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We propose a mechanism to directly measure the chiral anomaly in disorder Weyl semimetals (WSMs) by the
Kondo effect. We find that in a magnetic and electric-field-driven WSM, the locations of the Kondo peaks can
be modulated by the chiral chemical potential, which is proportional to E · B. The Kondo peaks come from spin
fluctuations within the impurities, which apart from the temperature, relate closely to the host’s Fermi level. In
WSMs, the chiral-anomaly-induced chirality population imbalance will shift the local Fermi levels of the paired
Weyl valleys toward opposite directions in energy and then affect the Kondo effect. Consequently, the Kondo
effect can be tunable by an external electric field via the chiral chemical potential. This is unique to the chiral
anomaly. Based on this, we argue that the electrically tunable Kondo effect can serve as a direct measurement of
the chiral anomaly in WSMs. The Kondo peaks are robust against the disorder effect and therefore, the signal of
the chiral anomaly survives for a relatively weak magnetic field.
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I. INTRODUCTION

Weyl semimetals (WSMs), as a class of novel quantum
states of matter, have recently spurred intensive and innovative
research in the field of condensed matter physics [1–11].
In WSMs, the conduction and valence bands touch near
the Fermi level at certain discrete momentum points around
which the low-energy spectrum forms nondegenerate three-
dimensional Dirac cones. The band-touching points, referred
to as Weyl nodes, always come in pairs with opposite chiral-
ities in momentum space which are protected by topological
invariants associated with the Chern flux and connected by
the nonclosed Fermi-arc surface states [12–16]. The ultrahigh
mobility and spectacular transport properties of the charged
Weyl fermions can find applications in high-speed electronic
circuits and computers [17–19].

The Weyl nodes and Fermi-arc surface states are regarded
as the most distinctive observable spectroscopic feature of
WSMs. However, their observation is sometimes limited
by spectroscopic resolutions, especially for disorder WSMs
whose spectrum and Weyl nodes could be obscured by the
impurity scattering [20]. In real materials, defects or impu-
rities are unavoidable, and therefore, there is an urgency to
find similar smoking-gun features of WSMs in other ways,
such as in transport measurements. Of particular interest is
the transport related to the chiral anomaly, which refers to
the violation of a separate number conservation laws of Weyl
fermions of different chiralities. Nonorthogonal electric and
magnetic fields can create a population imbalance between
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Weyl nodes of opposite chiralities, the relaxation of which
contributes an extra electric current to the system and then
results in a very unusual negative longitudinal magnetoresis-
tance (NLMR) phenomenon [3–5,8,21–24]. While it occurs
for WSMs with the chiral anomaly, the observation of the
NLMR is only a necessary condition for identifying the WSM
phase, but it is not a sufficient condition, since other mech-
anisms, such as weak antilocalization [25], can also induce
the NLMR phenomenon. For a relatively strong magnetic
field, due to the Landau-level (LL) quantization, the chiral-
anomaly-induced NLMR would exhibit quantum oscillations.
The quantum oscillations superposed on the NLMR can ex-
clude the weak antilocalization mechanism and so can be
a remarkable fingerprint of a WSM phase with the chiral
anomaly [8,26]. In disorder WSMs, as the LLs could be
broadened by the impurity scattering, the observation of the
quantum oscillations in the NLMR depends strongly on the
disorder effect [27]. What is more, the NLMR, as an indirect
measurement of the chiral anomaly, would, inevitably, be in-
fluenced by some other complicated contributions. Therefore,
it is highly desirable to find a direct way to identify the chiral
anomaly.

Recently, the Kondo effect in WSMs has attracted increas-
ing interest [28–32]. By using the variational method, Sun
et al. studied the Kondo effect of the WSM bulk states and
found that the spatial spin-spin correlation functions can be
used to distinguish a Dirac semimetal from a WSM [29]. Ma
et al. investigated the Kondo screening of a magnetic impurity
by the Fermi-arc surface states of WSMs [30]. The correlation
functions were shown to be highly anisotropic and possess
the same symmetry as the Fermi arcs. Li et al. addressed the
Kondo screening associated with the chiral anomaly [31]. It
is found that the magnetic susceptibility can be significantly
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enhanced by increasing the chirality imbalance and tunable by
the charge imbalance of the Weyl nodes.

