4

0 − 11g2
0 pab

2 − 14
(
pab

2

)2]
. . . . (107)

One observes the following from Eqs. (101)–(107): (i) By
taking ωab = 1 in Eq. (101) one obtains the range function
of the RKKY interaction (see Appendix B). (ii) For arbitrary
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ωab, as given in Eq. (102), the double integral in Eq. (101) may
not be calculated analytically, so calculations are performed
numerically (see Sec. X). (iii) Since g0 does not depend on
the distance rab between localized spins, the second, third, and
fourth terms in Eq. (107) do not alter the spatial oscillations
of �ab, they only affect its amplitude. (iv) For small J the
difference between the exact and RKKY range functions is on
the order of ±2p1 = ±Jg0, and usually it is on the order of a
few percent. (v) The first modification of spatial dependence
of ωab appears in the fourth order of J . This term includes
pab

2 which depends on rab [see Eq. (39)]. (vi) Since p1 ∝ J
and p2 ∝ J2, for J → ∞ there is ωab ∝ J−4 and �ab ∝ J−2,
which vanishes for large |J|. The last result is counterintuitive
since for large values of |J| one expects no difference of
�Sz

aSz
b in Eq. (100) for configurations having parallel and

antiparallel localized spins. This issue can be clarified within
our formalism (see Sec. VIII and Appendix C).

Analyzing Eqs. (103) and (104) we consider first the case
of small J and expand ω01 and ω02 in Eqs. (105) and (106) in
power series of J . One has

ω01 � Jg0 − J2(g2
0 + 4c2)/2 + · · · , (108)

Jg0ω02 � −Jg0 + J2g2
0 + · · · , (109)

i.e., the terms linear in J cancel out and one has

�01 + �02 � −2J3

π
Ŝz

aŜz
b Im

∫ EF

0
dE

∫ E

−∞
h0(c2 + · · · )dE ′.

(110)

We conclude the following: (i) The terms �01 + �02 are of
the third order in the coupling constant J , while the �ab term
is of the second order in J . (ii) Contrary to �ab, the terms
�01 + �02 include the product g0h0 which does not depend
on rab, and for this reason these terms weakly depend on the
distance between spins. (iii) For large |J| the sum �01 + �02

vanishes as J−2, similarly to �ab. (iv) Physically, �01 + �02

are generalization of the onsite energies appearing in the
second order of perturbation expansion. Numerical calcula-
tions for 3D range function show that, for reasonable rab,
the contribution of �01 + �02 to the range function is a few
orders of magnitude smaller than that of �ab term. Therefore,
the impact of �01 + �02 terms on the range function may be
neglected.

VIII. APPROXIMATE FORM OF �ab IN 3D

Now we consider a simplified version of Eq. (102) in which
we assume that the one-electron GF vanishes sufficiently fast
with rab. This approximation works correctly for electrons in
parabolic energy bands in 3D and 2D (see Sec. IX). Let

p2 = J2

4

(
g2

0 − gabgba
) � J2g2

0

4
= p2

1, (111)

where p1 = Jg0/2 [see Eq. (38)]. Then, from Eqs. (101),
(102), and (111) one obtains

�ab � 16J2

9π
Ŝz

aŜz
b Im

∫ EF

0
dE

∫ E

−∞

gabhab dE ′

(p1 − 2)2(p1 + 2/3)2

(112)

and

�01 + �02 � 0. (113)

Equations (112) and (113) give a simple but complete de-
scription of the spin-dependent part of the thermodynamical
potential and the range function J (rab) in the whole range of
model parameters. First, taking p1 � 0 one obtains

�ab � J2

π
Ŝz

aŜz
b Im

∫ EF

0
dE

∫ E

−∞
gabhab dE , (114)

i.e., the thermodynamical potential and the range function
for the RKKY interaction (see Appendix B). Next, for 0 �
E � EF the quantity g0 entering p1 is a nonoscillating slowly
varying function of energy. Thus, for p1 � 2 and −p1 �
2/3 the denominators in Eq. (112) are also slowly varying
functions of energy. These terms modify the amplitude of
the range function but not its oscillations. For large |p1| and
|J| the denominators in Eq. (112) diminish the amplitude of
range function and introduce an additional phase shift to the
oscillations. For very large |J| the range function vanishes as
|J|−2, as found previously. Finally, in the simplified model the
one-site interactions do not give any contribution to the range
function in full analogy to the RKKY case.

The quantity g0 is a complex number: g0 = gR
0 + igI

0. Usu-
ally, the real part of g0 slowly varies with E , while gI

0 is
proportional to the density of states of the system. For two
values of J and appropriate energies there is JgR

0/2 � 2 or
JgR

0/2 � −2/3, and the real part of (p1 − 2) or (p1 + 2/3)
vanishes. Then, one of the denominators in Eq. (112) becomes
large, especially for low energies. In this case, one may expect
a significant enhancement of �ab and consequently the range
function J (rab). This effect is quite general, but its magnitude
depends on one-electron GF in the considered system.

The singular points of the integrand in Eq. (112) appear
for p1 = 2 or − 2

3 and the vanishing imaginary part of g0.
In 3D this occurs for energies E � 0 since the density of
states vanishes at or below the edge of the conduction band.
For a specific combination of parameters, one may expect
the presence of localized states with discrete energies. This
issue is discussed in Sec. IX. Note that for the general case
of Eq. (101) the singularities appear not exactly at p1 = 2 or
− 2

3 , but in the vicinity of these points because of the more
complicated form of p2 [see Eq. (39)].

The above considerations suggest the existence of three
different regimes of parameters in the considered model. For
small coupling constants J the exact range function resembles
the RKKY one, with slightly altered amplitude but unchanged
oscillation period. For parameters meeting the conditions
p1 � 2 or p1 � − 2

3 the thermodynamical potential �ab and
the range function J (rab) are qualitatively different from
the RKKY case and discrete energy states appear. The third
regime occurs for large values of |J| or |g0|. In this case, the
thermodynamic potential �ab and the range functions resem-
ble RKKY ones, but with additional phase shift in oscillations
and much lower amplitude vanish with increasing |J| or |g0|.
Numerical results in Sec. X confirm the above predictions.
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Origin of model peculiarities

The approximations in Eqs. (111) and (112) allow us to
understand three peculiar features of the exact GF, namely,
(i) the asymmetry between positive (antiferromagnetic) and
negative (ferromagnetic) signs of the coupling constant J ,
(ii) existence of two singularities for Jg0/2 ∈ {2,− 2

3 }, and
(iii) disappearance of the range function for large |J| values.
Below, we present the main steps in rederivation of the density
of states entering the integrand of Eq. (112) in the approximate
model and explain the mathematical and physical origins of
the peculiarities.

