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Quantum spin liquid phases in the bilinear-biquadratic two-SU(4)-fermion
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We consider the phase diagram of the most general SU(4)-symmetric two-site Hamiltonian for a system of
two fermions per site (i.e., self-conjugate 6 representation) on the square lattice. It is known that this model
hosts magnetic phases breaking SU(4) symmetry and quantum disordered dimerlike phases breaking lattice
translation symmetry. Motivated by a previous work [O. Gauthé, S. Capponi, and D. Poilblanc, Phys. Rev. B
99, 241112(R) (2019)], we investigate the possibility of the existence of SU(4) quantum spin liquid phases in
this model, using SU(4)-symmetric projected entangled pair states (PEPS) of small bond dimensions, which can
be classified according to point group and charge (C) symmetries. Among several (disconnected) families of
SU(4)-symmetric PEPS, breaking or not C-symmetry, we identify critical or topological spin liquids which may
be stable in some regions of the phase diagram. These results are confronted to exact diagonalization (ED) and
density matrix renormalization group (DMRG) calculations.
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I. INTRODUCTION

With the realization of ultracold gases of atoms with N
internal (nucleus) degrees of freedom loaded on periodic
optical lattices [1,2], an interest is rapidly growing for spin
Hamiltonians with exact SU(N) symmetry. Various lattices,
SU(N) symmetries and SU(N) irreducible representations
(irreps) have been studied [3-8], showing a plethora of novel
phases, most of them spontaneously breaking lattice or SU(V)
symmetries, like valence bond crystals (VBC) or magnetic
states. However, a few studies were devoted to the explicit
construction of SU(N) quantum spin liquids (QSL) preserving
both SU(N) and lattice symmetries [9—11]. Tensor networks
like Projected Entangled Pair States (PEPS) are particularly
well suited to the construction of QSL states. For example,
a previous work proposed critical QSL and a Z, topolog-
ical QSL phase for a system of two SU(4) fermions per
site. Although VBC are ubiquitous in the study of SU(N)-
invariant models, (nonchiral) spin liquids seem to be relatively
rare. Here we revisit a SU(4)-symmetric bilinear-biquadratic
Hamiltonian with two fermions in the self-conjugate 6-irrep
of SU(4) on each site [12-14]. Using exact diagonalization
(ED), density matrix renormalization group (DMRG), and
infinite-PEPS (iPEPS) numerical methods, we identify two
different types of SU(4) spin liquids which appear to be very
competitive in energy in two regions of the (one parameter)
phase diagram.

II. MODEL AND HAMILTONIAN

We consider a square lattice where we attach a SU(4)
irreducible representation 6 = H corresponding to the six

antisymmetric states of two SU(4) (atomic) fermions on each
site. We also assume a coupling between nearest-neighbor
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(NN) sites only. Starting from the fusion rule on two sites,

|
H@)H:.@* = : )

we see that three SU(4) symmetric projectors can be de-
fined on these two sites: Py, P15, and Py, corresponding
to the fusion outcomes characterized by the irreps 1, 15,
and 20', on the right-hand side of Eq. (1), respectively. One
can use the projectors P, as a natural basis to expand the
Hamiltonian H = )" ¢4 Py, ¢4 € R. The operator S-S on
two sites writes S-S = —5P; — Py5 + Pay, wWhich, as can
be seen straightforwardly, is linearly independent from (S -
S)? = 25P; + Pis + Pay. As Y, Py = Iy, the most general
two-site SU(4) symmetric (real) Hamiltonian can then be
re-expressed as a linear combination of S - S and (S - S)? (up
to a constant energy shift) and can be parametrized by a
single parameter 6. Following the conventions of Ref. [15],
the lattice Hamiltonian becomes

sin 6
H(9) = cos O Zsi S+ Z(s,- $H% @
(i) (i)

where the sum is restricted to nearest-neighbor bonds (ij).
In addition to the invariance with respect to (w.r.t.) the lat-
tice symmetries and the SU(4) spin symmetry, Hamiltonian
Eq. (2) is also invariant w.r.t. color (or “charge”) conjugation
(C) since physical degrees of freedom correspond to a self-
conjugate irrep of SU(4).

Importantly, there are four SU(6) points, when the coeffi-
cients in front of two projectors are identical, and the fusion
rules are enhanced to that of SU(6): (i) at 6 = /4 and 6 =
—3m /4, the fusion rule is enhanced to 6 ® 6 = 15 @ 21 and
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(ii) at = 47 /2, the fusion rule becomes 6 ® 6 = 1 & 35.
The corresponding NN bond operators of the Hamiltonian
read

25 1 1
My = :F(Zpl + ZP15@20'> = ?(6771 + ZU>, (3)
V2(3 5 V2 5
b _ — - —_— / = —_ —_—
Hes = F > (47715 47720 @1) ¥ (2P15 4|]> “4)
V2 1
Spe (IPSU((,) + Zu), 5)

where the — and + signs in Egs. (3) and (4) correspond to
the antiferromagnetic (AF) and ferromagnetic (F) couplings,
respectively. The two-site SU(4) Hilbert spaces spanned by
15, 15920/, and 20' ® 1 can be mapped on the spaces
spanned by 15, 35, and 21 of SU(6), respectively. Equa-
tions (3) and (4) are defined in terms of the alternating and
uniform fundamental representation [J of SU(6), respectively.
In the following, we shall refer to these enhanced symmetry
points as SU(6) 66 and SU(6) 66 symmetric points. At the
latter higher symmetry point, the bond operator can be written
in terms of the SU(6) color permutation Pgy), as shown in
Eq. (9).

III. CRITICAL DISCUSSION OF THE PHASE DIAGRAM

In this section we discuss the current understanding of the
model. We start by drawing a tentative phase diagram based
on the work by Paramekanti et al. [16]. We then discuss our
ED studies that bring new insights, still leaving a number of
open issues.

A pure bilinear model 6 = 0 is expected to stabilize an
ordered antiferromagnetic (Néel) phase that breaks SU(4)
symmetry [13], similarly to SU(2) antiferromagnetic Heisen-
berg models. Similarly, a ferromagnetic phase is expected in
the vicinity of the ferromagnetic Heisenberg point at 6 = £
We build our work starting from early calculations based on
projected wave functions [16]. A schematic phase diagram
based on this approach is shown in Fig. 1(a). Interestingly,
besides the expected magnetic phases mentioned above, their
phase diagram shows SU(4)-invariant quantum disordered
(QD) phases, a dimerized phase and a C-breaking phase. It
also suggests the existence of a third QD phase in a narrow
region around 6 = 0.197 (thus, for a sign of the biquadratic
interaction appropriate to a half-filled fermionic SU(4) Hub-
bard model [17]), which they attribute to a gapless staggered
flux state [15].

We have tried to refine the phase diagram using ED of four
periodic N = 8, 10, 12, 16 square clusters; see Appendix B.
Note that these clusters unfortunately, have different lattice
symmetries: for instance, reflection symmetry is missing in
the 10- and 12-site cluster, the 16-site clusters can be mapped
on a four-dimensional cube with larger symmetry, and the
reciprocal space of the 10- and 12-site clusters does not
contain the qygc = (7, 0) wave vector. However, all clusters
show consistently the existence of two first order transitions
characterized by the simultaneous crossing of many nonsin-
glet SU(4) states [including the highest-weight multiplet of
SU(4)] with a SU(4) singlet state, and occurring at exactly the
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FIG. 1. Tentative phase diagrams as a function of 6. (a) Adap-
tation from Ref. [16]. Antiferromagnet and ferromagnetic orders
are expected in some region around the antiferromagnetic and the
ferromagnetic (9 = ) points. A dimer phase (or more generally
a VBC phase) is expected around 6 = —m /2. A C-breaking phase
as well as a staggered flux state (indicated by a question mark)
have been also proposed. (b) Phase diagram drawn from ED results
on periodic clusters (see text). The ferromagnetic phase is limited
by first-order transitions exactly at the SU(6)-symmetric points at
60 = —3m /4 and 6 = /2 (showing massive level crossings on all
finite clusters). We have identified three quantum disordered (QD)
regions from low-energy singlet excitations and marked the regions
where the PEPS QSL constructed in this work may be relevant.
The variational [SU(6)-symmetric] six-site plaquette phase is also
shown.

SU(6)-symmetric points 8 = —3w /4 and 6 = /2, as shown
in Figs. 2(a) and 5(a). At these two crossings we have checked
that the ground state correspond exactly to the SU(6) irrep of
largest weight, i.e., to the SU(6) ferromagnet. These points
hence mark the exact boundaries of the ferromagnetic phase
as represented in the new phase diagram on Fig. 1(b). The
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FIG. 2. ED energy spectrum of the periodic 12-site cluster. Open
(closed) symbols correspond to singlets (higher dimensional irreps).
Different symbols are used for different momenta in the reciprocal
space. (a) Full parameter range —7 < 0 < 7. (b) Zoom of the range
0.157 < 0 < 0.257. Crossing of ground-state levels is observed at
0x ~ 0.1757m, signaling a first order transition. Level crossings of
(singlet) excited states at 6* are marked by a dashed line.

existence of a magnetic Néel phase is reflected by a q =
(r, ) magnetic low-energy excitated state (i.e., belonging to
a finite dimensional irrep) above the singlet GS. Due to finite-
size effects, its precise boundary on one side is not fully accu-
rate, as indicated by a question mark in Fig. 1(b). On the other
side, we think it is limited by a very sharp level anti-crossing
at Ox ~ 0.1757 as shown in Fig. 2(b) and more clearly in
Fig. 5(c). In all clusters, we see a narrow region around
Ox <0 < 0* ~0.185m characterized by a few low-energy
singlets with different momenta [see Fig. 2(b)]—named QD1
in Fig. 1(b)—that may be consistent with a QSL like, e.g.,
the gapless staggered flux state or a C-breaking phase [15].
The two phases at the boundary of the ferromagnetic region
are more difficult to characterize. The 12-site cluster suggests

the existence of two quantum disordered phases—named QD2
and QD3 in Fig. 1(b)—as signalled by a singlet GS with low-
energy singlet excitation(s). In fact, & = —m /2 corresponds
to the SU(6) 66 (antiferromagnetic) Heisenberg point whose
GS is known to be dimerized, although with a quite small
order parameter [18]. At the SU(6) 66 (antiferromagnetic)
Heisenberg point at 6 = 7 /4 the ground state is always a non
degenerate SU(6) singlet on clusters whose number of sites is
multiple of 6.

The topological PEPS of Ref. [19] is a priori a good
candidate for QD phases, but other alternatives exist. In fact, it
has been proposed that the QD2 phase spontaneously breaks
C-symmetry in contrast to the PEPS ansatz of Ref. [19]. This
has motivated us to construct other PEPS family allowing
or not for spontaneous C-breaking. The existence of SU(6)-
symmetric points in the one-dimensional (1D) parameter
space is also greatly constraining the PEPS family by allowing
it to be fine tuned to these higher symmetries. Using iPEPS
techniques we have investigated the relevance of our PEPS
spin liquids in some separate regions of the phase diagram
[see Fig. 1(b)]. Note that Lieb-Schultz-Mattis-Affleck theo-
rem is likely to apply for the [l irrep of SU(6) or the H irrep of
SU(4), corresponding to 1/6 and 1/2 fermionic filling, respec-
tively. SU(6) and SU(4) spin liquids are therefore expected to
be topological—with sixfold and (at least) twofold degenerate
groundstates, respectively—or critical.

IV. SU4)-SYMMETRIC PEPS FAMILIES
A. Simple SU(4)-symmetric PEPS

We aim here to construct simple PEPS ansatz on the
square lattice which are fully invariant under SU(4) symme-
try (i.e., the state is a global SU(4) singlet) and under all
lattice symmetries (including lattice translations). Our PEPS
are defined by a single-site rank-5 tensor with four virtual
indices on the z = 4 bonds connecting the site to its neighbors
and one index labeling the d = 6 states of the physical H
irrep as shown in Fig. 3(a). The PEPS wave function is
obtained by contracting the network of tensors on the virtual
indices [20].