In this paper, taking into account the Landau quantization,
we study the Kondo effect in electric- and magnetic-field-
driven WSMs. Usually, the Kondo effect is insensitive to
nonmagnetic external fields and thus does not response to
external electric fields. However, it relates closely to the Fermi
level of the host [31,33–39]. In the presence of nonorthogo-
nal electric and magnetic fields, the chiral-anomaly-induced
chirality population imbalance would lead to unequal local
Fermi levels for the paired Weyl valleys [8,19,26]. Instead
of the external-field-independent chiral chemical potential in
Ref. [31], we consider a more realistic situation where the
chiral chemical potential is established by nonequilibrium
processes so that the Kondo effect can be electrically tunable.
For a fixed chiral chemical potential, our results are similar
to those of Ref. [31]. By evolutions of the locations of the
Kondo peaks with respect to the external fields, we can imme-
diately identify whether the chiral chemical potential exists.
This unique property suggests a scheme to directly observe
the chiral anomaly. Moreover, comparing with the quantum
oscillations of the NLMR, the Kondo effect exhibits less
sensitivity to the disorder effect, and therefore, by the Kondo
effect, the chiral anomaly remains observable for relatively
weak magnetic fields.

The rest of this paper is organized as follows. In Sec. II we
introduce the model Hamiltonian and derive Green’s functions
for the disorder WSM and quantum impurities. In Sec. III
we calculate the valley-dependent local equilibrium electron
distribution function by a recently developed theory integrat-
ing the Landau quantization with the Boltzmann equation.
The chiral-anomaly-modulated Kondo effect is discussed in
Sec. IV, and the last section contains some discussions about
the experimental realization and a short summary.

II. HAMILTONIAN AND GREEN’S FUNCTIONS

A disorder WSM with two Weyl nodes in a magnetic field
can be described by the Hamiltonian

H =
∑
χ=±

∫
d3rψ†

χ (r)[χυF(p̂ + eA) · σ + U (r)]ψχ (r), (1)

where σ is the vector of Pauli matrices, ψχ (r) =
(cχ↑(r), cχ↓(r)) is the two-component spinor at position r,
and p̂ = −ih̄∇ is the momentum operator, with χ = ±1 being
chiralities of the Weyl nodes that are separated by a vector b =
2k0êz. The disorder is modeled by U (r) = ∑

j V (r − R j ),
where V (r − R j ) is a random potential. In realistic materials,
the defects could possess internal degrees of freedom, called
quantum defects or impurities. When a fermion encounters
a quantum impurity, it has a chance to be scattered off the
impurity via elastic collision or change its state by coupling
with the impurity’s internal degrees of freedom. The former
leads to momentum relaxation of the fermions, which refers
to the process that the momentum increment of electrons
by an external field is undone by the impurity scattering,
making it possible for the system to reach a steady state.
The momentum relaxation time can be related to the mean
free path, namely, the distance that an electron travels before

its initial momentum is destroyed. The latter usually results
in inelastic scattering. If the internal state, such as charge
and spin, of the impurity fluctuates with time, the impurity
scattering can be phase randomizing and then causes phase
relaxation for the scattered fermions [40,41]. Specifically, we
use the Anderson model [28–32,34,36,39,42] to characterize
the quantum impurities, i.e.,

Himp =
∫

dr
∑
i,σ

(
εσ d†

σ dσ + U

2
nσ nσ̄

)
δ(r − Ri ), (2)

with nσ = d†
σ dσ the spin-dependent number operator and

σ̄ ≡ −σ , where εσ represents the spin-dependent impu-
rity level, dσ (d†

σ ) denotes the electron annihilation (cre-
ation) operator, and U stands for the Coulomb repulsion
potential at the impurity site (Ri). The coupling between
the impurities and WSM can be described by Hhyb =∑

i,χσ [tσ d†
σ cχσ (Ri ) + t†

σ c†
χσ (Ri)dσ ], where tσ denotes the

hopping integral between the itinerant electrons and the im-
purities.