Consistently with the approximation given in Eq. (111)
we neglect in Eqs. (30) and (31) terms including products of
gabgba. Then, from Eqs. (30) and (31) one obtains

Q̂1 � (Î − g0Ẑa)−1(Î − g0Ẑb)−1 ≡ K̂aK̂b, (115)

Q̂2 � (Î − g0Ẑb)−1(Î − g0Ẑa)−1 ≡ K̂bK̂a. (116)

In Eqs. (115) and (116) the quantities K̂a, K̂b are 2 × 2
matrices, whose elements are combinations of Ŝa and Ŝb spin
components (see below). For finite and nonzero g0 there is

(Î − g0Ẑc)−1Ẑc = 1

g0
(K̂c − Î ), (117)

where c = a, b. Note that (Î − g0Ẑc) commutes with Ẑc. From
Eq. (29) one has

Ĝ12 � g12 Î + g1a

g0
(K̂a − Î )ga2 + g1b

g0
[K̂b − Î]gb2

+ g1a

g2
0

[gab(K̂a − Î )(K̂b − Î )]gb2

+ g1b

g2
0

[gba(K̂b − Î )(K̂a − Î )]ga2. (118)

The first observation from Eqs. (115), (116), and (118) is
that, for large |J|, the operators K̂a, K̂b tend to zero and in
this limit Ĝ12 in Eq. (118) does not depend on Ŝa and Ŝb. In
consequence, the thermodynamic potential does not depend
on spin configuration, so that the range function J (rab) in
Eq. (97) vanishes. The derivation of this result for the general
case is shown in Appendix C.

The next conclusion from Eq. (118) is that, in the approx-
imate model, the one-site parts of the exact GF, given by the
two last terms of first line in Eq. (118), do not depend on the
interspin distance rab. This observation suggests that also in
the general model discussed in the previous sections, these
terms are negligible.

The density of states is proportional to the trace of Ĝ12. Let

K̂c =
(

k̂cA k̂cB

k̂cC k̂cD

)
, (119)

with c = a, b. Using the notation from Sec. VI find Tr{Ĝ} =
Tr{Ĝab} + Tr{Ĝba}, where

Tr{Ĝab} = gabhab

g2
0

(k̂aAk̂bA + k̂aBk̂bC + k̂aCk̂bB + k̂aDk̂bD − k̂aA

− k̂aD − k̂bA − k̂bD + 2Î ), (120)

Tr{Ĝba} = gabhab

g2
0

(k̂bAk̂aA + k̂bBk̂aC + k̂bCk̂aB + k̂bDk̂aD − k̂bA

− k̂bD − k̂aA − k̂aD + 2Î ). (121)

Equation (120) corresponds to the sum (Ĝab)11 + (Ĝab)22

in Eqs. (50)–(65), while Eq. (121) corresponds to the sum
(Ĝba)11 + (Ĝba)22. The trace of GF obtained in Eqs. (120) and
(121) is simpler than that in Eqs. (50)–(65). Using the Wood-
bury identities in Eq. (21) and definition of K̂c in Eqs. (115)
and (116) one obtains

k̂aA = [
(Î − p1Ŝz

a) − p2
1Ŝ−

a

(
Î + p1Ŝz

a

)−1
Ŝ+

a

]−1
, (122)

k̂aD = [(
Î + p1Ŝz

a

) − p2
1Ŝ+

a

(
Î − p1Ŝz

a

)−1
Ŝ−

a ]−1, (123)

k̂aB = p1k̂aDŜ−
a

(
Î + p1Ŝz

a

)−1
, (124)

k̂aC = p1k̂aAŜ+
a

(
Î − p1Ŝz

a

)−1
, (125)

and similarly for k̂bα with α = A, B,C, D. For the spins
Ŝa, Ŝb = 1

2 the operators Ŝ±
a , Ŝz

a, Ŝ±
b , Ŝz

b are 4 × 4 matrices [see
Eqs. (68) and (69)]. Then, the operators k̂aα and k̂bα are
also 4 × 4 matrices that can be calculated from Eqs. (S204)–
(S209) in the Supplemental Material [7].

Having calculated matrices k̂aα and k̂bα the trace in
Eq. (120) in the Zeeman base (67) is

Tr{Ĝab} = gabhab

g2
0

⎛
⎜⎝

x11 0 0 0
0 x22 x23 0
0 x32 x33 0
0 0 0 x44

⎞
⎟⎠, (126)

and the xi j are listed in Eqs. (S201)–(S203) in the Supplemen-
tal Material [7]. On the other hand, there is

Tr{Ĝab} = gabhab

g2
0

(
c1 Î + c2Ŝz

a + c3Ŝz
b + c4Ŝz

aŜz
b

+ c5Ŝ+
a Ŝ−

b + c6Ŝ−
a Ŝ+

b

)
, (127)

where ci are coefficient to be determinate. The range function
is defined as a coefficient c4 in front of Ŝz

aŜz
b [see Eq. (99)].

After some algebra we find c4 = x11 − x22 − x33 + x44, which
gives

Tr
{
Ĝ

Ŝz
aŜz

b
ab

} =
(

8J2

9π

)
gabhab

(p1 − 2)2(p1 + 2/3)2
. (128)

Since Tr{ĜŜz
aŜz

b
ba } = Tr{ĜŜz

aŜz
b

ab } one finally obtains Tr{ĜŜz
aŜz

b} =
2 Tr{ĜŜz

aŜz
b

ab }, i.e., the integrand in Eq. (112). On expanding it
around p1 = 0 we find

Tr{ĜŜz
aŜz

b} � gabhab

π
(1 − Jg0 + · · · ), (129)

i.e., the same expansion as in Eq. (107). This confirms the
accuracy of the simplified form of thermodynamical potential
in Eq. (112).

In the Zeeman basis (67) the matrix corresponding to k̂aA

operator in Eq. (122) is diagonal

k̂aA = diag(k2, k2, k2 + k−2/3, k2 + k−2/3), (130)
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with k2 = 1/(2 − p1) and k−2/3 = 1/(3p1 + 2). The matrix in
Eq. (130) and the remaining matrices k̂aα and k̂bα have singu-
larities for p1 ∈ {2,− 2

3 }, i.e., for the same p1 values as the
singularities of the thermodynamical potential in Eq. (112).
Thus, singularities of the exact GF appear when the operators
(Î − g0Ẑa) or (Î − g0Ẑb) may not be inverted. For Ŝa, Ŝb = 1

2
this occurs for two p1 values: p1 = 2 or − 2

3 . Since p1 =
Jg0/2, the nonreversibility of (Î − g0Ẑa) and (Î − g0Ẑb) op-
erators breaks the symmetry between positive (antiferromag-
netic) and negative (ferromagnetic) values of J . This effect
does not exist for the GF of the RKKY range function since
the latter depends on J2 and it is symmetric respect to positive
or negative J values.

IX. ONE-ELECTRON GREEN’S FUNCTION

The results for GF in Eqs. (49)–(65) and (S1)–(S124) in
the Supplemental Material [7] are valid for one-electron GF
having arbitrary energy band dispersion but a finite value of
g0 [see Eq. (10)]. We consider electrons in the effective mass
approximation in a parabolic energy band. The use of such
GF allows us to compare the range function obtained from the
exact GF with that obtained in the RKKY model.

A. Parabolic energy bands

Taking the Bloch states |k〉 in the form of plane waves the
one-electron GF in the effective mass approximation is

gab = 〈ra|ĝ|rb〉 = 1

(2π )D

∫
eik(ra−rb)

E − ε(k)
dDk, (131)

ε(k) = h̄2k2

2m∗ ≡ ζk2. (132)

Here, D is the system’s dimensionality, m∗ is the electron
effective mass, and ζ = h̄2/(2m∗). For T = 0 the energy E
is a real number with a small imaginary part.