To construct SU(4)-symmetric PEPS we follow here the
framework developped in Ref. [21]. First, to enforce the
invariance of the PEPS wave functions under 90-degrees
rotation w.r.t. to any lattice site, the tensors should belong
to the same one-dimensional irrep of the point group Cy,,
namely, either to the rotation-even 4; or A, irreps or to
the rotation-odd B; or B, irreps, where the subscripts 1 and
2 refer to even and odd characters w.r.t. axis reflections,
respectively. We shall not consider here the two-dimensional
& irrep of Cy,. Hence, here after, we shall assume that the
tensors belong to one of the four irreps of the point group, even
if not explicitely specified. Second, to guarantee (global) spin-
rotation invariance, the virtual space V has to be a direct sum
of SU(4) irreps (named “species” or “particles”) in such a way
that the expansion of V®* in terms of SU(4) irreps contains
the physical irrep H, possibly with some multiplicity. Re-
stricting first to the smallest dimension D = dim()), we are
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FIG. 3. (a) The smallest D SU(4)-symmetric tensors. The four
virtual states (small dots) are projected (red circle) onto the physical
6 irrep (wingly line). C-conjugated pairs of tensors are indicated
by the arrows. (b) A typical PEPS configuration constructed from
T tensors with either ee or 66 virtual singlet bonds. (c) A typical
PEPS configuration constructed with 44 or 44 virtual singlet bonds.
(d), (e) Typical PEPS configurations of C-breaking phases with a
staggered arrangement of charge conjugated tensors. In panels (b),
(c), (d), and (e), the matrices located on the bond centers that enforce
the projections on SU(4) singlets are omitted for clarity.

left with
VzH@ozG@l, (6)
V=[]e| |=404, )
V=[]&| |oe=40401, (8)

with bond dimension D =7, D = 8, and D = 9, respectively.
The different classes of tensors are shown in Fig. 3(a).

Note that the D = 8 tensors are just a subset of the set
of D =9 tensors. Both D =7 and D = 8 tensors have a Z,
gauge (i.e., connected to the virtual space only) symmetry
since each of the two species entering V' appears an odd
number of times (one or three times) on the four tensor virtual
legs. Importantly, we note in Eqs. (7) and (8) the emergence
of a charge conjugation symmetry C exchanging 4 <> 4 and
leaving the physical space 6 invariant. Note that unlike the
SU(2) case, SU(4) charge conjugation is not a group opera-
tion. PEPS associated to the tensors with, e.g., virtual space
Egs. (6) and (7) can be constructed by contracting over the
virtual indices, as shown in Figs. 3(b) and 3(c), respectively.

Let us first look more closely at the D = 7 PEPS family:
its generic on-site tensor Ay is given by a linear combination
of three (real) D = 7 tensors Ty, T, and 7> given in Ref. [19],

Ar = aoTo +aTh + ax 1, 9

with a; € R and ay can be fixed to 1. These tensors are real
and invariant under all symmetry operations of the lattice
point group (i.e., the C4, group)—namely, they belong to
the A; representation of the group—so that all PEPS of
the family preserve parity (P) symmetry. The tensors can
be labeled by an “occupation number” no.. specifying, for
each species in the virtual space, its total number on the four
legs. For example, for Tp, for which one has two different
species 6 and 1, ny = {1, 3}. For T} and T3, ny. = {3, 1}.
Properties of the T tensors are summarized in Table I. Note
that the tensor 7; alone generates the nearest-neighbor SU(4)
Resonating Valence Bond (RVB) state [19]. Note also that it
is also possible to add a pure imaginary tensor ia3T3 to (9),
breaking time-reversal symmetry (T), while preserving all
lattice symmetries.

Tensors with virtual space 4 @ 4 can also be classified
according to their point group symmetry. As shown in Table I,
one (two) pair(s) of C-conjugated X;3 and X3, (Yl(é) and Ys({)»
i = 1,2) tensors have A; (A;) symmetry. A general PEPS
ansatz preserving C4, symmetry can be obtained from a local
tensor combining all X tensors in the following way:

Ay = Ag +iA;, Ap = X31 + aXj3,

Ar=) (B + BEYLY), (10)

1

where A; # 0 would spontaneously break time-reversal sym-
metry. Similarly, one can use the Y5p; and Yy, tensors (of A,
point group symmetry) which include an extra spin singlet in
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TABLE 1. Classification of 6 ® 1 and 4 @ 4 SU(4)-symmetric
tensors in terms of virtual space, action of SU(4) charge conjugation
(C) and Cy, irreps. Tensors Ty, 71, and W, are more symmetric and are
invariant under any virtual leg permutation. The occupation numbers
of each virtual species on the four virtual bonds are shown within
brackets.

A D V Hoce C C4v
Ty 7 61 1,3 A
T; 7 61 3.1 A
T 7 61 3.1 A
T 7 61 3,1 A,
X3! 8 4 @Z 3,1 X A,
Y3(l’) 8 404 3,1 X A,
Xi3 8 494 1,3 x A
Y 8 404 13 x A
Yo 9 40401 {2,0,2} x A,
Yoo 9 40401 {0,2,2} x A,
W, 13 6p6®1 2,1, 1) A

the virtual space,
Ay = Yooz + yYoo2.

In general, Ax (Ay) breaks charge conjugation except when
a=+land g = 8% (y = £1).

In the following we shall use charge-conjugated tensors,
Ay and Ay (respectively, Ay and Ay) on the two A and B
sublattices. Configurations of such states for A; = 0 and o =
0 (respectively, y = 0) are shown in Fig. 3(d) [respectively,
Fig. 3(e)]. In that case, by acting with charge conjugation
on the (physical) B sites, one can rewrite the PEPS in terms
of a unique Ay (or Ay) tensor on all sites. While the tensor
network is translation invariant, it must be emphasized that
it is the common PEPS representation of two different wave
functions that are only invariant under a translation by two
sites (the translation by a lattice unit vector being equivalent
to the conjugation of the whole lattice). These wave func-
tions are orthogonal as their odd and even combinations are
eigenvectors of the unitary charge conjugation operator with
different eigenvalues. A local order parameter for translation
and charge conjugation breaking can be constructed [16].
Note that closely related (but nonequivalent) ansatz can also
be constructed using the same tensors Ax or Ay on both
sublattices but replacing the bond singlet projectors by singlet
projectors involving the 8 virtual particles around each site
of a given sublattice (so-called projected entangled simplex
states or PESS), following closely the original construction
by Affleck et al. [15].

Note that all these 7', X, and Y tensors, taken individually,
have an extended U(1l) gauge symmetry so it is expected
that their associated PEPS would have critical correlations.
In fact, as can be seen in Figs. 3(d) and 3(e), resonances
between configurations is obtained by on-site permutations
of virtual states along closed loops, and the PEPS inherits its
critical nature from that of quantum loop models on bipartite
lattices [22]. Combining tensors with different n.. lead to a
lower Z, gauge symmetry (see Appendix D).

Next, we turn to the extension of these tensors so that
they can accommodate the emergent higher SU(6) symme-
try present at isolated points of the phase diagram. This
brings severe constraints on the tensor construction and
on the form of the virtual space. In fact, we readily see
that the tensors Egs. (7) and (8) should be excluded since
there is no four-dimensional irrep in SU(6) to map into.
Below we shall restrict to the 66 SU(6) symmetry, while
the more involved case of the 66 symmetry is left for the
Appendix.

B. PEPS with higher 66 SU(6) symmetry

At 6 = —m /2, we know from previous ED that the GS is
a nondegenerate SU(6) singlet. It is therefore legitimate to
try to enlarge the SU(4)-symmetric PEPS family to capture
the higher SU(6) 66 symmetry of the model at this fine-
tuned point. In fact, enforcing the enlarged symmetry leads
to strong restriction on the site tensor. First, we note that
the 7p tensor alone has SU(6) symmetry and the associated
SU(4) RVB PEPS is in fact a SU(6) 66 RVB state, i.e., in
the alternating fundamental irrep of SU(6). Therefore, we ex-
pect this PEPS should already give a reasonable approximate
description of the GS at, or in the vicinity of, the antiferro-
magnetic SU(6) 66 point at & = —m /2, as we shall discuss
below.

To enlarge the PEPS family beyond Tj, we shall require
that the SU(4) tensors originate from a mapping of tensors
(i) which are SU(6) symmetric and (ii) whose virtual space
should only contain self-conjugate irreps or pairs of conjugate
irreps of SU(6) (to be able to form virtual SU(6) singlets on
the bonds). The smallest possible SU(6) virtual space Vg could
therefore be

Ve = |®

Pe=60601, an

of dimension D = 13. The corresponding PEPS tensors rep-
resent the 28 SU(6) fusion channels 6 Q6 @ 6 @ 1 — 6, of
the four virtual states onto the physical state. Mapping to
SU(4) would require a virtual space with irreps of the same

dimensions,
V:HGBH@oEG@G*EBl, (12)

where the 6 (self-conjugate) irrep occurs with multiplicity 2,
i.e., with two “colors.” Then, SU(6) charge conjugation C
in Eq. (10) naturally translates here into color exchange C,
which can be viewed as an element of the SU(2)-color gauge
symmetry. Note that it is convenient to use the conjugate
6" irrep of SU(4) (equivalent to 6 up to a basis change)
which naturally maps onto the 6 irrep of SU(6). At the higher
symmetry point, the tensors on the A and B sites are related by
charge/color conjugation C/C. Hence, they have occupation
numbers w.r.t. the 6, 6/6* and 1 species, no.. = {1, 0, 3} (Tp)
or noee = {2,1,1} (W) on the A sites, and ny.. = {0, 1, 3}
(TO/TO*) Of Hloce = {1,2, 1} (W/W*) on the B sites. Later on,
we shall consider the three W tensors, W;, W2 and W5, of

205144-5



OLIVIER GAUTHE et al.

PHYSICAL REVIEW B 101, 205144 (2020)

site A site B
f: c f: (a)
D=7 (b <o
+—>
T, To
SU@4) SU(@)
; i ; \ ® 6 6
D=13 C :
—4.; L e o: o 6* 6
W W -
20 20
oo fol o) gl
174 v
Aol GQF /50 GM
AR Q0.7
TO Vv TQ
Aol Aol da) A
—_\9o/ o/ _\o/ o/
Ty To Vv To
A 4 a4
Y NG ¥ N
w W w w

FIG. 4. (a) Three classes of SU(4) tensors with virtual spaces 6 &
1,6 6®1,and 6 ® 6 ® 20 & 1 tensors, which can be mapped onto
SU(6)-symmetric tensors—see Tables II and III. Color-conjugated
tensors have to be used on the A and B sites to encode the 66 SU(6)
symmetry. A uniform SU(4) PEPS ansatz is obtained by performing
a basis change on the (physical) B sites. (b) Configuration of a 66
SU(6)-symmetric D = 13 PEPS. A simpler PEPS involving only the
D = 7 tensors can be also constructed as shown on the four top sites.
(c) Configuration of a 66 SU(6)-symmetric D = 33 PEPS.

A, symmetry. Similarly to the tensors 7y and 7}, the tensor
W is invariant under any virtual leg permutation and has an
extended S4 symmetry.

The SU(6)-symmetric PEPS is obtained by contracting the
A and B tensors on all lattice bonds, as shown in Figs. 4(b)
and 4(c). It is invariant under the combined action of C/C
with a unit lattice translation. Hence, by acting with C/C
on the (physical) B sites, one can rewrite the PEPS in terms
of a unique tensor on all sites, making translation symmetry
explicit.