Without loss of generality, we assume that the vector po-
tential A lies in the y-z plane with A = Bx(cos θ êy − sin θ êz ),
which defines the magnetic field B = ∇ × A. By rotating the
spin quantization axis along the direction of the magnetic field
B = Bêr , we obtain a single-particle Hamiltonian for the clean
WSMs,

Hχ (k‖) = χ h̄ωc

(

Bkr −i

√
2akθ

i
√

2a†
kθ

−
Bkr

)
, (3)

where ωc = υF/
B is the cyclotron frequency and k‖ =
kθ êθ + kr êr , with

(
êθ

êr

)
=

(
cos θ − sin θ

sin θ cos θ

)(
êy

êz

)
(4)

and 
B = √
h̄/eB the magnetic length. The ladder operators

for the Landau-gauge wave functions,

φn(ξ ) = 1√
2nn!
B

√
π

e−ξ 2/2Hn(ξ ), (5)

are defined as akθ
= 1√

2
(ξ + ∂ξ ) and a†

kθ
= 1√

2
(ξ − ∂ξ ), where

ξ = x/
B + 
Bkθ and Hn(ξ ) are the Hermitian polynomials.
Including separation of the Weyl nodes, we can expand the
spinor in Eq. (1) as

ψχσ (r) =
∑
αχ

ei(kθ −χbθ )ỹ+i(kr+χbr )z̃

√
LθLr

ϕαχσ cαχσ , (6)

where cαχ↑ and cαχ↓ are, respectively, the annihilation oper-
ators for spin states ϕαχ↑ = (φn−1, 0)T and ϕαχ↓ = (0, φn)T ,
with bθ = k0 sin θ , br = k0 cos θ , and α = {n, k‖} as a com-
posite index. Substituting Eq. (6) into Eq. (1) yields

H =
∑
αχ

ψ†
αχ

⎛
⎝hχ

αψαχ +
∑
α′χ ′

U χ,χ ′
α,α′ ψα′χ ′

⎞
⎠, (7)
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where hχ
α = 〈ϕαχ |Hχ (k‖)|ϕαχ 〉, and the matrix elements of the

impurity potential in the momentum subspace are given by

U χ,χ ′
α,α′ =

∫
d3rei(χ−χ ′ )(bθ ỹ−br z̃)−i(kθ −k′

θ )ỹ−i(kr−k′
r )z̃

× 1

LθLr
〈ϕαχ |U (r)|ϕα′χ ′ 〉. (8)

Within this representation, the coupling Hamiltonian between
the impurity and WSM becomes

Hhyb =
∑
αχσ

(tαχσ d†
σ cαχσ + t†

αχσ c†
αχσ dσ ), (9)

with tαχσ = tσ ϕαχσ .
For simplicity, it is provided that the elastic and inelastic

scattering processes are mutually independent. Subsequently,
by using the Dyson equation, we obtain the disorder-averaged
retarded Green’s function [41,43],

Gχ,χ ′
α,α′ (ε) = 1[

Gχ
α (ε)

]−1 − �
χ
α (ε)

δαα′δχχ ′ , (10)

where Gχ
α (ε) = 1/(〈ϕαχ |ε + i0+|ϕαχ 〉 − hχ

α ) is the impurity-
free Green’s function for the WSM, and the effect of the
impurity scattering enters the Green’s function through the
self-energy �χ

α (ε). In the first Born approximation, the self-
energy can be given by [43]

�χ
α (ε) =

〈∑
α′χ ′

U χ,χ ′
α,α′ Gχ ′

α′ (ε)U χ ′,χ
α′,α + t†

αχGr
d (ε)tαχ

〉
c

, (11)

in which 〈· · · 〉c stands for the configurational average, and
Gr

d (ε) is the impurity retarded Green’s function. The first term
in the right-hand side of Eq. (11) originates from the elastic
electron scattering, and the second term is due to exchanging
particles between the impurities and WSM. From Eq. (11),
we can also distinguish between the intra- and intervalley
relaxation times before taking summation over the χ ′ index,
with τintra and τinter corresponding, respectively, to χ ′ = χ and
χ ′ = −χ . The total momentum scattering rate is defined as
τ−1

m = 1
τintra

+ 1
τinter

, which relaxes the system to a steady state.
Since the impurity levels can be occupied by electrons, we as-
sume a screened Coulomb potential for the impurities. Then,
it is easy to estimate [43] τinter/τintra ∼ (2k0/ksc)4 � 1, where
2k0 is momentum distance between the Weyl nodes, and ksc

is the screening wave vector, which ensures the emergence
of an observable chiral chemical potential between the Weyl
valleys [8,19].