For 3D systems one has [18]

g±
ab = − eik0rab

4πrabζ
, (133)

where k0 = √|E |/ζ > 0, Re(E ) > 0, rab = |ra − rb|, and ±
signs correspond to the retarded and advanced Green’s func-
tion, respectively. From Eqs. (93) and (94) one obtains

h+
ab = ieik0rab

8πk0
, (134)

h+
0 = i

8πk0
. (135)

For 2D systems [18]

g±
ab = − i

4πζ
H0(±k0rab), (136)

where H0(x) is the zeroth-order Hankel function of the first
kind. For the 1D systems [18]

g±
ab = ∓ i

2k0ζ
e±ik0xab . (137)

As seen from Eqs. (133)–(137), the one-electron GF at the
origin g0 = g11 = g22 diverges in D = 3 and D = 2. In 1D

there is

g±
0 = ∓ i

2k0ζ
, (138)

which is finite for k0 �= 0. These results conclude the issue of
convergence of the perturbation series in the RKKY problem.
As follows from the above consideration, the latter stated in
its basic form leads to divergent perturbation series for 3D
and 2D systems.

B. Cutoff energy

There exist several effects in real materials which may
eliminate divergence of g0. Here we consider one of these ef-
fects, i.e., a nonparabolicity of the energy band for large wave
vectors. As seen in Eq. (133), the singularity of one-electron
GF at rab = 0 arises from the divergence in the integral in
Eq. (131) for large k, while for real materials the parabolic
band dispersion is justified only for small k. For k exceeding,
roughly, half of the first Brillouin zone, the curvatures of
energy bands change their signs and the parabolic model fails.

To overcome the problem of divergence of g0 for large k
values, we follow the method described in Refs. [11–13]. For
rab �= 0 we use the one-electron GF given in Eq. (131), while
for rab = 0 we take the GF in the energy representation

g+
0 =

∫ ∞

0

n(E ′)
E − E ′ + iη

dE ′

=
∫ ∞

0
P n(E ′)

E − E ′ dE ′ − iπ
∫ ∞

0
n(E ′)δ(E − E ′)dE ′, (139)

where n(E ) ∝ √
E
(E ) is the density of states in 3D, 
(E ) is

the step function, and P is the principal value of the integral.
For large energies the real part of g+

0 in Eq. (139) diverges. To
remove this divergence, we introduce a cutoff energy Em �
EF that ensures convergence of the integrals in Eq. (139).
We treat Em as a model parameter. A similar approach of
dealing with divergence of the one-electron GF was proposed
in Ref. [19]. The density of states is then

n(E ) = 1

2π2ζ 3/2

√
E 
(E )
(Em − E ). (140)

For E � 0,

g+
0 = 1

2π2ζ 3/2

[
−

√
E ln

(√
Em − √

E√
Em + √

E

)
− 2

√
Em

]

− i

2πζ 3/2

√
E
(Em − E ), (141)

while for E < 0 there is

g+
0 = 1

2π2ζ 3/2

[
2
√

|E | arctan

(√
Em

|E |

)
− 2

√
Em

]
, (142)

since n(E ) is zero for E < 0. For E � Em the real part of g+
0

is

Re(g+
0 ) � 1

2π2ζ 3/2

(
−2

√
Em + E

2Em

)
for E � 0, (143)
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Re(g+
0 ) � 1

2π2ζ 3/2

(
−2

√
Em + π

√
|E | − |E |

2Em

)
for E < 0.

(144)

For E > 0 the quantity g+
0 is complex while for E � 0 it is

real. We choose Em as the energy at km = π/a, where a is the
lattice constant. For many lattices as, e.g., for the fcc lattice in
the �X direction of k, the value of km corresponds to half of
the Brillouin zone. Then,

Em = h̄2π2

2m∗a2
. (145)

In 2D systems the real part of g+
0 diverges as ln(Em) and the

results depend only weakly on Em.
For E = 0 it is possible to adjust J , m∗, and Em in such

a way that Jg+
0 /2 ∈ {2,− 2

3 }. In the vicinities of these two
points, the integral in Eq. (112) has two singularities. Using
Eq. (145) and ζ = h̄2/(2m∗) we find that the two singularities
appear for p1 = ps

1, where

ps
1 = −1

2

J
√

Em

π2ζ 3/2
= − Jm∗

π h̄2a
∈ {2,−2/3}. (146)

The singularity p1 = 2 occurs for negative values of J , i.e.,
for ferromagnetic coupling between conduction electrons and
atomic d states. The singularity p1 = − 2

3 occurs for positive
values of J , i.e., for antiferromagnetic s-d coupling. The two
values of ps

1 indicate borders between three regimes of the
model parameters. Their positions depend on electron effec-
tive mass, elementary cell volume, lattice constant, and s-d
coupling constant. The two latter parameters do not change
significantly between various compounds, but the effective
mass may vary more than two orders of the magnitude.
For narrow-gap semiconductors such as InSb, the effective
mass can be below 0.1me, while for some materials, e.g.,
Sr1−xLaxTiO3−y, it can exceed 10me. In many compounds it
possible to change m∗ by changing electron concentration or
by applying external pressure. This may give a practical way
of modifying ps

1 in Eq. (146).

C. Discrete energy levels

Discrete energy levels of a system are obtained from
poles of Ĝ12 function [18]. For the exact GF given in
Eqs. (S1)–(S124) in the Supplemental Material [7], the poles
of GF are obtained from two alternative equations

4p1 − p2 − 4 = 0, (147)

32p2
1(3p2 − 4) − 4p1

(
15p2

2 + 8p2 − 16
)

+ (p2 + 4)
(
9p2

2 − 8p2 + 16
) = 0. (148)

These equations are difficult to analyze and they can be solved
only numerically. However, in 3D and 2D systems we may
approximate p2 � p2

1 [see Eq. (111)], and obtain instead of
Eqs. (147) and (148) the condition (p1 − 2)(p1 + 2/3) = 0,
which gives

Jg+
0

2
= 2 or

Jg+
0

2
= −2

3
. (149)

For E > 0 and E < Em the conditions in Eq. (149) can not
be satisfied. However, for E � 0 (i.e., below the conduction
band edge) the imaginary part of g+

0 vanishes and conditions
in Eq. (149) may be satisfied for some combination of pa-
rameters entering to the model. Since we are interested in
low-energy states, we use the approximate form of g+

0 in
Eq. (144). From (149) we have

J

4π2ζ 3/2
(−2

√
Em + π

√
|E |) = A, (150)

where A ∈ {2,− 2
3 }. It is convenient to introduce

J{A} = −2π2ζ 3/2A√
Em

(151)

and δJ = J − J{A}. Assuming δJ � J{A} one obtains from
Eq. (150)

√
|E | = 4πAζ 3/2(J{A} − J )

J{A}J
� −4πAζ 3/2(δJ )

(J{A})2
. (152)

The left-hand side of Eq. (152) is non-negative, which gives
−A(δJ ) � 0. For A = 2 one obtains (δJ ) < 0. Since the sin-
gularity A = 2 corresponds to J < 0 [see the discussion after
Eq. (146)], the bound states exist for J � J{2}. For A = − 2

3
there is (δJ ) > 0, and the bound states exist for J � J{−2/3}.
In both cases, the energies of bound states appear for small
values of δJ in the vicinities of points p1 ∈ {2,− 2

3 }.