One can even extend further the construction of the SU(6)-
symmetric spin liquid by adding more irreps to the virtual
space. The next step would be to include the self-conjugate
[both in SUM4) and SU(6)] 20-dimensional irrep, giving

TABLE 1II. Full list of the classes of D =33 663201
SU(4) symmetric tensors in terms of the occupation numbers of the
four virtual particles. The second (third) column shows the number of
SU4) [SU(6)] fusion channels—i.e., the total number of symmetric
tensors (that could be further classified in terms of the irreps of
the Cy, point group, A, A,, By, B,, and £). The 6 ®1 T (T}, T»)
tensor(s) is (are) marked in red (brown). The other 6 & 6 & 1 tensors
are marked in blue. Note that the last tensor class (in green) belongs
tothe V =6 @ 6 ® 10 & 10 @ 1 family of SU(4) symmetric tensors.

Occupation number SU4) SU(6)
{0,1,0,3 4 0
0,1, 1,2} 12 0
{0,1,2,1} 36 0
{0, 1, 3,0} 40 0
{0,3,0,1} 12 0
{0,3,1,0} 24 0
{1,0,0,3} 4 4
(1,0, 1,2} 12 0
{1,0,2, 1} 36 24
{1,0,3,0} 40 0
{1,2,0, 1} 36 0
{1,2, 1,0} 72 0
2,1,0,1} 36 24
2,1,1,0) 72 0
{3,0,0, 1} 12 0
{3,0,1,0} 24 0
(0,2, 1,0} 0 12
D = 33 virtual spaces,

Vo= |®| |®] |®#e=60652001, (13)
for SU(6), and

V:H@H@ De=606"02001, (14)
for SU(4), as listed in Table II. Only three occupation numbers
fits SU(6) fusion rules, defining one more V class in addition
to the two previous ones, as summarized in Table III. Since
a large bond dimension D = 33 is untractable with current
algorithms, in the following we shall use, in addition to the
T tensors, the W tensors with D = 13.

TABLEIII. SU(4)-symmetric tensors with D < 33 accommodat-
ing higher 66 SU(6) symmetry, classified according to their virtual
space and occupation numbers in the D = 33 largest SU(4) virtual
space.

Class D % Noce [D=33]
Ty 7 601 {1,0,0,3}
w 13 60661 {2,1,0,1}
\% 33 60602001 {1,0,2, 1}
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V. TENSOR NETWORK ALGORITHMS

The energy density (i.e., the energy per site) or local
observables of our SU(4)-symmetric PEPS can be computed
efficiently using a corner transfer matrix renormalization
group (CTMRG) algorithm (see, e.g., Ref. [23] for details).
It is based on a real space RG scheme, adding a single site
at a time (starting from a corner) to construct an effective
environment around some active region—typically a small
2 x 1 or2 x 2 cluster—involving corner C and edge T “fixed
point” SU(4)-symmetric tensors. A parameter x controls the
amount of entanglement which is kept at each RG step in
the Schmidt decomposition of the corner and, eventually, a
x — oo scaling is performed. Typically, a 1/D? fraction of
the new CTM eigenvalues are kept at each stage. The CTMRG
enables then to compute the energy densities €[6, {a;}, x] of
the various PEPS ansatz in Hamiltonian Eq. (2) (for each
chosen 6 value).

We then need to optimize the few coefficients {a;} of
the tensors to minimize the above PEPS variational ener-
gies. After starting from an initial arbitrary choice of the
tensor coefficients, using CTMRG we obtain the converged
environment tensors C and 7. We then evaluate the energy
gradient numerically to “feed” a conjugate gradient (CG)
algorithm minimization routine which provides a new set
of parameters. The procedure is repeated until the energy
minimum is found. To take into account the error induced
by the finite corner dimension x, we optimize the parameters
for increasing y, starting from the previously optimized set of
parameters. When a maximal value of y is reached (imposed
by computer power limitations), we use finite-entanglement
scaling to extrapolate the energy in the x — oo limit.

The converged environment can then be used to compute
the expectation value of any observable. It also allows to
approximate the transfer matrix of an infinite one-dimensional
(horizontal) strip obtained by contracting the TN in one
(vertical) direction. From the two largest eigenvalues 1| > A,
of this transfer matrix, one can compute the largest correlation
length & = 1/In(A;/A,) of the system. From its leading eigen-
vector, one can also obtain the environment entanglement
entropy Sgny, defined from a bipartition of the infinite strip
(see Ref. [19] for the technical details).

VI. NUMERICAL RESULTS

A. Ground-state and variational energies

In Fig. 5(a), we have plotted, as a function of 6 € [—m, 7],
the energy density of some of the best low-energy PEPS, along
with the finite-size ED energies and the exact ferromagnetic
and four-site plaquette order wave functions (see Appendix A
for details). As mentioned before, the ferromagnetic phase
is exactly confined outside of the range —37 /4 < 6 < 7 /2.
Although an exact expression for the energy of the quantum
antiferromagnetic state is not known, the latter is believed to
be stable in some extended region 6 € [Oar, Ox] around 6 = 0.
The two regions on each side of this AF phase, —3m /4 <
0 < Oar and Oy < 0 < /2 are likely to be SU(4)-symmetric

' g
-6 < o plaquette (A,)
g U‘; .—. 6-site plaquette
| | I
-n —Tt/2 0 /2 T
0
o

4-site
6 plaguette (A,)

| | | |
-0.7m —0.6m —T/2 —0.41 -0.3n
0
D
P H ./. .
0.5 :
07
- L
>
o -0.5—
c
L
-1 ‘
L § 4-site plaquette (A,) 1
% -—- 6-site plaquette
sk 2 & N=24
' L ‘ ()
e b e e e b e e e e b b

0.15r  02r  025r 03xr 035z 04n 045t 0.5%
6

FIG. 5. Energies €(6) of different wave functions under the
Hamiltonian 7 (0). The PEPS energies are obtained after x — oo
extrapolation and compared to the exact ferromagnetic state F.M,
to four-site and six-site plaquette VBCs (see text) and to ED of
small clusters. The red points correspond to the optimization of
the PEPS given by the V =6 & 1 tensor (9). (a) Full parameter
range —7 < 0 < 7. (b) Zoom of the range —0.7757 < 6 < 0.357.
(c) Zoom of the range 0.1257 < 6 < 0.57.
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quantum disordered phases of different nature, breaking or not
lattice symmetry, and we examine them separately.

B. Quantum disordered QD3 region

We first zoom in on the region —37/4 < 6 < 0ap in
Fig. 5(b). In this region, Paramekanti and Marston proposed
a phase transition from the ferromagnetic phase to a dimer-
ized phase. According to their VMC calculation the dimer-
order parameter of the best optimized (projected) dimerized
state is close to fully saturated close to the transition with
the ferromagnetic state. In other words, according to them,
coupling dimers (within their variational manifold) does not
decrease the energy. Although Paramekanti et al. do not quote
any energy, we could nevertheless (approximately) estimate
their best variational energy using a decoupled dimer mean-
field solution (see Appendix A) and we found the energy
of our uniform PEPS is significantly lower. This does not
exclude that a small dimerization could take place but this
definitely shows that our ansatz is better than Paramekanti’s
(projected) dimerized state when approaching the transition
to the ferromagnet at 6 = —3m /4. Here the optimum PEPS
is obtained for a; > ag, a2, a3 (within the accuracy of our
minimization for y = D*)—i.e., it is basically given by the T
tensor alone—so it does not break time-reversal symmetry and
may be critical (or have a very long dimer correlation length).
As shown in Figs. 6(a) and 6(b) the finite- ¥ extrapolation of
the optimum PEPS energy, performed for = —0.77 and =
—0.657, respectively, are in excellent agreement with finite-
size scalings of ED and DMRG energies [24]. We therefore
believe that this PEPS provides a good ground state candidate
in this range of parameter and expect a QSL phase there.

Within this QD3 region, when moving towards the SU(6)
66 point, the variational energy of the Ar PEPS family
deteriorates. However, as seen in Fig. 5(b), we have found
that the variational energy of the staggered PEPS constructed
by putting the W, (W;) D = 13 tensor on the A (B) sites
becomes remarkably good within a wide region around the
SU(6) point. This is clear from the comparison of the finite-
extrapolation of the PEPS energy with finite-size ED and
DMRG extrapolations, shown in Figs. 6(c) and 6(d) for 6 =
—0.57 and 6 = —0.37, respectively. Early quantum Monte
Carlo (QMC) accurate simulations at the SU(6) point (at
which the minus-sign problem disappears) gave evidence for a
dimerized phase, although with a quite small order parameter.
In contrast, it is easy to see that our simple ansatz based on
the [SU(6)-symmetric] W) tensor describes a nondegenerate
translation invariant QSL. Nevertheless, due to a U(1) PEPS
gauge symmetry, we expect its SU(6)-dimer correlations to
be power-law so that this critical QSL can be viewed as a
melted dimer-ordered state. Since the estimated correlation
length of the dimer phase &g ~ 5.4 is relatively long and the
PEPS energy is remarkably close to the QMC energy [see
Fig. 6(c)], we believe the latter gives a faithful representation
of the ground state at not too long distances compared to &¢g.

C. Quantum disordered QD1 and QD2 regions

We now consider the region 6y ~ 0.1757 < 8 < 6* where
0* is close to the value 0], = arctan(2/3) ~ 0.187mw, corre-
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FIG. 6. Comparison of ED, DMRG, and iPEPS energy densities
for various values of 6, as indicated on plots. Finite-size (finite x)
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x=1/+/Nandx =1 /L,, respectively, and eqyc is the (exact) QMC
energy, providing estimates &g = 1/b of the correlation length ~4.4
and ~5.4. Otherwise, crude linear fits in x are shown. The variational
energy of the SU(6) six-site plaquette phase is reported in panel (f).
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sponding to an exact point in 1D. There, Paramekanti and
Marston propose two possibilities, either a direct transition
from a Néel phase to a charge-conjugation breaking phase
or a thin QSL phase. ED curves show a stark slope change
around 6y = 0.1757, where we locate the transition from the
AF state.

In our case, the tensors obtained from the X and Y family
give a good energy in this region, a zoom on it is shown
in Fig. 5(c). Initial results obtained with the full form of
Eq. (11) show that charge conjugation is maximally broken
in this region, therefore we thereafter restrict ourselves to
a= ﬂf’f = 0. In the 1D case, a MPS obtained from a sim-
ilar construction gives the exact ground state for 6 = 0}, =
arctan(2/3) ~ 0.187x. The estimation of the energy of the
X31 PEPS [represented in Fig. 3(d)] is in reasonably good
agreement with ED data as shown in Fig. 6(e). Note that this
PEPS build from a single-site tensor bears some U(1) gauge
symmetry so that we expect critical correlations. Indeed,
Fig. 7(a) shows that the largest correlation length (obtained
from the transfer operator) increases linearly with x, with no
sign of saturation. The scaling of the entanglement entropy
Senv W.ILt. the latter correlation length & according to the
formula Sgny = So + ¢/6log& [25] in 7(a) suggests confor-
mal field theory (CFT) criticality with central charge ¢ = 1.
Spin-spin and dimer-dimer correlations show very different
qualitative behaviors, with exponential and algebraic decays,
as shown in Figs. 7(c) and 7(d), respectively. While we expect
the other PEPS [represented in Fig. 3(e)] obtained from the
tensors Y»gy and Yy, to be also relevant in this region (it is the
simplest adaptation of the C-breaking phase construction of
reference [15]), we were not able to compute an environment
for these tensors. In any case, we expect a C-breaking phase
that also breaks translation symmetry but preserves SU(4), as
mimicked by our simplistic X3; PEPS. Slightly lower energies
reached with nonzero ,3;’1) indicate this phase may also break
time-reversal symmetry.

For 6* < 0 < /2, our best results were obtained with
uncorrelated, singlet plaquettes of six sites (see Appendix A),
which have better energies than our different PEPS ansatz
as shown in Fig. 5(c). Such a plaquette can also be realized
with the fundamental irrep of SU(6) on every site and indeed
no special behavior is observed at the SU(6) point 6 = 7 /4.
There is, however, a clear crossing of the energy curves at § =
7 /2, which corresponds to the transition to the FM state as
discussed before. Hence, in this region, no evidence for a QSL
phase is found, as the energies of our symmetry-preserving
PEPS ansatz are well above.