The matrix elements of the impurity retarded Green’s
function are defined as [20]

Gr
dσσ ′ (t, t ′) = − i

h̄
θ (t − t ′)〈{dσ (t ), d†

σ ′ (t ′)}〉, (12)

with θ (x) the Heaviside function. By using the Heisenberg
equation of motion, we derive the impurity retarded Green’s
function at an arbitrarily impurity site as [43]

Gr
dσσ ′ (ε) =

(
1 − 〈nσ̄ 〉

ε − εσ − �σ

+ 〈nσ̄ 〉
ε − εσ − U − �′

σ

)
δσσ ′ ,

(13)

where �σ = �r
σ − U �<

σ

ε−εσ −U−�r
σ −�̃r

σ

, �′
σ = �r

σ −
U �<

σ −�̃r
σ

ε−εσ −�r
σ −�̃r

σ

, and the average occupation 〈nσ̄ 〉 can be
determined self-consistently by the fluctuation dissipation
theory [31,39,44]. The self-energies above are given by [43]

�r
σ = 1

2

∑
αχ

|tαχσ |2 1

ε+ − ε
χ
α

�̃r
σ = 1

2

∑
αχ

|tαχσ̄ |2
(

1

ε+
σ − ε

χ
α

+ 1

ε+
U + ε

χ
α

)
(14)

�<
σ = 1

2

∑
αχ

|tαχσ̄ |2
(

1

ε+
σ − ε

χ
α

+ 1

ε+
U + ε

χ
α

)
fχ

(
εχ
α

)
,

with ε+ = ε + i h̄
2τm

, where

εχ
α = sgn(n)h̄ωc

√
2|n| + 
2

Bk2
r − χ h̄υFkrδn,0 (15)

are LLs for the WSM, εσ = ε − εσ + εσ̄ and εU = ε − εσ −
εσ̄ − U . In each Weyl valley, the n = 0 LL is chiral, mani-
festing the chirality of the Weyl node, and all n = 0 LLs are
achiral. The valley-dependent local equilibrium electron dis-
tribution function fχ (εχ

α ) will be derived in the next section.

III. VALLEY-DEPENDENT LOCAL EQUILIBRIUM
ELECTRON DISTRIBUTION FUNCTION

When an external electric field E = Eêz is applied, the
electron distribution function will deviate from the equilib-
rium electron distribution function f (ε) = 1/[1 + eβ(ε−EF )],
where β = 1/kBT . In the relaxation time approximation, the
steady-state Boltzmann equation for the χ valley is [8,27]

eE · υχ
α

(
−∂ f χ

α

∂ε
χ
α

)
= − f χ

α − fχ
τintra

− f χ
α − fg

τinter
, (16)

where υχ
α = h̄−1∇kε

χ
α is the group velocity, and fχ and fg

represent, respectively, the local and global equilibrium elec-
tron distribution functions. The local equilibrium electron
distribution function is equivalent to statistically averaging f χ

α

over quantum states around the local Fermi surface of valley
χ , i.e., fχ = 〈 f χ

α 〉χ , with

〈· · · 〉χ ≡
∫

dε[−∂ε f (ε)]
∑

α gχ
α (ε)(· · · )∫

dε[−∂ε f (ε)]
∑

α gχ
α (ε)

, (17)

and gχ
α (ε) = − 1

π
Im( 1

ε+−ε
χ
α

) is the momentum-resolved den-
sity of states (DOSs) for the WSM without impurity-WSM
coupling. The global equilibrium electron distribution func-
tion fg can be calculated similarly by summation over χ

separately for the numerator and denominator in Eq. (17).
Performing the local Fermi surface average on both sides of
Eq. (16) yields

eE
〈
υχ

α,z

〉
χ

(
−∂ fχ

∂ε
χ
α

)
= − fχ − fg

τinter
. (18)

Together with fg = ( fχ + f−χ )/2, the local equilibrium elec-
tron distribution function can be finally obtained as

fχ = f
(
εχ
α

) − eE
〈
υχ

α,z

〉
χ
τinter

[
−∂ f (εχ

α )