X. NUMERICAL RESULTS

Here, we compare the range function J (rab) of the stan-
dard RKKY interaction with that obtained in Eq. (97) with
use of the exact GF and Eqs. (99)–(106). We restrict the
analysis to the 3D case. The definite and indefinite integrals
in Eqs. (101)–(104) are calculated by the Simpson method.
To avoid singularities arising from E = 0, it is convenient to
change the variable of integration E → q2. The model con-
sidered in this work depends on five parameters: s-d coupling
constant J , values of localized spins Ŝa, Ŝb, electron effective
mass m∗, the Fermi energy EF = h̄2k2

F /(2m∗), and the cutoff
energy Em. In the 3D case the Fermi wave vector is

kF = (3π2ne)1/3. (153)

In Table I we list parameters corresponding to ZnMnxSe1−x,
but with Ŝa, Ŝb = 1

2 instead of Ŝa, Ŝb = 5
2 [21,22]. These

parameters are used in calculations shown in Figs. 1 and 3
and in Table II.

In Fig. 1 we plot values of the range function J for
nearest-neighbor (NN) cations versus the coupling energy
αN0 = −J/�0, where �0 is the elementary cell volume.
Note the sign convention in Eq. (6). The remaining material
parameters are taken from Table I. The range function JRK ∝
(αN0)2 is also indicated. This figure illustrates three regimes
of model parameters discussed qualitatively in Sec. VII. The
two extremes of the range function are located in the vicinities
of αN0 = −15.28 eV, which corresponds to ps

1 = − 2
3 [see

Eqs. (146) and (112)] and αN0 = 45.83 eV corresponding
to ps

1 = 2. Both values of αN0 are more than two orders of
magnitude larger than the experimental s-d coupling constant
in Zn1−xMnxSe (see Table I).
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TABLE I. Material parameters for Zn1−xMnxSe used in calcu-
lations [21,22]. Note the sign convention in Eq. (6) and Ŝa, Ŝb = 1

2
instead of Ŝa, Ŝb = 5

2 .

Parameter Symbol Value Unit

Localized spin value Ŝa, Ŝb 1/2 NA
s-d coupling constant J −11.85 eV Å3

Lattice constant a 5.67 Å
Effective mass m∗ 0.13 m0

Electron concentration ne 6.0 × 1019 cm−3

Cutoff energy Em 8.99 eV
Elementary cell volume �0 45.57 Å3

s-d coupling energy αN0 = −J/�0 0.26 eV
Fermi vector kF 0.12 Å−1

Fermi energy EF 0.43 eV
Parameter ps

1 ps
1 1.13% NA

In Table II we compare the range functions calculated for
several interspin distances rab using the exact GF with that ob-
tained within RKKY formalism [see Eq. (4)] for Zn1−xMnxSe
taking parameters from Table I with two signs of αN0. The
parameters correspond to regime I of the model that is most
common in nature. The distance rab = 4.01 Å is the nearest-
neighbor distance of Mn cations in the lattice. In our example,
ps

1 � 1.13%. As follows from Eqs. (101) and (107), for small
ps

1 the difference between exact and RKKY range functions
should be on the order of |Jg0| � |2p1| � 2.3%. Numbers
shown in Table II confirm this expectation. The exact and
approximate functions oscillate with similar period π/kF and
similar amplitudes. This result explains the efficiency and

FIG. 1. Solid lines: amplitude of the range function J (rab) cal-
culated from Eqs. (97) and (99)–(106) versus αN0 for NN cations
distance rab = 4.01 Å. The remaining model parameters are listed
in Table I. Three regimes of the model are marked. Dashed line:
amplitude of the range function JRK(rab) from Eq. (4) versus αN0

for rab = 4.01 Å.

FIG. 2. Logarithms of |JRK| given in Eq. (4) and exact range
function |J | calculated using Eqs. (97) and (99)–(106) for nearest-
neighbor magnetic impurities in Sr1−xLaxTiO3−δ . Points are la-
beled according to Table III. The coupling constant between con-
duction and magnetic impurity electrons is ferromagnetic J =
−15.48 eV Å3. Results correspond to regimes I and III of model.

accuracy of the RKKY range function since for interspin
distances larger than r � 4 Å, both models predict the same
ordering of localized spins.

It follows from Eq. (146) that the regime III of the model
occurs for large values of effective mass or large magnitude
of the s-d coupling J . As an example of material in which the
regime III may occur is thin film of Sr1−xLaxTiO3−δ doped
with magnetic ions. This compound is one of perovskite-type
transition-metal oxides in which the dispersion of electrons

FIG. 3. Range function J (rab) calculated exactly using Eqs. (97)
and (99)–(106) in regime II of the model (see Fig. 1). Curves are
labeled by values of ps

1 [see Eq. (146)]. The remaining parameters
(except J and αN0) are listed in Table I.
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TABLE II. Values of RKKY range function JRK given in Eq. (4)
and exact range function calculated using Eqs. (97) and (99)–(106)
for Zn1−xMnxSe for several nearest-neighbor distances. Material
parameters are given in Table I. Magnitudes of range functions
are in μeV. The ± signs indicate positive (antiferromagnetic) or
negative (ferromagnetic) sign of the s-d coupling constant J . In the
last column: �± = [J ± − JRK]/JRK is the relative change of the
exact range function. From Eq. (107) and Table I they should be
|�±| = 2|p1| � 2.3%.

rab (Å) J (rab)RK J (rab)− �−

4.0 −2.599 −2.647 1.8%
5.7 −1.649 −1.681 1.9%
8.0 −0.960 −0.979 2.0%
11.3 −0.431 −0.439 1.9%
11.4 −0.420 −0.428 1.9%

rab (Å) J (rab)RK J (rab)+ �+

4.0 −2.599 −2.551 −1.8%
5.7 −1.649 −1.617 −2.0%
8.0 −0.960 −0.940 −2.0%
11.3 −0.431 −0.422 −2.1%
11.4 −0.420 −0.411 −2.1%

is parabolic with a large effective mass [24]. As shown in
Ref. [23], by varying concentration of La atoms it is possible
to change simultaneously the electron effective mass and car-
rier concentration. In our example it is assumed that a thin film
of Sr1−xLaxTiO3−δ is doped with magnetic atoms having spin
Ŝ = 1

2 . We take the ferromagnetic coupling constant between
conduction electrons and that of the magnetic impurity J =
−15.48 eV Å3. This corresponds to αN0 = 0.26 eV, i.e., to
the experimental value for Zn1−xMnxSe. Since the conduction
band in Sr1−xLaxTiO3−δ is created mostly from the Ti 3dt2g

states, the parameter J may not be interpreted as the s-d
coupling constant but as 3d- f or 3d-nd couplings. As follows
from Refs. [25,26], for rare-earth atoms the exchange integrals
are ferromagnetic with magnitudes of J4 f -5d = −J/(2�0) [27]
on the order of 180–140 meV depending on the number of
electrons in the 4 f shell, but other hybridization mechanisms
lead to larger values of J .