VII. CONCLUSION

In this study, we have investigated the most general two-
fermion SU(4)-symmetric Hamiltonian on the square lattice,
with interaction limited to nearest-neighbor distance. We
combined ED, DMRG, and PEPS techniques to propose a new
phase diagram. We first argue the ferromagnetic domain is
limited by the two SU(6) points at 0 = /2 and 6 = —37 /4.
We then explore the rest of the phase diagram using different
PEPS ansatz and comparing them with DMRG and ED. We
construct several SU(4) and Cy4, symmetric PEPS, depending
on very few parameters, and explain how to construct tensor
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FIG. 7. Critical behavior of the X;3/X3; PEPS ansatz. (a) Largest
correlation length & vs x. (b) Scaling of the entanglement entropy
vs. the log of £. A central charge ¢ = 1 is proposed [25]. (c) Two-
point (spin-spin) correlation function. An effective spin-spin corre-
lation length is proposed with a fit Cs(r + 1) = Cs(1) exp(—r/&s).
(d) Four-point (dimer-dimer) correlation function, with critical expo-
nent « fitted with C;(r + 1) = C,(2)r™.

families that can capture the extended symmetry at the SU(6)
points.

Previous QMC results on the SU(6) point 6 = —m /2
indicate a (weakly) dimerized phase there, and the purely
bilinear point § = 0 is known to belong to the AF phase.
Although the restriction to uniform symmetric PEPS prevents
us from accessing dimerized and Néel phases, our PEPS still
provide excellent variational energies in both (i) an extended
region from the ferromagnetic boundary at 6 = —3m /4 all the
way to 8 ~ —0.307 (including the SU(6) dimerized point)
and (ii) a narrower region around 6 = 0.18z. In the first
region, due to the simplistic nature of the two low-energy best
PEPS—they are build from a (fixed) single tensor encoding a
continuous U(1) gauge symmetry—critical dimer correlations
are found, which may be quite unstable [26,27]. Hence,
minimal refinement of these PEPS wave functions could lead
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to either (i) a short-ranged QSL with topological order—by
breaking the continuous gauge symmetry to a discrete gauge
symmetry—or (ii) a weakly dimerized phase—by allowing
a two-sublattice modulation of the site tensor. Although, the
second scenario agrees with the known physical behavior at
the SU(6) point & = —r /2, the first scenario of a topological
QSL may well be realized closer to the ferromagnetic phase
transition at 6 = —3m /4.

In the narrower region around 6 ~ 0.187, we found no ev-
idence for a uniform QSL but, rather, a ¢ = (i, 7 )-modulated
charge conjugation-breaking phase. Such a phase is a natural
generalization of the 1D C-breaking phase, and has a particu-
larly simple PEPS representation. Our analysis also suggests
a transition from this phase to a six-site plaquette phase,
which seems to extend all the way to the ferromagnetic phase
transition point at 8 = 7 /2. Of course, one cannot exclude
that 8* — 6, — 0, for increasing cluster sizes in ED, in which
case one would observe a direct transition from the Néel state
to the plaquette phase and no intermediate C-breaking phase.

Last, we note that SU(4) qualitatively differs from SU(2)
where no QSL arises in the case of NN interactions only. This
leaves open the possibility of experimental realizations using
any ultracold alkaline-earth atoms realizing SU(N) symmetry
by simply tuning the number of species [28] to, e.g., N = 4.
Fixing a filling of two particles per site should avoid three-
body losses and thus allow controlled experiments.
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APPENDIX A: SIMPLE ANSATZ

We consider here a few simple exact SU(4) states on
the square lattice to compare to our PEPS. These states
correspond to magnetic or quantum disordered phases, some
of them introduced in Ref. [16]. On a given lattice with
coordination number z and nearest-neighbor coupling, the
energy per site is one half of the average value of all the H(6)
taken on the z bonds. The energy of a given wave function
for all 6 is a sinusoid parameterized by its value in two points

only: (H(0)) = cos(8) H(0) + sin(0) H(r /2).

1. Ferromagnetic state 7 M

This state is the most symmetric and any pair of sites in
the lattice is projected in the most symmetric irrep 20. In this
state, (H(0))20 = cos(@) + % and, therefore, the energy per

site is

efM:20059+%sin0 (A1)

2. Uncorrelated state I/

In this state, each site is totally uncorrelated from its neigh-
bors, which means (H(0))une = Tr(H)/36 = 15—2 sin 8. Hence,
the energy per site is

5

ey = zsinf. (A2)

3. Dimerized state D

In a fully dimerized state, each site belongs to one singlet of
energy (H(6))1 = —5cos(0) + % sin 8. All the other neigh-
bors are totally uncorrelated. Every dimer covering states have
the same energy per site,

ep = —3cos + 2 sin6. (A3)

4. Four-site plaquette states P,

On the square lattice we can also construct states where
four sites in a square form a singlet and cover the lattice
with these plaquettes. This state spontaneously breaks the
translation invariance of the lattice. To construct it, we have to

. ®4 . .
consider the projector H — . Three independent singlets

can be made on the square, they can easily be obtained by
diagonalizing the quadratic Casimir operator on four sites.
The point group Cy, naturally acts on this space and we can
decompose the states in term of its irreducible representations:
two singlets have A; symmetry and the last one has 15,
symmetry.

Diagonalizing H(#) on a four-site plaquette in
this restricted subspace leads to three eigenvalues
8sin(f) — 6cos(9) + /—76sin(20) — 13 cos(20) + 85/+/2
and 11sin(0) — 8cos(f). Covering the lattice with such
plaquettes and taking into account that uncorrelated bonds
contribute to the total energy per site according to Eq. (A2)
we obtain the variational energies:

e — —§cos9+ gsin@
Pe 2 12

+ §\/85 — 13cos(20) — 76sin(260), (A4)

B,

19
ep, = —2cos6 + 5 sin . (AS)

5. Six-site plaquette state Pg

For a single six-site plaquette (3 x 2 rectangle), only one
SU(6) singlet can be obtained if each site hosts the funda-
mental representation of SU(6). By construction, this state
is antisymmetric with respect to any two-site permutation.
In the SU(4) language [obtained by a simple identification
of the six states of the fundamental representation of SU(6)
and the six states of the 6 representation of SU(4)], this state
can be viewed as a pairing of any pair of sites into the (anti-
symmetric) 15 representation of SU(4). As a consequence, it
becomes obvious that this is an eigenstate of H(6) with the
energy 7[—cos6 4+ (1/4)sin6]. As in the four-site plaquette
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TABLE IV. List of clusters studied with ED: number of sites N,
the two unit vectors, compatibility with a dimerized phase, and point-
group symmetry.

Cluster t; t, Can host a columnar phase Point group
8 2,2) (-2,2) Yes Cay
10 (1,3) 3,-1) No Cy
12 1,3 4,0 No G
16 4,00 (04 Yes Cyy

states, the variational energy of the uniform covering of the
lattice with such six-site plaquettes is given by

ep, = —2cosf + 2 sinf. (A6)

We only plot the ferromagnetic state, the lowest four-site
plaquette state and the six-site plaquette state energies as a
function of 6.

APPENDIX B: ADDITIONAL INFORMATION
FOR EXACT DIAGONALIZATION

For exact diagonalization, we have computed the ground-
state and low-energy excitations using a Lanczos algorithm on
several finite-size clusters of N sites with periodic boundary
conditions, see Table IV. Since we are mostly looking for a
quantum spin liquid state, we have considered clusters that
can accommodate the columnar phase [i.e., possess (;r, 0) and
(0, 7) momenta in their Brillouin zone] or not. Moreover,
we have also considered one cluster (N; = 12) which is not
a perfect square since its unit vectors are not perpendicular,
which is not an issue for disordered phase [30]. Last, to
reduce the size of the Hilbert space, we have used all space
symmetries (translation and point-group) as well as the 3
Cartan U(1) symmetries (color conservation).

APPENDIX C: PEPS WITH HIGHER 66 SU(6) SYMMETRY

We now focus on the SU(6) 66 symmetric pointatf = x /4
[for which the GS is a nondegenerate SU(6) singlet on finite
clusters] and extend the tensor construction in such a way that

TABLE V. Eleven classes of SU(4)-symmetric tensors which can
accomodate SU(6)-symmetry, classified according to their virtual
space and occupation numbers in the D = 43 largest SU(4) virtual
space.

Class D % Hocc [D=43]

Ty 7 601 {1,0,0,0, 3}
w 13 6061 {2,1,0,0, 1}
R, 43 60601501501 {3,0,0,1,0}
R, 43 60601501501 {1,2,1,0,0}
R, 43 606015015d1 {1,0,3,0,0}
R4 43 60601501501 {1,0,1,1, 1}
Rs 43 60601501501 {1,0,0, 3,0}
Rs 43 60601501501 {0,3,0,1,0}
R; 43 60601501501 {0,1,2,1,0}
Ry 43 60601501501 {0,1,1,0,2)
Ry 43 60601501501 {0,1,0,2, 1}
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FIG. 8. (a) The nine R; classes of D = 43 tensors that can acco-
modate SU(6) fusion rules—see Table V. Color-conjugated tensors
(same tensors) have to be used on the A and B sites to accomodate the
66 (66) SU(6) symmetry as shown in panels (b) and (c), respectively.

the PEPS now inherits the enlarged symmetry. If we try to
start from the previous SU(6) virtual space Vs =6 D6 @ 1,
then we are now left with tensors whose occupation numbers
should be restricted to ny.. = {1, 0, 3} or ne.c = {2, 1, 1} on
both A and B sites. It is easy to check that it is impossible to
pave the square lattice with such tensors assuming the pairs
of virtual states on the bonds are contracted into ee or 66
singlets. The same conclusion holds for Vs = 6 ® 6 20 @ 1.
We are there forced to introduce new/extra virtual degrees of
freedom. The simplest choice of the SU(6) virtual space is

Vs=[_J® @H@ Ge = 60601501501, (Cl)

of dimension D = 43. The corresponding PEPS tensors rep-
resent all the fusion channels of four of the five species of
Eqg. (C1) onto the physical state 6. Mapping to SU(4) would
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TABLE VI. Full list of the classes of D =43 (656 15®
15 & 1) SU(4) symmetric tensors in terms of the occupation numbers
of the five virtual particles. The second (third) column shows the
number of SU(4) (SU(6)) fusion channels—i.e., the total number of
SU(N) symmetric tensors (that could be further classified in terms of
the irreps of the Cy, point group, A, A,, By, B, and £). The 6 H 1 T,
tensor is marked in red. The 6 @ 6 @ 1 tensors are marked in blue.
Note that the total occupancy of the 6 particles is odd, reflecting a
gauge Z, symmetry.

Occupation number SU4) SU((6)
{0,1,0,0,3 4 0
{0,1,0, 1,2} 12 0
{0,1,0,2,1} 48 12
{0, 1,0, 3, 0} 64 0
{0,1,1,0,2} 12 12
{0,1,1,1, 1} 96 0
{0,1,1,2,0} 192 0
{0,1,2,0, 1} 48 0
{0,1,2,1,0} 192 48
{0, 1, 3,0, 0} 64 0
{0,3,0,0, 1} 12 0
{0,3,0,1, 0} 28 4
{0,3,1,0,0} 28 0
{1,0,0,0, 3} 4 4
{1,0,0,1,2} 12 0
{1,0,0,2, 1} 48 0
{1,0,0,3, 0} 64 12
{1,0,1,0,2} 12 0
{1,0,1,1, 1} 96 48
{1,0,1,2,0} 192 0
{1,0,2,0, 1} 48 0
{1,0,2,1,0} 192 0
{1,0,3,0,0} 64 12
{1,2,0,0, 1} 36 0
{1,2,0,1, 0} 84 0
{1,2,1,0,0} 84 36
{2,1,0,0, 1} 36 24
{2,1,0,1,0} 84 0
{2,1,1,0,0} 84 0
{3,0,0,0, 1} 12 0
{3,0,0, 1, 0} 28 12
{3,0,1,0,0} 28 0

s

require a virtual space with irreps of the same dimensions,

HoHe e[ o

L L (C2)
=606 915015 @1,

1%

where both the 6 (self-conjugate) and 15 (adjoint) irreps
occurs with multiplicity 2, i.e., with two “colors.” Again, we
use an * to distinguish the two copies. Unfortunately such a
large D = 43 bond dimension is untractable.