∂ε
χ
α

]
, (19)
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in which we approximated ∂ε
χ
α

fχ � ∂ε
χ
α

f (εχ
α ). Within the

framework of linear response, the valley-dependent local
equilibrium electron distribution function can be expressed as
fχ (εχ

α ) = f (εχ
α + �μχ ), where �μχ = eE〈υχ

α,z〉χτinter. In the
absence of the magnetic field, 〈υχ

α,z〉χ = 0 and �μχ vanish,
while if B = 0, we can obtain a nonzero �μχ = −χ�μ,
where

�μ = eEle cos θ
1∫

dε[−∂ε f (ε)]Θ (ε)
(20)

is the so-called chiral chemical potential due to the chiral
anomaly and le = υFτinter is the intervalley relaxation length.
Here, we note

Θ (ε) ≡
∑

α

gχ
α (ε)

= 2
nc∑

n=1

Im

[
ε

λn(ε+)

1

π
ln

λn(ε+) − �

λn(ε+) + �

]
+ 1 (21)

for brevity, in which λn(ε) =
√

ε2 − 2|n|(h̄ωc)2, and � is a
high-energy cutoff for the linear dispersion.

By replacing the momentum summation in Eq. (14) by an
integral, the self-energies can be further reduced to be �r

σ =
−i�σ (ε), �̃r

σ = −i[�σ̄ (εσ ) + �σ̄ (εU )], and

�<
σ = − i

2
[�σ̄ (εσ ) + �σ̄ (εU )]

− 1

2π

∑
χ

�σ̄ (εσ )ψ

(
1

2
+ εσ − χ�μ − EF

2π ikBT

)

+ 1

2π

∑
χ

�σ̄ (εU )ψ

(
1

2
+ εU + χ�μ + EF

2π ikBT

)
, (22)

where ψ (x) is the digamma function, and �σ (ε) =∑
α π |tαχσ |2gχ

α (ε)θ (�2 − ε2) is the linewidth function of the
impurity level due to the WSM-impurity coupling.

IV. CHIRAL-ANOMALY-MODULATED KONDO EFFECT

In the following we consider the deep Coulomb blockade
regime, i.e., U → ∞, in which we can further reduce the
impurity Green’s function to a simple form:

Gr
dσσ (ε) = 1 − 〈nσ̄ 〉

ε − εσ − �r
σ − �<

σ

. (23)

The spin-dependent electron DOSs at the impurity site, de-
fined as ρσ (ε) = −Im[Gr

dσσ (ε)]/π , are plotted in Figs. 1(a)
and 1(b). From Fig. 1(a), we can see that a Lorenz peak
appears around the renormalized impurity level ε̃σ = εσ +
Re(�r

σ + �<
σ ), which characterizes the charge fluctuation

between the WSM host and impurity. With the impurity
level approaching the Fermi level, an additional sharp peak
emerges to decorate the Lorenz resonance peak when the
temperature is below a critical value TK . This sharp peak, in
fact, is attributable to the Kondo effect, which has been widely
studied in varied systems [28–39,42]. The Kondo peak comes
from the spin fluctuation at the Fermi level, which apart from
the temperature, is very sensitive to the location of the Fermi
level. In the presence of nonorthogonal electric and magnetic
fields, the WSM exhibits chiral anomaly, which creates a
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FIG. 1. (a, b) The local DOSs ρ↑(ε) = ρ↓(ε) at the impurity site
and (c) the DOSs g(ε) for the disorder-averaged WSM as functions
of energy ε of the itinerant electrons. The inset of (c) shows g(ε)
vs ε for eEle = 0 and ε0/h̄ω0 = 0.42, where the region marked by
the circle is replotted in (c) for different external electric fields.
For convenience, we scale the energy and DOSs, respectively,
with h̄ω0 (∼0.01 eV) and g0 = (h̄ω0)2/4π 2(h̄υF )3, where ω0 =
υF/
0 and 
0 = √

h̄/e[B = 1 Tesla]. Here, we set (a) eEle = 0,
ε0/h̄ω0 = (0.32, 0.42, 0.52) and (b, c) ε0/h̄ω0 = 0.42, eEle/h̄ω0 =
(0, 0.3, 0.6). Other parameters are chosen as θ = 0, h̄ωc/h̄ω0 = 0.1,
EF/h̄ω0 = 0.4, γ ≡ h̄/τm = 0.05h̄ω0, tσ = h̄ω0, kBT/h̄ω0 = 10−7,
�/h̄ω0 = 100, and U/h̄ω0 = 1000.