In Table III and Fig. 2 we compare the exact and RKKY
range functions for this films of Sr1−xLaxTiO3−δ doped with
magnetic ions taking the effective mass and concentration
from Ref. [23]. Parameter ps

0 is calculated from Eq. (146).
Both range functions are calculated for rab = a = 3.905 Å,
i.e., for the nearest-neighbor atoms. In this example the
parameter ps

1 varies from 0.93 to 3.08, which corresponds
to regimes I (ps

1 < 2) and III (ps
1 > 2) of the model (see

Fig. 1). For ps
1 on the order of unity, the values of exact range

function are a few times larger that those for the RKKY one.
For larger ps

1 the exact range function is much smaller than
the RKKY counterpart. For large ps

1 the ratio of exact range
function to RKKY one is (ps

0)−4 [see Eq. (112)], and a similar
ratio is obtained for ps

0 = 3.08. The results of Fig. 2 suggest
a possible method to observe experimental deviation of the
exact function J (rab) from the RKKY one since by changing
concentration of La atoms, both models predict significantly
different values of coupling between neighboring magnetic
impurities and, consequently, different Curie temperatures.

TABLE III. Values of RKKY range function JRK given in Eq. (4)
and exact range function calculated using Eq. (97) and Eqs. (99)–
(106) for nearest-neighbor magnetic impurities in Sr1−xLaxTiO3−δ .
The interspin distance is rab = 3.905 Å. Concentrations and effective
masses are taken from Ref. [23], localized spins are Ŝa, Ŝb = 1

2 and
the coupling constant between conduction and magnetic impurity
electrons is ferromagnetic J = −15.48 eV Å3.

X ne (cm−3) m∗/m0 ps
1 JRK (eV) J (eV)

A 1.9 × 1020 5.6 0.93 −5.60 × 10−4 −4.29 × 10−4

B 3.1 × 1021 6.0 0.99 −2.39 × 10−3 −1.84 × 10−3

C 2.7 × 1021 6.1 1.01 −2.56 × 10−3 −1.84 × 10−3

D 1.1 × 1021 7.1 1.18 −2.52 × 10−3 −1.59 × 10−3

E 2.1 × 1021 7.1 1.18 −3.05 × 10−3 −1.95 × 10−3

F 1.2 × 1020 7.2 1.19 −4.40 × 10−4 −4.74 × 10−4

G 6.0 × 1020 8.3 1.37 −2.05 × 10−3 −1.40 × 10−3

H 1.8 × 1019 9.2 1.52 −1.02 × 10−4 −3.02 × 10−4

I 5.0 × 1018 13.5 2.24 −4.23 × 10−5 −4.18 × 10−5

J 3.1 × 1018 18.6 3.08 −3.66 × 10−5 −1.76 × 10−6

In Fig. 3 we plot the range function in the vicinity of
ps

1 = − 2
3 , corresponding to αN0 � −15.28 eV. In this regime

the range function does not oscillate, and it has a very large
amplitude. We present these results without detailed discus-
sion because for parabolic energy bands the one-electron GF
diverges at the origin and g0 in Eq. (10) is infinite. The
approximation of g0 by a finite value gives reasonable results
in two other regimes of parameters, but in the vicinities of
singularities a more accurate one-electron GF is required.

Tables II and III and Figs. 2 and 3 provide three rep-
resentative examples of the range function J (rab) obtained
from the exact GF. The behavior of J (rab) confirms the
qualitative description presented previously and, in particular,
the predictions of the simplified model in Eq. (112).

XI. DISCUSSION

In the previous sections we described four main results for
the exact GF of the system and the range function J (rab).
In Eqs. (49)–(65) the exact GF is expressed as a nonlinear
combination of Ŝa, Ŝb components and we provided a method
of calculating the matrix elements of consecutive terms. These
results are valid for arbitrary spin values but in practice such
calculations can be done only numerically. For the spins
Ŝa, Ŝb = 1

2 we reexpressed the exact GF in terms of linear
combinations of localized spins components [see Eqs. (S1)–
(S124) in the Supplemental Material [7]] and calculated the
exact range function [see Eqs. (97) and (99)–(106)]. The exact
GF is obtained analytically, and the range function is found
as integrals of analytical expressions [see Eqs. (101), (103),
and (104)]. Both quantities depend on two dimensionless
parameters p1 and p2 [see Eqs. (38) and (39)]. This form of
GF and range function is still exact and suitable for numerical
calculations, but it also does not explain the physical nature of
the problem.

The third form of results is approximate and assumes
that p2 � p2

1 [see Eq. (111)]. This holds for one-electron GF
vanishing sufficiently fast with the increasing distance rab =
|ra − rb|. In practice, this is quite a good approximation in
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3D systems and possibly in 2D systems. This approximation
allows one to understand the three main physical features of
the model: the existence of three regimes for small, large, and
intermediate values of |J|, the asymmetry between ferromag-
netic and antiferromagnetic values of s-d coupling constant,
and possible existence of bound states corresponding to the
poles of exact GF in the vicinities of points p1 ∈ {2,− 2

3 }.
The fourth result is that the Born series is convergent if

and only if the one-electron GF is finite at the origin. As
a consequence, for the parabolic energy band dispersion in
3D and 2D systems, the Born series diverges, while in 1D
it converges. Then, formally, the second-order GF in Eq. (1)
and the range function in Eq. (4) are not sufficiently precise
since one approximates the divergent series by a finite result.
However, in real solids the parabolic energy approximation
works roughly to half of the Brillouin zone and for larger wave
vectors the band energies tend to a finite value. By taking a
realistic band structure one introduces an energy cutoff related
to a finite size of the Brillouin zone. Then, the one-electron GF
at the origin is finite and the Born series converges. This rea-
soning restores the validity of RKKY results in Eq. (4) since
after introducing the cutoff energy, one approximates the con-
vergent Born series by its second-order term given in Eq. (1).
Calculating the range function using GF approximated by this
term one makes second approximation extending some energy
integrals to the infinity, instead to the cutoff energy. Then, one
finally obtains the analytical result for the range function in
Eq. (4). We would like to mention that the s-d interaction is
just the exchange part of the Coulomb interaction for which,
as known, Born approximation gives correct experimental
scattering amplitude even for parameters that violate formal
convergence condition.

Since many issues related to the main results have been
already discussed, here we only comment on the points related
to other physical aspects of the considered problem. Calcula-
tions of the thermodynamic potential � in Eq. (95) and the
range function in Eq. (97) can be also performed for finite
temperatures. In this case, one should use the standard form
of the Fermi-Dirac distribution function for finite T . Such
calculations were reported in the literature for the RKKY
case [28] and it turns out that at nonzero temperatures the
oscillations have a similar period as for the T = 0 case, but
the amplitude decreasing with temperature.

Calculating the one-electron GF in Eq. (131) with band en-
ergy in Eq. (132) one should take the velocity (or momentum)
effective mass

1

m∗ = 1

h̄2k2

dε(k)

dk
. (154)

This mass is well defined both for parabolic and nonparabolic
energy bands. As discussed in Ref. [29], this effective mass
can be obtained from cyclotron resonance experiments, dc
transport phenomena, or free-carrier optics. In many systems
there exists an anisotropy of the effective masses. In this case,
one may not use an “average” or “density” effective mass, but
one should calculate the one-electron GF in Eq. (133) taking
into account this anisotropy.

In our approach we assumed that the potential of the crystal
lattice does not mix electron states with different spins. Thus,
in our considerations we neglect the spin-orbit interaction.