To accomodate SU(6) fusion channels, we are left with
only eleven classes defined by their possible occupations
neee Of the five virtual particles, as shown in Table V. The
corresponding (classes of) tensors are drawn in Fig. 8(a).

TABLE VII. Gauge symmetries of the various SU(4)-symmetric
tensor families and of their imbeded SU(6)-symmetric subfamilies,
if they exist. The last two columns indicate whether (v') or not (x)
the SU(6) symmetric tensors can describe the 66 and 66 symmetric
points, respectively.

D % SU@)/SU®6) 66 66
7 6@1 Zz/Zz X
8 404 Z,/— - -
9 49401 Z4)— _ _
13 606d1 7,/ 76 x
15 4040601 Zy/— - -
21 404060601 Z4)— _ _
33 60602001 Z,/7¢ x
43 6D6D150151 VAY VA

63 6660150150201 7,]7¢

Possible configurations of the PEPS after contracting some of
these tensors is shown on Figs. 8(b) and 8(c). The full tensor
classification of the D = 43 virtual space is given in Table VI.

Note that the C-symmetry corresponding to charge con-
jugation in the SU(6) case (and acts on the physical space
as well) maps, in the SU(4) case, to a gauge symmetry C
defined as color exchange acting only on the virtual space.
Since the C symmetry is explicitly broken in the SU(6) PEPS
(by construction, enforcing the physical irrep 6 on every site),
its related gauge symmetry has to be broken in a very specific
way in the corresponding SU(4) PEPS, as, e.g., shown in
Table V. In fact, the gauge C-symmetry can be decomposed
as C = C,C,, where C; and C; color-exchange only the two
6 irreps or the two 15 irreps, respectively. These gauge
transformations belong, in fact, to a larger SU(2) x SU(2)
gauge group. Hence, three other classes of tensors can be
easily obtained from the R; classes by applying C; only, C;
only or their product C, respectively (see Table V). At the
SU(6)-symmetric points, any one—but only one—of the four
classes can be used to construct a SU(6) singlet. Note that
for 66 SU(6) symmetry, the previous 6 @ 6 & 1 PEPS can be
extended using the eleven classes of D = 43 tensors on the A
sites and their color-conjugate both in 6 and 15 of the B sites,
as shown in Fig. 8(¢).

APPENDIX D: GAUGE SYMMETRIES

The gauge symmetries of each of the tensor families can
be viewed as charge conservation in the fusion process of
the four virtual particles into the physical one. Therefore,
one has to assign an integer charge to both virtual and
physical degrees of freedom. It is natural to expect Z4 gauge
symmetry for SU(4)-symmetric tensors in which case one
should consider a minimal virtual space V =4 @ 4® 6@ 1
to encode all particle types with charges g = {1, —1, 2, 0}
(mod 4) and the on-site charge conservation reads q - 1pec = 2
(mod 4). However, it is easy to check that, for the virtual
spaces that do not contain all four SU(4) charges, the gauge
symmetry may be reduced to Z,, as shown in Table VII.
For SU(6) symmetry, the D =63 Vs =606 915015 ®
20 @ 1 tensors contains four of the six elementary virtual
particles of charges g¢ = {1, —1,2, —2, 3,0} (mod 6) and
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TABLE VIII. Tensor X3; (multiplied by 4+/30).

X31[0,0,0,3,4] = 1 X31[0,0,0,4,3] = 1 X31[0,0,1,5,3] = 1
X3110,0,2,6,3] = 1 &mn@aq=—2 X31[0,0,3,1,5] = —
X31[0,0,3,2,6] = —1 X3110,0,3,3,7] = X3110,0,3,4,0] = 1
X31[0,0,3,5, 1] = 1 X100, 0.3, 6,2] = 1 X3110,0,3,7,3] =2
X3[0,0,4,0,3] = —2 X310,0,4,3,0] = 1 X31[0,0,5,1,3] = —
X31[0,0,6,2,3] = —1 X3110,0,7,3,3] = —1 X3110,1,0,3,5] =1
X31[0,1,3,0,5] = —1 X31[0,1,5,0,3] = —1 X3[0,1,5,3,0] = 1
X3110,2,0,3,6] = 1 X3110,2,3,0,6] = —1 X31[0,2,6,0,3] = —
X31[0,2,6,3,0] = 1 X3110,3,0,0,4] = 1 X3110,3,0,1,5] =1
X31[0,3,0,2,6] = 1 X31[0,3,0,3,7] =2 X31[0,3,0,4,0] = —
X3100,3,0,5, 1] = —1 X3110,3,0,6,2] = —1 X3110,3,0,7,3] = —1
X31[0,3,1,5,0] = —1 X31[0, 3 0] =—1 X3110,3,3,0,7] = —1
X31[0,3,3,7,0] = —1 X3110,3,4,0,0] = X31[0,3,5,1,0] = 1
X31[0,3,6,2,0] = 1 X3110,3,7,0,3] = —1 X3110,3,7,3,0] =2
X31[0,4,0,0,3] = 1 X110, 4 ) X310, 4,3,0,0] = 1
X31[0,5,0,3,1] = —1 X31[0,5,1,0,3] = 1 X31[0,5,1,3,0] = —
X310,5,3,0,1] = 1 X3110,6,0,3,2] = —1 &mﬁ&&ﬂ:l
X31[0,6,2,3,0] = —1 X31[0,6,3,0,2] = 1 X31[0,7,0,3,3] = —
X31[0,7,3,0,3] =2 X31[0,7,3,3,0] = —1 X3[1,0,0,2,4] = 1
X31[1,0,0,4,2] =1 X3[1,0,1,5,2] =1 X31[1,0,2,0,4] = —
Xai[1,0,2,1,5] = —1 Xai[1,0,2,2,6] = —1 X31[1,0,2,3,7] = —
X3[1,0,2,4,0] = 1 X3[1,0,2,5, 1] =1 X3[1,0,2,6,2] =2
X3[1,0,2,7,3] =1 X3(1,0,3,7,2] = 1 %u&4an )
X31[1,0,4,2,0] = 1 X3[1,0,5,1,2] = —1 X31[1,0,6,2,2] = —1
X3[1,0,7,3,2] = —1 X3[1,1,0,2,5] =1 X3[1,1,2,0,5] = —1
X3(1,1,5,0,2] = —1 X3(1,1,5,2,0] = 1 X31[1,2,0,0,4] =
Xai[1,2,0,1,5] =1 X3[1,2,0,2,6] =2 X[1,2,0,3,7] =
X3[1,2,0,4,0] = —2 X3[1,2,0,5,1] = —1 X3[1,2,0,6,2] = —1
X3(1,2,0,7,3] = —1 X3[1,2,1,5,0] = —1 Xai[1,2,2,0,6] = —1
Xai[1,2,2,6,0] = —1 Xal1,2,3,7,0] = —1 X3[1,2,4,0,0] = 1
X[1,2,5,1,0] = 1 X3[1,2,6,0,2] = —1 X3[1,2,6,2,0] = 2
X3[1,2,7,3,0] = 1 X3(1,3,0,2,7] =1 Xai[1,3,2,0,7] = —
Xai[1,3,7,0,2] = —1 Xu[1,3,7,2,0] = 1 &UAQQH:]
X3[1,4,0,2,0] = —2 X3[1,4,2,0,0] = 1 X3[1,5,0,2,1] = —1
X3[1,5,1,0,2] = 1 Xa[1,5,1,2,0] = X3[1,5,2,0,1]1 =1
X3[1,6,0,2,2] = —1 X3[1,6,2,0,2] = 2 X3[1,6,2,2,0] = —
X3[1,7,0,2,3] = —1 X3[1,7,2,0,3] =1 X3[1,7,3,0,2] = 1
X3(1,7,3,2,0] = —1 X31[2,0,2,3,4] = 1 X31[2,0,3,2,4] = —
X3[2,0,4,2,3] = —1 X31[2,0,4,3,2] = 1 X302,1,2,3,5] =1
X302,1,3,2,5] = —1 X3[2,1,5,2,3] = — X3[2,1,5,3,2] =1
X3102,2,0,4,3] =1 Xﬂ2215ﬂ_1 X3102,2,2,3,6] = 1
X302,2,2,6,3] =1 X3102,2,3,0,4] = —1 X[2,2,3,1,5] =
X302,2,3,2,6] = —2 X302,2,3,3,7] = —1 X31[2,2,3,4,0] = 1
X302,2,3,5, 11 =1 X3102,2,3,6,2] = X3102,2,3,7,3]1 =2
X3[2,2,4,0,3] = —1 X302,2,5,1,3] = —1 X302,2,6,2,3] = —2
X302,2,6,3,2] =1 X302,2,7,3,3] = —1 X3102,3,0,4,2] = —1
X302,3,1,5,2] = —1 X3102,3,2,0,4] = 1 X3[2,3,2,1,5] =1
X302,3,2,2,6] =1 X3102,3,2,3,7] =2 X302,3,2,4,0] = —1
X302,3,2,5, 1] = —1 X302,3,2,6,2] = —2 X302,3,2,7,3] = —1
X302,3,3,2,7] = —1 X3102,3,3,7,2] = —1 X31[2,3,4,0,2] = 1
X302,3,5,1,2] =1 X302,3,6,2,2] = 1 X302,3,7,2,3] = —1
X302,3,7,3,2] =2 X3[2,4,0,2,3] =1 X3[2,4,0,3,2] = —1
Xa1[2,4,2,3,0] = —1 X3102,4,3,2,0] = 1 X302,5,1,2,3] =1
X302,5,1,3,2] = —1 X302,5,2,3,1] = —1 X3102,5,3,2,1] =
X3[2,6,2,2,3] =1 X31[2,6,2,3,2] = —2 X302,6,3,2,2] =1
Xa1[2,7,2,3,3] = —1 X302,7,3,2,3]1 =2 X31[2,7,3,3,2] = —1
X31[3,0,0,1,4] = 1 X31[3,0,0,4,1] = 1 X31[3,0,1,0,4] = —2
X3[3,0,1,1,5] = —1 X3[3,0,1,2,6] = X3[3,0,1,3,7] = —1
X31[3,0,1,4,0] = 1 X31[3,0,1,5, 1] = 2 X31[3,0,1,6,2] = 1
X31[3,0,1,7,3] = 1 X3103,0,2,6,1] =1 X303,0,3,7,1] = 1
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TABLE VIII. (Continued.)