chirality population imbalance between the Weyl valleys. The
resulting chiral chemical potential will shift the local Fermi
levels of the two paired Weyl valleys in opposite directions in
energy, as shown by Eq. (19). Consequently, in response to the
chiral chemical potential, a single Kondo peak, as seen from
Fig. 1(b), will split into a pair of peaks residing at the two sides
of ε = EF, whose energy spacing is equal to twice that of the
chiral chemical potential. This scenario is similar to that in
Ref. [31]. The electron exchange rate 1/τϕ between the WSM
and impurity increases as ε approaches the impurity level, so
that the DOSs of the WSM, g(ε) = −Im

∑
α Tr[Gχ,χ

α,α (ε)]/π ,
in response to ρσ (ε), exhibit an inverse Lorenz structure; and
the Kondo peak is also observable, as indicated in the inset of
Fig. 1(c), where a sharp dip exists at the Fermi level. With
the electric field turned on, a single sharp dip, due to the
chiral anomaly, develops into a pair of sharp dips distributed
symmetrically with respect to the Fermi level, as shown in
Fig. 1(c).

The appearance of the Kondo peaks, resembling the sce-
nario of an impurity deposited in graphene or on the sur-
face of topological insulators [36,39], is attributable to the
singularity of the impurity Green’s function at the Fermi
level. Since the real part of the digamma function ψ ( 1

2 +
εσ −χ�μ−EF

2π ikBT ) develops a sharp peak at εσ − χ�μ = EF when
the temperature is lower than the Kondo temperature TK , there
always exists a solution for ε − εσ − Re(�r

σ + �<
σ ) = 0 at

εσ = EF + χ�μ, which contributes a singularity to the im-
purity Green’s function. Accordingly, the Kondo peaks in fact
develop at ε = EF + χ�μ + σ�, where � = ε↑ − ε↓ is the
Zeeman splitting energy of the impurity level. As it shows, the
Zeeman field on the impurity site can also result in splitting of
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FIG. 2. The DOSs (a) ρσ (ε) and (b, c) g(ε) as functions of ε for a
finite Zeeman field �/h̄ω0 = 0.0025 at the impurity sites, where the
inset of (c) shows ρσ (ε) vs ε for γ /h̄ω0 = 0.005. The parameters are
set as (a, b) γ /h̄ω0 = 0.05, eEle/h̄ω0 = (0, 0.3), and (c) eEle/h̄ω0 =
0.3, γ /h̄ω0 = (0.05, 0.005). Other parameters are chosen the same
as Fig. 1(c).

the Kondo peak, which is also reported in Ref. [31]. However,
in this situation, if �μ = 0, the Zeeman field just shifts
the Kondo peaks for the two spin sectors toward different
directions in energy, as shown by the dotted lines in Fig. 2(a),
so that each spin component still contains only one Kondo
peak. Meanwhile, the Lorenz resonance peaks for the two
spin components would separate from each other because of
broken spin degeneracy of the impurity level. In contrast, the
chiral anomaly will induce a pair of Kondo peaks for both
spin components, as seen from Figs. 1(b) and 2(a), and if
� = 0, the DOSs remain identical for the two spin species.
As indicated by Fig. 2(b), if both the chiral anomaly and
Zeeman effect were included on the impurity sites, the two
Kondo dips (red-dotted line) for the WSM would split into
four dips (dark-solid line). Due to the LL quantization, the
DOSs of the WSM may exhibit quantum oscillations, which
depends on the relative magnitudes of the spacing �n =√

2h̄ωc(
√|n + 1| − √|n|) and impurity-induced broadening

γ ≡ h̄/τm of the LLs. The quantum oscillations are resolvable
only when �n is much greater than γ , and so it is expected
that the quantum oscillations in the NLMR are sensitive to
the impurity scattering, especially for weak magnetic fields.
However, as shown by Fig. 2(c), the Kondo peaks are less
sensitive to the broadening of the LLs. As seen from the inset
of Fig. 2(c), the quantum oscillations also can be reflected in
the Lorenz peaks of the impurity DOSs.