This approximation is valid for electrons in conduction bands
of metals or wide-gap semiconductors, but not for the holes,
since usually the band structure of holes is strongly affected
by the spin-orbit coupling. On the other hand, our model is
valid for an arbitrary shape of electron bands. As an example,
by taking the nonparabolic energy dispersion

ε(k) = h̄2k2

2m∗ (1 ± Ak2), (155)

where A is parameter of nonparabolicity, one obtains from
Eqs. (10) and (131) a finite value of g0. The same occurs for
the tight-binding dispersion as, e.g.,

ε(k) = E0 − t cos(kxa) cos(kya) cos(kza), (156)

where E0 and t are parameters of the tight-binding Hamilto-
nian. Then, the integration over k in Eq. (131) is restricted
to the first Brillouin zone and one also obtains a finite value
of g0. The two above examples show that the existence of g0

is a separate problem, independent of the derivation of the
exact GF. In this work we considered parabolic energy bands
because our intention was to compare the results obtained
from the summation of the infinite series (exact GF) with
results obtained for the lowest-order terms (RKKY model) in
the parabolic approximation.

Our approach can be generalized to many energy bands and
include the spin-orbit interaction. Assume for simplicity that
one considers 2 j energy bands, where j is a positive integer.
Then, in order to invert the operators F̂1 and F̂2 in Eqs. (30)
and (31) one should apply the Woodbury identities j + 1
times [see Eqs. (21)–(23)]. In practice, it can be done only
numerically. We expect that such a procedure gives similar
results to those obtained in this paper.

The divergence of the perturbation series in 2D and 3D
resembles difficulties arising for deltalike potentials for 2D
and 3D systems. As discussed in [30], the presence of delta
potential is inconsistent with the assumption that the electron
wave function is finite at the origin. Such a problem does not
exist in 1D or for systems with nonparabolic energy disper-
sion. Other peculiarities of singular potentials are discussed
in Ref. [31].

Crucial assumption in our work is the zero-range poten-
tial in Eq. (6) since only for deltalike potentials the Dyson
equation in Eq. (11) can be converted into algebraic equa-
tions. In practice, this potential is realized by two kinds of
physical objects: atom nuclei or magnetic impurity atoms.
The diameter of nucleus varies from 1.8 fm for hydrogen to
about 11.7 fm for uranium. Both diameters are more than five
orders of magnitude smaller than the lattice constant of met-
als, semiconductors, or heavy-fermion compounds. Therefore,
the assumption of the zero-range potential is justified for all
nuclear systems interacting with electrons in a crystal lattice
[32]. The approximation of zero-range potential is less evident
for magnetic moments occurring from the hybridization be-
tween d or f electrons of a magnetic impurity atom and band
electrons [21]. The radius of an impurity atom is on the order
of a half-lattice constant, which is typically around 3 Å. The
period of oscillations of the range function is π/kF , where
kF ∝ n1/3

e . The approximation of the s-d interaction by the
δ-like potential is justified if π/kF � a/2, which determines
the maximum concentration of electrons in the sample.
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The described model assumes presence of only two local-
ized spins in the lattice. This assumption is valid for suffi-
ciently diluted systems, as e.g. diluted magnetic or ferromag-
netic semiconductors, in which one can disregard interactions
between three or mores spins. But, there are systems like the
Kondo lattice [33], in which all atoms (or cations) are coupled
by the RKKY interaction, whose spatial decay is described by
the standard formula for the RKKY range function. In these
systems, the assumption of low-impurity concentration is not
fulfilled both for the exact and the RKKY range functions.
However, because of the fast decay of range functions with
interspin distance, the presence of more distant magnetic
atoms may be neglected. Nevertheless, some caution is needed
when applying the results given in Figs. 2 and 3 to such
systems.

An exponential decay of the RKKY interaction was pro-
posed in literature to fit experimental values of the Curie
temperature in some systems [34]. However, as explained
in Ref. [35], the exponential decay of RKKY interaction
results not from exponential form of the range function, but
rather from averaging over random distribution of magnetic
impurities in the lattice. The same arguments can be applied
to the exact range function regimes I and III of the model
because in these regimes the exact range function resembles
the RKKY one.

In Ref. [36] we successfully removed the divergence of
g0 for the Friedel oscillations using the regularization pro-
cedure. This approach may not be applied in the present
case because in the exact GF, there exist several divergent
terms. In consequence, each term of GF should be regularized
using different regulators, i.e., different values of Jeff . In
this work we used a different approach and introduced only
one effective parameter, namely, the cutoff energy Em [see
Eq. (131)]. Therefore, all terms of the exact GF are calculated
using the same approximation.

The exact GF calculated in this work relates to the problem
of two magnetic impurities interacting via s-d interaction.
However, this is not a problem of two-impurity Anderson
Hamiltonian. The reason is that the RKKY interaction, ob-
tained in the second order of perturbation in terms of s-d
coupling constant, differs from the interaction obtained in
the fourth order of the Vsd hybridization parameter of the
Anderson models since the latter includes some extra terms
that are not present in RKKY [37]. The same terms are
omitted in the calculation of the exact GF.

The results given in Eqs. (49)–(65) and (S1)–(S124) in the
Supplemental Material [7], are valid for any system dimension
D. The case of D = 3 was analyzed in previous sections, so
here we briefly discuss the exact range function in one and two
dimensions. In 2D systems the exact range function oscillates
with the period T = π/kF and for large rab it vanishes as
1/r2

ab. We expect the existence of similar three regimes for
small, intermediate, and large s-d coupling, analogous to
those shown in Fig. 1. For parabolic energy bands in 2D the
real part of g0 diverges as ln(E ) and in order to eliminate
this divergence one also should add the cutoff energy Em

[see Eq. (141)]. But, because of the logarithmic divergence
of Re(g0) in 2D, the quantity g0 is less is sensitive to the
cutoff energy than its counterpart in 3D. Finally, for large
rab in 2D the one-electron GF in Eq. (136) decays as 1/r0.5

ab

and the approximate form of thermodynamical potential �ab

in Eq. (112) is less justified than in 3D.
In one dimension, the exact GF and the exact range func-

tion differ significantly from those in 3D and 2D. First, in 1D
the quantity g0 in Eq. (138) for a parabolic energy band is
finite and imaginary. Next, the one-electron GF diverges for
E = 0, and this singularity gives a nonzero contribution to
the range function J (rab) [38–40]. Because of the presence
of the singularity, one may not decide about the existence
of localized states. Finally, in 1D the one-electron GF in
Eq. (137) oscillates in space with a constant amplitude, so the
contributions of ω01 and ω02 terms in Eqs. (105) and (106)
become comparable to that of ωab, while in 3D the contri-
butions of ω01 and ω02 to the range function are negligible.
However, it seems that there are no real 1D systems with
electrons described by the effective mass approximation with
spin-independent parabolic energy dispersion. For this reason
we did not investigate the 1D case in more detail.

The method of calculating GF proposed in this work
applies only to deltalike s-d interactions, and it can not be
directly extended to models including exchange, correlations,
screening, the presence of phonons, strain, etc. Nevertheless,
it is possible to include these effects indirectly in a way similar
to the RKKY interaction (see [4,10]). This method is based on
the observation that the RKKY range function JRK(rab) is the
Fourier transform of the susceptibility χ0(q) of a free-electron
gas

JRK(rab) = A0

∑
q

eiqrabχ0(q), (157)

where A0 is a constant. Then, one may replace in Eq. (157) the
susceptibility χ0(q) by the susceptibility χ (q) of electron gas
calculated including many-body effects, nonlocal character
of J , or screening. The same procedure can be applied to
the exact range function J (rab) in regimes I and III of the
model since in these regimes the exact and the RKKY range
functions differ by the scaling factor and the phase shift (see
Table II and Fig. 2). In the regime II, the exact range function
does not resemble the RKKY one (see Fig. 3), and there is
no simple method of incorporating many-body effects to the
range function.