X31[3,0,4,0,1] = —2 X31[3,0,4,1,0] = 1
X3[3,0,6,2,1] = —1 X31[3,0,7,3,1] = —1
X3[3,1,0,1,5] =2 X3[3,1,0,2,6] =1
X31[3,1,0,4,0] = —2 Xa1[3,1,0,5,1] = —
X31[3,1,0,7,3] = —1 X3[3,1,1,0,5] = —1
X3[3,1,2,6,0] = —1 X3[3,1,3,7,0] = —1
X31[3,1,5,0,1] = —1 X3(3,1,5,1,0] =2
Xa[3,1,7,3,0] = 1 X31[3,2,0,1,6] =1
X31[3,2,6,0,1] = —1 X313, 2, 6, 1,0] 1
X3103,3,1,0,7] = —1 X3103,3,7,0,1] = —1
X31[3,4,0,0,1] = 1 X31[3,4,0,1,0] = —2
X3[3,5,0,1,1] = —1 X3[3,5,1,0,1]1 =2
X31[3,6,0,1,2] = —1 X31[3,6,1,0,2] = 1
X3[3,6,2,1,0] = —1 X31[3,7,0,1,3] = —1
X3[3,7,3,0,1] =1 X3[3,7,3,1,0] = —1
X31[4,0,3,1,4] = —1 X31[4,0,4,1,3] = —1
X3[4,1,0,4,3] =1 Xy[4,1,1,3,5] =1
X31[4,1,2,6,3] =1 Xa1[4,1,3,0,4] = —1
Xai[4,1,3,2,6] = —1 Xl4,1,3,3,7] = —1
X3[4,1,3,5, 1] =1 Xa1[4,1,3,6,2] = 1
Xa1[4,1,4,0,3] = —1 Xa[4,1,5,1,3] = -2
Xa1[4,1,6,2,3] = —1 Xil4,1,7,3,3] = —1
X3[4,2,3,1,6] = —1 X31[4,2,6,1,3] = —1
X31[4,3,0,4,1] = —1 X31[4,3,1,0,4] = 1
X31[4,3,1,2,6] =1 X31[4,3,1,3,7] =2
X3[4,3,1,5,1] = =2 X3[4,3,1,6,2] = —1
X31[4,3,2,6,1] = —1 X31[4,3,3,1,7] = —1
X31[4,3,4,0,1] = 1 Xa1[4,3,5, 1,11 = 1
X304,3,7,1,3] = —1 X3[4,3,7,3,1]1 =2
X31[4,4,0,3,1] = —1 Xa1[4,4,1,3,0] = —1
X3[4,5,1,1,3] =1 Xa1[4,5,1,3,1] = -2
X3[4,6,1,3,2] = —1 X3[4,6,2,1,3] =1
X31[4,6,3,1,2] =1 X[4,7,1,3,3] = —1
X1[4,7,3,3,1] = —1 X3105,0,1,2,4] = 1
X3[5,0,4,1,2] = —1 X3[5,0,4,2,1] = 1
X305,1,1,2,5] =1 X3(5,1,1,5,2] =1
Xa[5,1,2,1,5] = —2 Xai[5,1,2,2,6] = —1
X3[5,1,2,4,0] = 1 X3[5,1,2,5,1]1=1
X305,1,2,7,3] =1 X305,1,3,7,2] =1
Xa[5,1,5,1,2] = —2 X305,1,5,2,1]1 =1
X3[5,1,7,3,2] = —1 X31[5,2,0,4,1] = —1
X05,2,1,1,5] =1 X3105,2,1,2,6] =2
X31[5,2,1,4,0] = —1 Xa1[5,2,1,5,1] = —
X3[5,2,1,7,3] = —1 X305,2,2,1,6] = —1
X3105,2,3,7, 1] = —1 X31[5,2,4,0,1] =

X31[5,2,6,1,2] = —1 X3105,2,6,2,1]1 =2
X3[5,3,1,2,7] =1 X305,3,2,1,7] = —1
X305,3,7,2,1] =1 X31[5,4,0,1,2] = 1
X31[5,4,1,2,0] = —1 X3105,4,2,1,0] = 1
X3[5,5,1,2,1] = =2 X305,5,2,1,1] =1
X31[5,6,2,1,2] =2 X31[5,6,2,2,1] = —1
X05,7,2,1,3] =1 Xa1[5,7,3,1,2] = 1

X3103,0,5,1,1]1 = —1
X31[3,1,0,0,4] = 1
X3[3,1,0,3,7] = 1
X3103,1,0,6,2] = —1
X3(3,1,1,5,0] = —1
X3[3,1,4,0,0] = 1
X3103,1,6,2,0] = 1
X:1[3.2.1,0.,6] = —1
X3[3,3,0,1,7] =1
X3103,3,7,1,0] = 1
X3[3,4,1,0,0] = 1
X3[3,5,1,1,0] = —1

X;1[4, 1, 3, 1,5]
X504, 1,
Xs1[4, 1,
X514, 1,
X314, 2,
X314, 2,
Xs1[4, 3,
X3114,3,1,4,0]

X31[4,3,1,7,3] = —1
X;31[4,3,3,7,1]

3,4,
3,7
5,3,
1,3,
6,3
1,1

5
)
)

X3114,3,6,2,1] =1
X3[4,4,0,1,3] =1
X31[4,4,3,1,0] = 1
X3[4,5,3,1,1]1=1

X31[4,6,2,3,1] = —1
X3104,7,3,1,3] =2
X3105,0,2,1,4] = —
X31[5,1,0,4,2]:1
X305,1,2,0,4] = -1
X3105,1,2,3,7] = -1

X305,1,4,0,2] = —1
X305,1,6,2,2] = —1
X31105,2,1,0,4] =1
X31105,2,1,3,71 =1
X515, 2, =-1

X505,2,5,1,1]1 =1
X305,2,7,3,1] =1
X3105,3,7,1,2] = -1
X3][5,4,0 2 1] = —1

the SU(6) conservation rules state that gg - nocc = 1 (mod
6), providing the desired Z¢ gauge symmetry. The gauge
symmetry is also present for smaller bond dimension, except
for Vg = 6 & 1, for which it is reduced to Z,, as shown in
Table VII.

APPENDIX E: TENSOR EXPRESSIONS

The expression of the tensors 7; can be found in the
Supplemental Material of Ref. [19]. We provide here the
coefficients of the unnormalized tensors X3; (Table VIII) and

W, (Table IX), which are integer values. The first index labels
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TABLE IX. Tensor W; (multiplied by 12+/7).

Wi[0,0,0,6, 12] =2
Wi[0,0,1,12,7] = 1
Wi[0,0,3,9,12] = 1
Wi[0,0,4,12,10] = 1
W0, 0,6,0,12] =2
Wi[0,0,7,12,1] = 1
Wi[0,0,9,3,12] = 1
Wi[0,0,10,12,4] = 1
W10, 0, 12,0, 6] = 2
Wi0,0,12,3,9] = 1
W0, 0, 12,6,0] = 2
Wi[0,0,12,9,3] = 1
W,[0,1,0,7,12] = 1
W0, 1,7,12,0] = 1
Wi[0,2,0,8,12] = 1
Wi[0,2,8,12,0] = 1
Wi[0,3,0,9,12] = 1
Wi[0,3,9,12,0] = 1
Wi[0,4,0, 10, 12] = 1
W10, 4, 10,12,0] = 1
Wi[0,5,0,11,12] = 1
Wi[0,5,11,12,0] = 1
W10, 6,0,0, 12] =2
Wi[0,7,0,1,12] = 1
Wi[0,7,1,12,0] = 1
Wi[0,8,0,2,12] = 1
Wil0,8,2,12,0] = 1
Wi[0,9,0,3,12] = 1
Wi[0,9,3,12,0] = 1
Wi[0,10,0,4,12] = 1
Wi [0, 10,4, 12,0] = 1
Wil0,11,0,5,12] = 1
Wi[0, 11,5,12,0] = 1
W10, 12,0, 0, 6] = 2

I IITII
_—
—_

Il
—_ DN = = =

wil1, 0,
Will. 1,
Will, 1,
Will, 1,3,
MUJAJLMhﬂ
Will.1.6,0, 12] = I
Wil 1,7.12,1] =2
Wil,1,9,3,12] = 1
Will, 1,10, 12,4] = 1
Will, 1,12,0,6] = 1
Will,1,12,3,9] =1
Will, 1,12,6,0] = I
Will,1,12,9,3] = 1
wi[l,2,1,8,12] =1
Will,2,8,12, 1] = 1

—OO\—
I

W40, 0,0, 12, 6] = 2
Wi10,0,2,8,12] = 1
Wi10,0,3,12,9] = 1
W,[0,0,5,11,12] = 1
W10, 0,6,12,0] =2
Wi10,0,8,2,12] = 1
Wi10,0,9,12,3] = 1
Wi[0,0, 11,5,12] = 1
Wi[0,0,12,1,7] = 1
Wi[0,0,12,4,10] = 1
Wi10,0,12,7,1] = 1
Wi10,0, 12, 10,4] = 1
Wi[0,1,0,12,7] = 1
Wil0,1,12,0,7] = 1
Wi10,2,0,12,8] = 1
Wi[0,2,12,0,8] = 1
Wi10,3,0,12,9] = 1
Wi[0,3,12,0,9] = 1
Wi[0,4,0,12,10] = 1
Wi10,4,12,0,10] = 1
Wil0,5,0,12, 1] = 1
Wi[0,5,12,0,11] = 1
W10, 6,0,12,0] = 2
Wi[0,7,0,12,1] = 1
Wi[0,7,12,0,1] = 1
W0, 8,0,12,2] = 1
Wil0,8,12,0,2] = 1
Wi[0,9,0,12,3] = 1
Wi10,9,12,0,3] = 1
Wi0, 10,0, 12,4] = 1
Wi [0, 10, 12,0,4] = 1
Wil0,11,0,12,5] = 1
Wi[0, 11,12,0,5] = 1
Wi[0,12,0,1,7] = 1
mm1204 10] =1
Wil0,12,0,7,1] = 1
W10, 12,0,10,4] = 1

Will,0, 1 1
muou =1
mulon@ 1
Will, 1,2,8,12] = 1
Will,1,3,12,9] = 1
Will, 1,5,11,12] = 1
Will,1,6,12,0] = 1
Will,1,8,2,12] = 1
Will,1,9,12,3] =1
Will, 1,11,5,12] = 1
Will, 1,12,1,7] =2
Will, 1,12,4,10] = 1
Will, 1,12,7,1] =2
Will, 1,12,10,4] = 1
Will,2,1,12,8] =1
Will,2,12,1,8] = 1

W,[0,0,1,7,12] = 1
W;10,0,2,12,8] = 1
Wi[0,0,4,10,12] = 1
W,[0,0,5,12, 11] = 1
Wi10,0,7,1,12] = 1
Wi10,0,8,12,2] = 1
Wi[0,0, 10,4, 12] = 1
Wi[0,0,11,12,5] = 1
Wil0,0,12,2,8] = 1
Wi[0,0,12,5,11] = 1
Wi10,0,12,8,2] = 1
Wi[0,0,12,11,5] = 1
Wi[0,1,7,0,12] = 1
Wil0,1,12,7,0] = 1
Wi0,2,8,0,12] = 1
Wi[0,2,12,8,0] = 1
Wi10,3,9,0,12] = 1
Wil0,3,12,9,0] = 1
Wi[0,4, 10,0, 12] = 1
W10, 4, 12,10,0] = 1
Wil0,5,11,0,12] = 1
Wi[0,5,12,11,0] = 1
Wi0, 6, 12,0,0] = 2
Wil0,7,1,0,12] = 1
Wi[0,7,12,1,0] = 1
Wi10,8,2,0,12] = 1
Wil0,8,12,2,0] = 1
Wi10,9,3,0,12] = 1
Wi10,9,12,3,0] = 1
Wil0,10,4,0,12] = 1
W10, 10, 12,4,0] = 1
Wil0,11,5,0,12] = 1
Wi[0, 11,12,5,0] = 1
Wi[0,12,0,2,8] = 1
Wi[0,12,0,5,11] = 1
W10, 12,0,8,2] = 1

Wi[0,12,0,11,5] = 1
Wi0,12,2,0,8] = 1
Wil0, 12,3,9,0] = 1
Wi[0,12,5,0,11] = 1
Wil0,12,7,0,1] = 1
W10, 12,8,2,0] = 1
Wi[0,12,10,0,4] = 1
mmmn@mzl
Will,0,6,1,12] =

Wil1.0.12.6.1] =
mumLzmzz
Will, 1,2,12,8] = 1
Will, 1,4,10,12] = 1
Will, 1,5,12,11] = 1
Will,1,7,1,12] =2
Will,1,8,12,2] = 1
Will, 1,10,4,12] = 1
Will, 1,11,12,5] =1
Will,1,12,2,8] =1
Will, 1,12,5,11] = 1
Will, 1,12,8,2] = 1
Will, 1,12, 11,5] = 1
Will,2,8,1,12] = 1
Will,2,12,8, 1] = 1
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TABLE IX. (Continued.)