To extract information regarding the chiral chemical po-
tential, we plot �ρσ (E ) = [ρσ (E ) − ρσ (E = 0)]/ρσ (E = 0)
in Fig. 3(a), �ρσ (B) = [ρσ (B)− ρσ (B = 0)]/ρσ (B = 0) in
Fig. 3(b), and �ρσ (θ ) = [ρσ (θ ) − ρσ (θ = π/2)]/ρσ (θ =
π/2) in Fig. 3(c), respectively, in the E -ε, B-ε, and θ -ε
parameter spaces, through which the background DOSs can
be subtracted to highlight the locations of the Kondo peaks.
The evolutions of the energy positions of the Kondo peaks

FIG. 3. Evolution of (a) �ρσ (E ) = [ρσ (E ) − ρσ (E =
0)]/ρσ (E = 0) with θ = 0 and h̄ωc/h̄ω0 = 0.1; (b) �ρσ (B) =
[ρσ (B) − ρσ (B = 0)]/ρσ (B = 0) with θ = 0 and eEle/h̄ω0 = 0.6,
and (c) �ρσ (θ ) = [ρσ (θ ) − ρσ (θ = π/2)]/ρσ (θ = π/2) with
h̄ωc/h̄ω0 = 0.1 and eEle/h̄ω0 = 0.6, where the values of �ρσ are
denoted by the filled colors. The data of (b) is replotted in the inset to
show the B-linear (ω2

c ) dependence of the chiral chemical potential.
Other parameters are the same as Fig. 1(c).

are demonstrated by the yellow regions. The dark blue lines
along ε/h̄ω0 = 0.4 correspond to the Kondo peaks for the
case of vanishing chiral chemical potential, which locates
the Fermi energy. As seen from Fig. 3(a), for fixed B and
θ , the Kondo peaks will deviate from the Fermi level, with
the deviation |�ε| ∝ E . For fixed E and θ , |�ε| ∝ (h̄ωc)2 ∼
B, while for fixed B and E , |�ε| ∝ cos θ , as indicated in
Figs. 3(b) and 3(c). Similar patterns also emerge in the DOSs
of the WSM. This implies that the separation of the Kondo
peaks is proportional to E · B, which demonstrates the chiral
anomaly origin of the splitting of the Kondo peaks. Therefore,
the Kondo effect in magnetic- and electric-field-driven WSMs
can capture the characteristics of the chiral anomaly, and
the observation of the electrically tunable Kondo effect can
provide exclusive evidence for the emergence of the chiral
anomaly in WSMs.

V. DISCUSSION AND CONCLUSION

To date, experiments about the chiral-anomaly-modulated
Kondo effect are still absent. In experiment, the chiral
anomaly can be detected by using point-contact spectroscopy
measurements [45–47], as depicted in Fig. 4. The setup con-
sists of a doped WSM slab (cyan) and a scanning tunneling
microscope (STM). The electric and magnetic fields are ap-
plied in the y-z plane to induce the chiral chemical potential,
and the STM tip is attached to the top of the WSM slab to
measure the differential conductance between the STM and
WSM. The chemical potential of the WSM can be tuned by
a gate voltage, which is not shown. For a fixed electric and
magnetic field, as the chemical potential of the WSM varies,
the differential conductance will develop a sharp peak when
a local Fermi energy encounters the renormalized impurity
level. The energy locations of the Kondo peaks correspond to
the sharp peaks of the differential conductance, whose spacing
reflects the chiral chemical potential.
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FIG. 4. Schematics of the device for point contact measure-
ment [45–47], where a STM tip (brown) is attached to the top of
a doped WSM slab (cyan).

In conclusion, we have investigated the Kondo effect in
magnetic- and electric-field-driven WSMs. It is found that,
due to the chiral anomaly, unequal local Fermi levels can

be established between the paired Weyl valleys and so lead
to splitting of the Kondo peaks. The external-field-dependent
chiral chemical potential makes the Kondo peaks electrically
tunable. Electrically tunable Kondo peaks are unique to the
chiral anomaly and thus can serve as a direct measurement of
the chiral anomaly. The Kondo effect is less sensitive to the
disorder effect than transport signals, so the chiral anomaly
survives for relatively weak magnetic fields.
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