In rare-earth materials the Coulomb exchange interaction
between conduction electrons and 4 f -shell electrons is

V̂ =
∑
k,k′

−2Js f (k, k′)(ǵ − 1)
(
Ĵa + Ĵb

)
ŝ, (158)

where Ĵ is the operator of the total angular momentum of 4 f
electrons and ǵ is the Lande factor [41]. This approximation
is valid if the wavelength of the conduction electron is large
compared with the size of the 4 f shell and if one neglects the
dependence of the electron wave function on the direction in
space. Our approach can be directly used to systems with the
exchange potential given in Eq. (158) if the integral Js f (k, k′)
may be approximated by the delta function. This could be
valid for low electron concentrations resulting in large periods
π/kF of RKKY oscillations. When the exchange parameter
J (k, k′) can be approximated by Js f (q) with q = k − k′, we
may apply the spin susceptibility formalism from Eq. (157)
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and make a substitution

χ0(q) → (ǵ − 1)2|Js f (q)|2χ (q). (159)

This method may be used for J (rab) in regimes I and III of
parameters shown in Fig. 1.

In modern approaches, the RKKY range function are ob-
tained with use of Lloyd’s formula [42], which gives the
difference between integrated densities of states N (E ) [see
Eq. (96)] obtained from ĝ(E ) and Ĝ(E ):

�N (E ) = − 1

π
ImTr ln(1 − ĝ(E )V̂a − ĝ(E )V̂b), (160)

where V̂a, V̂b are given in Eq. (6) [43]. The identity (160) is
exact for arbitrary ĝ(E ) and external potentials. The problem
with Eq. (6) is how to evaluate the logarithm for operators
V̂a, V̂b having noncommuting components. In Eqs. (50)–(65)
and (S1)–(S124) in the Supplemental Material [7] we calcu-
lated the exact GF of the system, and we may obtain N (E )
in Eq. (96) by taking the trace over the GF and performing
the indefinite integration of n(E ) over the energy. Then, the
results in Eq. (96) should be equal to the expression of the
right-hand side of Eq. (160).

However, there are two differences between our approach
and Lloyd’s formula. First, the exact GF in Eqs. (50)–(65)
and (S1)–(S124) in the Supplemental Material [7] is more
general than the intergraded electron density in Eq. (160).
For the calculation of thermodynamic properties of the sys-
tem, which depend on electron densities n(E ) or N (E ), the
Lloyd’s formula may be more convenient than our approach.
However, if one calculates quantities depending on the GF
of the system, e.g., discrete energy states (as in Sec. IX) or
the conductivity tensor, the knowledge of GF is necessary.
Second, our approach is limited to deltalike potentials, while
the Lloyd’s formula is valid for arbitrary potentials and,
within this formalism, one can include more physical effects
(screening, phonons, etc.) than by our approach. However,
Lloyd’s approach requires calculation of the logarithm of
noncommuting operators in Eq. (160) which in practice can
be done only by the perturbation expansion.

The s-d coupling constant J in Eq. (6) is expressed in
eV ÅD, where D is the system dimensionality. Experimen-
tally, one measures the coupling constants Jsd , Js f , Jdf , etc.,
expressed in eV. They are related to J in Eq. (6): J = −Jsd�0,
where �0 is the elementary cell volume and the minus sign
follows from sign convention in Eq. (6). In the theory of
diluted magnetic semiconductors one uses notation Jsd = αN0

and N0 = 1/�0 [21].
To observe experimentally a deviation of J (rab) in

Eqs. (100)–(106) from the RKKY range function in Eq. (4),
one should meet the following conditions. First, both the
s-d coupling J and the range function should be measured
independently with sufficient accuracy. Second, the exchange,
correlation, and screening terms in Eqs. (157), and (159)
should be small. Finally, proper value of g0 in the material
should be known.

It seems difficult to observe the difference between two
range functions in systems belonging to the regime I of
parameters (see Table II) since in this case the difference
between the exact and approximate range functions is on the
order of ±2p1, which is typically a few percent. In practice,

such a small difference makes it impossible to distinguish
experimentally between the two cases. A more promising way
of experimental verification of the results given in Sec. X
is the regime III in Fig. 2. In the latter, characterized by
large s-d coupling |J| or large effective mass [see Eq. (146)],
there is significant difference between magnitudes of the exact
and RKKY range functions. In consequence, by measuring
independently the coupling constant J and the range function
J (rab), it should be possible to distinguish between the exact
and approximate range functions even in the presence of
additional terms in the generalized susceptibility of Eq. (159).
Another promising way to confirm the results obtained in this
work is to observe the bound states predicted in Sec. IX.
Experimental difficulty in such measurements is the narrow
range of parameters for which there should exist bound states.

XII. SUMMARY

The Green’s function and the range function of two local-
ized spins in electron gas is calculated exactly by summing
the Born series using a generalization of the method of Slater-
Koster and Ziman to noncommuting spin operators. Our cal-
culations generalize the RKKY results that are obtained from
the second-order terms of the Born series. We obtained four
specific results. First, the exact GF is expressed as a nonlin-
ear combination of localized spin components. This form of
exact GF is valid for arbitrary spins. Second, for spins 1

2 we
reexpressed the exact GF as a linear combination of localized
spin components. Third, an approximation is proposed for
the exact GF that clearly explains the physical nature of the
problem. Fourth, it is shown that the Born series converges if
and only if the one-electron GF at the origin g0 is finite. This
occurs for electrons in parabolic energy bands in 1D but not
in 2D or 3D. However, by introducing a proper cutoff energy
in the calculation of one-electron GF, one obtains finite value
of g0 and the convergent Born series.

For spins Ŝa, Ŝb = 1
2 there are three regimes of the model.

For |J| � |g0|−1, the range function J3D(rab) resembles the
RKKY one: it has the same period π/kF , the same decay
character, and a slightly different amplitude, usually differing
by a few percent. This regime occurs most frequently in
nature. For |J| comparable to |g0|−1, the exact range function
differs qualitatively from the RKKY one: it has a much larger
amplitude, nonoscillatory character, and it decays more slowly
with interspin distance. For |J| � |g0|−1 the exact range func-
tion oscillates with the same period and powerlike decay as the
RKKY one, but it has much lower amplitude decreasing with
growing |J|. In the limiting case |J| → ∞, the range function
vanishes.