Will,3,1,9,12] = 1
Will,3,9,12,1] = 1
Will,4,1,10,12] = 1
Will, 4,10,12,1] = 1
Will,5,1,11,12] = 1
Will,5,11,12,1] = 1
Will,6,0,1,12] = 1
Will,6,1,12,0] = 1
Will,7,1,1,12] =2
Will,8,1,2,12] =1
Will,8,2,12,1] = 1
Will1,9,1,3,12] = 1
Will,9,3,12,1]1 =1
Will, 10, 1,4,12] = 1
Will, 10,4,12,1] = 1
Will, 11,1,5,12] = 1
Will, 11,5,12,1]1 = 1
Will,12,0,1,6] = 1
Will, 12,1,1,7] =2
Will, 12,1,4,10] = 1
Will, 12,1,7,1]1 =2
Will, 12, 1,10,4] = 1
Will, 12,2,8, 1] = 1
Will, 12,4,1,10] = 1
Will, 12,5, 11, 1] = 1
Will,12,7,1,11=2
Will,12,9,1,3] =1
Will, 12,10,4,1] = 1
Wi[2,0,2,6,12] = 1
Wil2,0,6,12,2] = 1
Wil2,1,2,7,12] = 1
Wil2,1,7,12,2] = 1
Wil2,2,0,6,12] = 1
Wil2,2,1,12,7] = 1
Wil2,2,3,9,12] = 1
Wil2,2,4,12,10] = 1
Wil2,2,6,0,12] = 1
Wil2,2,7,12,1]1 =1
Wil2,2,9,3,12] = 1
Wil2,2,10,12,4] = 1
Wil2,2,12,0,6] = 1
Wil2,2,12,3,9] = 1
Wil2,2,12,6,0] = 1
Wil2,2,12,9,3] = 1
Wil2,3,2,9,12] = 1
Wil2,3,9,12,2] = 1
Wil2,4,2,10,12] = 1
Wil2,4,10,12,2] = 1
Wil2,5,2,11,12] = 1
Wil2,5,11,12,2] = 1
Wil2,6,0,2,12] = 1
Wil2,6,2,12,0] = 1
Wil2,7,1,2,12] = 1
Wil2,7,2,12,1]1 = 1
Wil2,8,2,2,12] =2
Wil2,9,2,3,12] = 1
Wil2,9,3,12,2] = 1
Wil2,10,2,4,12] = 1
Wil2,10,4,12,2] = 1

Will,3,1,12,9] = 1
Will,3,12,1,9] = 1
Will,4,1,12,10] = 1
Will, 4,12,1,10] = 1
Will,5,1,12,11] = 1
Will,5,12,1,11] = 1
Will,6,0,12,1] = 1
Will,6,12,0,1] = 1
Will,7,1,12,1] =2
Will,8,1,12,2] =1
Will,8,12,1,2] = 1
Will1,9,1,12,3] =1
Will,9,12,1,3] =1
Will,10,1,12,4] = 1
Will,10,12,1,4] = 1
Will, 11,1,12,5] = 1
Will, 11,12,1,5] = 1
Will,12,0,6,1] = 1
Will, 12,1,2,8] = 1
Will,12,1,5, 11] = 1
Will,12,1,8,2] = 1
Will, 12,1,11,5] = 1
Will,12,3,1,9] = 1
Will, 12,4,10,1] = 1
Will,12,6,0,1]1 = 1
Will, 12,8,1,2] = 1
Will,12,9,3,1]1 =1
Will, 12,11,1,5] = 1
Wi[2,0,2,12,6] = 1
Wil2,0,12,2,6] = 1
Wil2,1,2,12,7]1 = 1
Wil2,1,12,2,7] = 1
Wil2,2,0,12,6] = 1
Wil2,2,2,8,12] =2
Wil2,2,3,12,9] = 1
Wil2,2,5,11,12] = 1
Wil2,2,6,12,0] = 1
Wil2,2,8,2,12] =2
Wil2,2,9,12,3] = 1
Wil2,2,11,5,12] = 1
Wil2,2,12,1,7]1 =1
Wil2,2,12,4,10] = 1
Wil2,2,12,7,11 = 1
Wil2,2,12,10,4] = 1
Wil2,3,2,12,9] = 1
Wil2,3,12,2,9] = 1
Wil2,4,2,12,10] = 1
Wil2,4,12,2,10] = 1
Wil2,5,2,12,11] = 1
Wil2,5,12,2,11] = 1
Wil2,6,0,12,2] = 1
Wil2,6,12,0,2] = 1
Wil2,7,1,12,2] = 1
Wil2,7,12,1,2] = 1
Wil2,8,2,12,2] =2
Wil2,9,2,12,3] = 1
Wil2,9,12,2,3] = 1
Wil2,10,2,12,4] = 1
Wi[2,10,12,2,4] = 1

Will,3,9,1,12] = 1
Will,3,12,9,1] = 1
Will,4,10,1,12] = 1
Will, 4,12,10,1] = 1
Will, 5, 11,1,12] = 1
Will,5,12,11,1] = 1
Will,6,1,0,12] = 1
Will,6,12,1,0] = 1
Will,7,12,1,1] =2
Will,8,2,1,12] =1
Will,8,12,2,1] = 1
Will1,9,3,1,12] = 1
Will,9,12,3,1]1 =1
Will,10,4,1,12] = 1
Will,10,12,4,1] = 1
Will,11,5,1,12] = 1
Will, 11,12,5, 1] = 1
Will, 12, 1,0,
Will, 12,1,
Will, 12,1,
Will, 12,1,
Will, 12,2,
Will, 12, 3,
Will, 12,5, 1,11] = 1
Will, 12,6,1,0] = 1
Will, 12,8,2, 1] = 1
Will, 12,10, 1,4] = 1
Will, 12,11,5,1] = 1
Wi[2,0,6,2,12] = 1
Wil2,0,12,6,2] = 1
Wil2,1,7,2,12] = 1
Wil2,1,12,7,2] = 1
Wil2,2,1,7,12] = 1
Wil2,2,2,12,8] =2
Wil2,2, 4,10, 12] = 1
Wil2,2,5,12,11] = 1
Wil2,2,7,1,12] = 1
Wil2,2,8,12,2] =2
Wil2,2,10,4,12] = 1
Wil2,2,11,12,5] = 1
Wil2,2,12,2,8] =2
Wil2,2,12,5,11] = 1
Wil2,2,12,8,2] =2
Wil2,2,12,11,5] = 1
Wil2,3,9,2,12] = 1
Wil2,3,12,9,2] = 1
Wil2,4,10,2,12] = 1
Wil2,4,12,10,2] = 1
Wil2,5,11,2,12] = 1
Wil2,5,12,11,2] = 1
Wil2,6,2,0,12] = 1
Wil2,6,12,2,0] = 1
Wil2,7,2,1,12] = 1
Wil2,7,12,2,1]1 = 1
Wil2,8,12,2,2] =2
Wil2,9,3,2,12] = 1
Wil2,9,12,3,2] = 1
Wil2,10,4,2,12] = 1
Wil2, 10, 12,4,2] = 1

=1
3, 1
6, 1
9, 1
1, 1
9, 1
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Wil2,11,2,5,12] = 1
Wil2,11,5,12,2] = 1
Wil2,12,0,2,6] = 1
Wil2,12,1,7,2] = 1
Wil2,12,2,2,8] =2
Wil2,12,2,5,11] = 1
Wil2,12,2,8,2] =2
Wil2,12,2,11,5] = 1
Wil2,12,4,2,10] = 1
Wil2,12,5,11,2] = 1
Wi2,12,7,1,2] = 1
Wil2,12,9,2,3] =1
Wil2,12,10,4,2] = 1
Wil3,0,3,6,12] = 1

Wi[3,0,6,12,3] =1
Wil3,1,3,7,12] = 1
Wi[3,1,7,12,3] = 1
Wil3,2,3,8,12] = 1
Wil3,2,8,12,3] = 1
Wil3,3,0,6,12] = 1
Wil3,3,1,12,7] = 1
Wil3,3,3,9,12] =2
Wil3,3,4,12,10] = 1
Wil3,3,6,0,12] = 1
Wil3,3,7,12,1] = 1
Wil3,3,9,3,12] =2
Wil3,3,10,12,4] = 1
Wil3,3, 12,0, 6] =

m53123m

MB3129ﬂ
Wil3,4,3,10,12] = 1
Wil3,4,10,12,3] = 1
Wil3,5,3,11,12] = 1
Wi[3,5,11,12,3] = 1
Wil3,6,0,3,12] = 1
Wil3,6,3,12,0] = 1
Wil3,7,1,3,12] = 1
Wil3,7,3,12,1] = 1
Wil3,8,2,3,12] = 1
Wi[3,8,3,12,2] = 1
Wil3,9,3,3,12] =2
Wil3,10,3,4,12] = 1
Wi[3,10,4,12,3] = 1
Wil3,11,3,5,12] = 1
Wil3,11,5,12,3] = 1
Wil3, 12,0,
Wil3, 12, 1,
Wil3, 12,3,
Wil3, 12,3
Wil3, 12,3
Wil3, 12,3,
4,
5,
7,
8,

)

3,
7,
0,
3
, 0,
9
3,
11
1,
3,

HL»JO@O\UJO\

Wil3, 12,
Wil3, 12,
Wil3, 12,
Wil3, 12,
mm12w4ﬂ

Wil4,0,4,6,12] = 1
Wi[4,0,6,12,4] = 1

Wil2,11,2,12,5] = 1
mpllnzs]l

Wil2.12.4. Oﬂ
Wil2,12,6,0,2] = 1
Wil2,12,7,2, 11 =1
mn1291m 1
Wil2,12,11,2,5] =

Wil3,0,3, 12, 6] = 1
Wi[3,0,12,3,6] = 1
Wil3,1,3,12,7] = 1
Wi3,1,12,3,7] = 1
Wil3,2,3,12,8] = 1
Wil3,2,12,3,8] = 1
Wil3,3,0,12,6] = 1
Wil3,3,2,8,12] = 1
Wil3,3,3,12,9] =2
Wi[3,3,5,11,12] = 1
Wil3,3,6,12,0] = 1
Wil3,3,8,2,12] = 1
Wil3,3,9,12,3] =2
Wil3,3,11,5,12] = 1
Wil3,3,12,1,7] = 1
Wi[3,3,12,4,10] = 1
Wil3,3,12,7,1]1 = 1
Wil3,3,12,10,4] = 1
Wi[3,4,3,12,10] = 1
Wil3,4,12,3,10] = 1
Wil3,5,3,12,11] = 1
Wi[3,5,12,3,11] = 1
Wil3,6,0,12,3] = 1
Wil3,6,12,0,3] = 1
Wil3,7,1,12,3] = 1
Wil3,7,12,1,3] = 1
Wil3,8,2,12,3] = 1
Wi[3,8,12,2,3] = 1
Wil3,9,3,12,3] =2
Wil3,10,3,12,4] = 1
Wi[3,10,12,3,4] = 1
Wil3,11,3,12,5] = 1
Wil3, 11,12,3,5] = 1
Wil3,12,0,6,3] = 1
Wil3,12,2,3,8] = 1
Wil3,12,3,1,7] = 1
Wil3,12,3,4,10] = 1
Wil3,12,3,7, 11 =1

Wil3,12,3,10,4] = 1
Wil3,12,4,10,3] = 1
Wil3,12,6,0,3] = 1
Wi[3,12,7,3,1] = 1
Wi3,12,9,3,3] =2

Wil2,11,5,2,12] = 1
Wil2,11,12,5,2] = 1
Wil2,12,1,2,7] = 1
Wil2,12,2,1,7]1 =1
Wil2,12,2,4,10] = 1
Wil2,12,2,7,1]1 =1
Wil2,12,2,10,4] = 1
Wil2,12,3,9,2] = 1

Wi[2,12,5,2,11] = 1
Wil2,12,6,2,0] = 1
MDJ282]=
W2, 12,10,2,4] = 1
Wil2,12,11,5,2] = 1

Wil3,0,6,3,12] =
Wi[3,0,12,6,3] = 1
Wil3,1,7,3,12] = 1
Wil3,1,12,7,3] = 1
Wil3,2,8,3,12] = 1
Wil3,2,12,8,3] = 1
Wi[3,3,1,7,12] = 1
Wil3,3,2,12,8] = 1
Wil3,3,4,10,12] = 1
Wi[3,3,5,12,11] = 1
Wil3,3,7,1,12] = 1
Wil3,3,8,12,2] = 1
Wi[3,3,10,4,12] = 1
Wil3,3,11,12,5] = 1
Wil3,3,12,2,8] = 1
Wi[3,3,12,5,11] = 1
Wil3,3,12,8,2] = 1
Wil3,3,12,11,5] = 1
Wi[3,4,10,3,12] = 1
Wil3,4,12,10,3] = 1
Wil3,5,11,3,12] = 1
Wi[3,5,12,11,3] = 1
Wil3,6,3,0,12] = 1
Wil3,6,12,3,0] = 1
Wi[3,7,3,1,12] = 1
Wil3,7,12,3,1]1 = 1
Wil3,8,3,2,12] = 1
Wi[3,8,12,3,2] = 1
Wi[3,9,12,3,3] =2
Wil3,10,4,3,12] = 1
Wi[3,10,12,4,3] = 1
Wil3,11,5,3,12] = 1
Wil3,11,12,5,3] = 1
Wil3,12,1,3,7]1 =1
Wil3,12,2,8,3] =1
Wil3,12,3,2,8] = 1
Wil3, 12,3, 5, 11]::1
MBJZ38 =

W1[3 12 ,
Wil3, 12, 6
Wil3, 12, 8
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TABLE IX. (Continued.)