For the electron energy E = 0 and p1 � 2 or p1 � − 2
3

[see Eq. (112)], the range function and GF are singular, the
poles of GF occur in the vicinities of the singularity points.
The energies of bound states are calculated. In contrast to the
standard RKKY approach, for the exact GF and the range
function there is no symmetry between ferromagnetic and
antiferromagnetic values of s-d coupling constant J . The
asymmetry follows from the singularities of the operators
(Î − p1Ẑc)−1 for p1 ∈ {2,− 2

3 }. We calculated the exact range
function for one representative material using realistic model
parameters. We also report results for the exact range function
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J (rab) in the wide range of values of s-d coupling constants
J . We compared our results with other theoretical approaches
existing in the literature. Promising ways to confirm experien-
tially the results of this work are as follows: (i) independent
measurement of the s-d coupling constant J and the range
function J (rab) in the regime |J| � |g0|−1 because there the
amplitude of exact range function significantly differs from
its RKKY counterpart; (ii) detection of bound states in the
vicinities of points p1 ∈ {2,− 2

3 }. We hope that the exact
results reported in this paper will be useful in analyses of
similar problems.

APPENDIX A: WOODBURY IDENTITIES

In this Appendix we prove the Woodbury identities used in
Sec. II. They differ slightly from those given in Ref. [16]. First
we prove Eq. (21), i.e., show that[

�̂
−1
1 −�̂

−1
1 B̂D̂

−1

−�̂
−1
2 ĈÂ

−1
�̂

−1
2

]
·
[

Â B̂
Ĉ D̂

]
=

[
1̂ 0̂
0̂ 1̂

]
, (A1)

with �̂1 and �̂2 defined in Eqs. (22) and (23), respectively.
We have then

�̂
−1
1 Â − �̂

−1
1 B̂D̂

−1
Ĉ = �̂

−1
1 (Â − B̂D̂

−1
Ĉ) = �̂

−1
1 �̂1 = 1̂.

(A2)

Similarly,

−�̂
−1
2 ĈÂ

−1
B̂ + �̂

−1
2 D̂ = �̂

−1
2 (D̂ − ĈÂ

−1
B̂) = �̂

−1
2 �̂2 = 1̂.

(A3)

Finally,

�̂
−1
1 B̂ − �̂

−1
1 B̂D̂

−1
D̂ = �̂

−1
1 B̂ − �̂

−1
1 B̂ = 0̂, (A4)

−�̂
−1
2 ĈÂ

−1
Â + �̂

−1
2 Ĉ = −�̂

−1
2 Ĉ + �̂

−1
2 Ĉ = 0̂. (A5)

This proves Eq. (21). Now, we prove Eq. (26) for [Â, Ĉ] = 0
and [B̂, D̂] = 0. There is

�̂
−1
1 = (Â − B̂D̂

−1
Ĉ)−1 = (D̂

−1
D̂Â − D̂

−1
B̂Ĉ)−1

= [D̂
−1

(D̂Â − B̂Ĉ)]−1 = F̂
−1
1 D̂, (A6)

�̂
−1
2 = (D̂ − ĈÂ

−1
B̂)−1 = (Â

−1
ÂD̂ − Â

−1
ĈB̂)−1

= [Â
−1

(ÂD̂ − ĈB̂)]−1 = F̂
−1
2 Â, (A7)

−�̂
−1
1 B̂D̂

−1 = F̂
−1
1 D̂B̂D̂

−1 = F̂
−1
1 B̂, (A8)

−�̂
−1
2 ĈÂ

−1 = F̂
−1
2 ÂĈÂ

−1 = F̂
−1
1 Ĉ. (A9)

This completes the proof.

APPENDIX B: RKKY RANGE FUNCTION: ωab � 1

Here, we calculate the range function JRK(rab) for the
grand canonical potential �ab in Eq. (101) in the limit ωab =
1, i.e., by truncating the Born series to the terms of the second
order in the s-d coupling constant J . We begin with Eq. (1),
i.e., from the lowest-order terms of the Born series including

both V̂a and V̂b potentials. Using the notation introduced in
Sec. IV one obtains from Eq. (1)

Ĝ
ab
1,2 � g1aẐagabẐbgb2 + g1bẐbgbaẐaga2. (B1)

Since gab = gba one gets for the trace of Ĝ
ab
1,2

Tr
{
Ĝ

ab
1,2

} =
(∫

d3r1g1agb1gab

)
Tr{ẐaẐb + ẐbẐb}

= J2gabhabŜaŜb. (B2)

Then, the Sz
aSz

b part of the thermodynamic potential is

�ab = J2

π
Ŝz

aŜz
b

∫ EF

0

[∫
gabhabdE ′

]
dE , (B3)

which is the limit given in Eq. (101) for ωab = 1. Using the
retarded one-electron GF

g+
ab ≡ gab = −exp(irab

√
E/ζ )

4πζ rab
, (B4)

with ζ = h̄2/(2m∗), one obtains from Eq. (93)

hab = −dgab

dE
= −exp(irab

√
E/ζ )

8πζ 3/2
√

E
. (B5)

The one-electron density of states n(E ) in Eq. (91) is then

n(E ) = cos(2rab
√

E/ζ )

32π3ζ 5/2
√

Erab

. (B6)

Calculating the double integral in Eq. (B3) with g+
ab and hab

given in Eqs. (B4) and (B5) and taking kF = √
EF /ζ we find

JRK(rab) = J2

64π3r4
abζ

[2rabkF cos(2kF rab) − sin(2kF rab)],

(B7)

which is the RKKY range function for electrons in a parabolic
energy band in 3D.

APPENDIX C: GF AND RANGE FUNCTION FOR
STRONG COUPLING

Consider the exact GF for large s-d coupling J . In this limit
we approximate in Eqs. (30) and (31)

Î − g0Ẑc � −g0Ẑc, (C1)

where c = a, b. Then, we have

F̂1 � (g2
0 − gabgba)ẐbẐa = zabẐbẐa, (C2)

F̂2 � (g2
0 − gabgba)ẐaẐb = zabẐbẐa, (C3)

where zab = g2
0 − gabgba [see Eq. (39)]. In consequence, there

is

Q̂1 = F̂
−1
1 � Ẑ

−1
a Ẑ

−1
b /zab, (C4)

Q̂2 = F̂
−1
2 � Ẑ

−1
b Ẑ

−1
a /zab. (C5)

From Eq. (29) one obtains

Ĝ12 � g12 Î + g1a[ẐaQ̂1(−g0Ẑb)]ga2 + g1a[gabẐaQ̂1Ẑb]gb2

+ g1b[gbaẐbQ̂2Ẑa]ga2 + g1b[ẐbQ̂2(−g0Ẑa)]gb2. (C6)
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Inserting the approximate forms of Q̂1, Q̂2 into Eq. (C6) one
finally obtains

Ĝ12 � g12 Î + 1

zab
(−g0g1aga2 + gabg1agb2 + gbag1bga2

− g0g1bgb2). (C7)

As seen from Eq. (C7), for large J the GF does not depend on
S1 and S2, and it has a universal character. Such behavior of
GF for large perturbing potentials is known in the literature

[36] and it appears even in simple models of one spinless
impurity [see Eq. (5)].

The range function of the RKKY interaction is defined as
a difference of the grand canonical potential for parallel and
antiparallel spins [see Eq. (97)]. However, since the electron
density ne ∝ Im{Tr(Ĝ12)}, as given in Eq. (C7), does not
depend on S1 and S2, the grand canonical potential �μ,ν in
Eq. (98) also does not depend on spin configuration. The range
function in Eq. (97) is a sum of two positive and two negative
terms. For large |J| all the four terms tend to a common
value not depending on spin configurations. Thus, for large
|J| the range function J (rab) vanishes, which explains the
disappearance of the ωab term in Eq. (102) for large |J|.
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