Wild, 1,4,7,12] = 1
Wild, 1,7,12,4] = 1
Wi4,2,4,8,12] = 1
Wil4,2,8,12,4] = 1
Wil4,3,4,9,12] = 1
Wil4,3,9,12,4] = 1
Wil4,4,0,6,12] = 1
Wild, 4,1,12,7] = 1
Wil4,4,3,9,12] = 1
Wil4, 4,4,12,10] = 2
Wi[4,4,6,0,12] = 1
Wil4,4,7,12,1] = 1
Wil4,4,9,3,12] = 1
Wil4,4,10,12,4] =2
Wil4,4,12,0,6] = 1
Wil4,4,12,3,9] = 1
Wi[4,4,12,6,0] = 1
Wil4,4,12,9,3] = 1
Wil4,5,4,11,12] = 1
Wil4,5,11,12,4] = 1
Wil4,6,0,4,12] = 1
Wil4,6,4,12,0] = 1
Wild,7,1,4,12] = 1
Wild,7,4,12,1]1 = 1
Wil4,8,2,4,12] = 1
Wil4,8,4,12,2] = 1
Wil4,9,3,4,12] = 1
Wil4,9,4,12,3] = 1
Wil4, 10,4, 4,12] =2
Wil4,11,4,5,12] = 1
Wil4, 11,5,12,4] = 1
Wil4,12,0,4,6] = 1
Wild, 12,1,7,4] = 1
Wil4,12,3,4,9] = 1
Wild, 12,4,1,7]1 =1
Wild, 12,4,4,10] = 2
Wil4, 12,4,7,1] =
Wil4, 12,4,10,4] =2
Wil4,12,5,11,4] = 1

—

Wil4,12,7,1,4] = 1
Wil4,12,8,4,2] = 1
Wil4, 12, 10,4,4] =2
Wil5,0,5,6,12] = 1
Wil5,0,6,12,5] = 1
Wil5,1,5,7,12] = 1
Wil5,1,7,12,5] = 1
Wi[5,2,5,8,12] = 1
Wil5,2,8,12,5] = 1
Wil5,3,5,9,12] = 1
Wil5,3,9,12,5] = 1
Wil5, 4,5, 10, 12] =
Wil5, 4, 10,12, 5] =
Wil5,5,0,6,12] =

Wil5,5,1,12,7] =

Wil5,5,3,9, 12] =

Wi[5,5,4, 12, 10] =
Wil5,5,6,0,12] =

Wil5,5,7,12,1] =

Wil5,5,9,3,12] = 1

Wild, 1,4,12,7] = 1
Wild, 1,12,4,7] = 1
Wil4,2,4,12,8] = 1
Wil4,2,12,4,8] =1
Wil4,3,4,12,9] = 1
Wil4,3,12,4,9] = 1
Wil4,4,0,12,6] = 1
Wil4,4,2,8,12] = 1
Wil4,4,3,12,9] = 1
Wil4,4,5,11,12] = 1
Wi[4,4,6,12,0] = 1
Wi[4,4,8,2,12] = 1
Wil4,4,9,12,3] = 1
Wil4,4,11,5,12] = 1
Wil4,4,12,1,7] = 1
Wil4, 4, 12,4,10] =2
Wild, 4,12,7,1] = 1
Wil4,4,12,10,4] =2
Wil4,5,4,12,11] = 1
Wil4,5,12,4,11] = 1
Wil4,6,0,12,4] = 1
Wil4,6,12,0,4] = 1
Wild,7,1,12,4] = 1
Wil4,7,12,1,4] = 1
Wil4,8,2,12,4] = 1
Wil4,8,12,2,4] = 1
Wil4,9,3,12,4] = 1
Wil4,9,12,3,4] = 1
Wil4,10,4,12,4] =2
Wil4,11,4,12,5] =1
Wil4,11,12,4,5] = 1
Wil4,12,0,6,4] = 1

4

Wil4, 12,4, 5,

Wil4,12,4,8,2] = 1
4

Wil5,0,5,12,6] = 1
Wil5,0,12,5,6] = 1
Wil5,1,5,12,7] = 1
Wil5,1,12,5,7]1 = 1
Wil5,2,5,12,8] = 1
Wil5,2,12,5,8] = 1
Wil5,3,5,12,9] = 1
Wil5,3,12,5,9] = 1

Wil5,4,5,12,10] = 1
Wil5,4,12,5,10] = 1
Wil5,5,0,12,6] = 1
Wil5,5,2,8,12] = 1
Wil5,5,3,12,9] = 1
Wil5,5,5, 11,121 =2
Wil5,5,6,12,0] = 1
Wi[5,5,8,2,12] = 1
Wil5,5,9,12,3] = 1

Wil4,1,7,4,12] =1
wi4,1,12,7,4] =1
Wil4,2,8,4,12]1 =1
Wil4,2,12,8,4] =1
Wil4,3,9,4,12] =1
Wil4,3,12,9,4] =1
Wil4,4,1,7,12] =1
Wil4,4,2,12,8] =1
Wil4,4,4,10,12] =2
Wil4,4,5,12,11] =1
Wil4,4,7,1,12]1 =1
Wil4,4,8,12,2] =1
Wil4,4,10,4,12] =2
Wil4,4,11,12,5] =1
Wil4,4,12,2,8] =1
Wil4,4,12,5,11] =1
Wil4,4,12,8,2] =1
Wil4,4,12,11,5] =1
Wil4,5,11,4,12] =1
Wil4,5,12,11,4] =1
Wil4,6,4,0,12] =1
Wil4,6,12,4,0] =1
Wil4,7,4,1,12]1 =1
Wi4,7,12,4,11 =1
Wil4,8,4,2,12] =1
Wi[4,8,12,4,2] =1
Wil4,9,4,3,12] =1
Wil4,9,12,4,3] =1
Wil4,10,12,4,4] =2
Wil4,11,5,4,12] =1
Wil4,11,12,5,4] =1
Wil4,12,1,4,7]1 =1
Wil4,12,2,8,4] =1

Wil5,0,6,5, 12] =

Wil5,0,12,6,5] =

Wil5,1,7,5,12] = 1
Wil5,1,12,7,5] = 1
Wil5,2,8,5,12] = 1
Wil5,2,12,8,5] = 1
Wil5,3,9,5,12] = 1
Wil5,3,12,9,5] =1
Wil5,4,10,5,12] = 1
Wil5,4,12,10,5] = 1
Wi[5,5,1,7,12] = 1
Wil5,5,2,12,8] = 1
W[5, 5,4, 10,12] = 1
Wil5,5,5,12,11] =2
Wil5,5,7,1,12] = 1
Wi[S,5,8,12,2] = 1
Wil5,5,10,4,12] = 1
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Wil5,5,10,12,4] = 1
Wil5,5,12,0,6] = 1
Wil5,5,12,3,9] = 1
Wil5,5,12,6,0] = 1
Wil5,5,12,9,3] = 1
Wi[5,6,0,5,12] = 1
Wil5,6,5,12,0] = 1
Wi[5,7,1,5,12] = 1
Wil5,7,5,12,1] = 1
Wil5,8,2,5,12] = 1
Wi[5,8,5,12,2] = 1
Wi[5,9,3,5,12] = 1
Wil5,9,5,12,3] = 1
Wi[S, 10,4, 5, 12] = 1
Wil5,10,5,12,4] = 1
Wil5,11,5,5,12] =2

Wi[5,12,5,8,2] = 1
Wil5, 12,5,11,5] =2
Wil5,12,7,1,5] =
Wi[5,12,8,5,2] = 1
Wil5, 12, 10,4,5] = 1

—

Wil5,5,11,5,12] =2
Wi[5,5,12,1,7] = 1
Wil5,5,12,4,10] = 1
Wil5,5,12,7, 11 = 1
Wil5,5,12,10,4] = 1
Wi[5,6,0,12,5] = 1
Wil5,6,12,0,5] = 1
Wi[5,7,1,12,5] = 1
Wil5,7,12,1,5] =1
Wil5,8,2,12,5] = 1
Wi[5,8,12,2,5] = 1
Wi[5,9,3,12,5] =1
Wil5,9,12,3,5] =1
Wi[5,10,4,12,5] = 1
Wil5,10,12,4,5] = 1
Wils, 11,5,12,5] =2
Wil5, 12,0, 6,5] =

WIS, 12,

Wil5,5,11,12,5] =2
Wi[5,5,12,2,8] = 1
Wil5,5,12,5, 111 =2
Wil5,5,12,8,2] = 1
Wi[5,5,12,11,5] =2
Wi[5,6,5,0,12] = 1
Wil5,6,12,5,0] = 1
Wi[5,7,5,1,12] = 1
Wil5,7,12,5,1]1 =1
Wil5,8,5,2,12] = 1
Wi[5,8,12,5,2] = 1
Wi[5,9,5,3,12] = 1
Wil5,9,12,5,3] = 1
Wi[5,10,5,4,12] = 1
Wil5,10,12,5,4] = 1
Wils, 11,12,5,5] =2
Wi[5,12,1,5,7] = 1
Wil5,12,2,8,5] = 1
Wil5,12,4,5,10] = 1
Wil5,12,5,1,7] = 1
Wil5, 12,5, 4, 10] =

Wil5,12,5,7, 1] =

the physical variable (varying from O to 5), with weights
(1,0,-1), (1,-1,1), (0,-1,0), (0,1,0), (—=1,1,—-1),
and (—1,0, 1), respectively. The four subsequent indices
the virtual variables on the links (in, e.g., clockwise
direction). For Xj3;, this corresponds to the virtual space
V =4@&4 with weights (1,0,0), (=1,1,0), (0,—1, 1),

0,0,-1), (—1,0,0), (1,—-1,0), (0,1,—1) and (0,0, 1).
For W), this corresponds to the SU(6) virtual space
V=6®6®1, with weights (1,0,0,0,0), (—1,1,0,0,0),
0,-1,1,0,0), (0,0,-1,1,0), (0,0,0,-1,1), (0,0,0,
0,-1), (-1,0,0,0,0), (1,-1,0,0,0), (0,1,—-1,0,0),
0,0,1,-1,0), (0,0,0, 1, —1), (0,0,0,0,1), and (0,0,0,0,0).
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