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Magnetic torque measurements have been performed to investigate the phase transitions of the metallic
pyrochlore compound Cd2Re2O7, in which a spin-orbit (SO) interaction leads to unique multipole orders
associated with an inversion symmetry breaking. We find that the magnetic torque signals with a fourfold
symmetry (τ4 ∝ H 4) as well as a twofold symmetry (τ2 ∝ H 2) are significantly enhanced at low temperatures
below a structural phase transition temperature (∼200 K). The analyses of the torque curve symmetries show
that the τ4 term arises from an even-parity order parameter (OP) with the irreducible representation Eg, whereas
the τ2 term from an odd-parity OP with Eu, T1u or T2u. The parity mixing of the primary OPs shows a peculiar
phase transition in the SO coupled Cd2Re2O7. The coexistence of the two OPs provides important insights into
the origin of the multipole orders induced by the SO interaction.
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I. INTRODUCTION

The metallic pyrochlore Cd2Re2O7 has attracted much
attention because of the peculiar symmetry breaking associ-
ated with multipole orders due to the strong spin-orbit (SO)
coupling and electron correlations [1–5]. The Re+5 ion in
Cd2Re2O7 has two 5d electrons, whose orbitals mainly form
the conduction bands [6]. At Ts1 ∼ 200 K, a second-order
phase transition takes place [Fig. 1(a)], where the symmetry
is reduced from a centrosymmetric cubic structure (phase
I: space group Fd 3̄m) to a noncentrosymmetric tetragonal
structure (phase II: I 4̄m2) [Fig. 1(b)] [1]. This transition
is associated with a phonon freezing with the irreducible
representation (IR) Eu, dominated by the O ion displacements
[7], and is discussed in the framework of the Landau theory
with Eu order parameters (OPs) η [8–10]. At Ts1, a drastic
reduction of the density of states [11–15] in spite of very small
lattice deformations (for instance, only ∼0.005 Å for the Re-O
distance) [1,2] suggests an electronic origin. This transition is
discussed in terms of Fermi surface instabilities induced by a
SO coupling, which lead to multipolar phases associated with
an inversion symmetry breaking [16]. As temperature further
decreases, Cd2Re2O7 undergoes a first-order phase transition
to another tetragonal phase (phase III: I4122) at ∼120 K (Ts2)
[1]. Recent quantum oscillation measurements in phase III
clearly demonstrate coherent transport of the 5d electrons and
the presence of spin-split bands by the SO coupling [6].

Measurements of second harmonic generation (SHG) sug-
gest that phase II has a multipolar nematic order induced by
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the SO coupling [3,4]. A significant feature is the presence
of multiple OPs, two primary OPs with T2u and T1g, and a
secondary OP with Eu. Symmetry analyses of the SHG data
give a different picture, the presence of two primary OPs with
A2g (magnetic octupole) and Eu (magnetic quadrupole), and
a secondary OP with Eu (axial toroidal quadrupole) [17]. Al-
though multipole orders induced by the SO coupling [16] are
intriguing, the highly controversial issue of the OP symme-
tries in Cd2Re2O7 prevents from the detailed understanding
of the transitions. The main reason is that SHG measurements
provide insufficient information on the OP symmetries since
they are sensitive only to odd-parity OPs but blind to even
parity OPs. Therefore, complementary techniques sensitive to
even-parity OPs are highly required.

To further investigate the phase transitions induced by
the SO coupling in Cd2Re2O7, we have measured magnetic
torque. The magnetic torque is given by τ = μ0M × H =
−∂F/∂θ , where M and H are the magnetization and magnetic
field, respectively, μ0 is the permeability of vacuum, F is the
free energy, and θ is the field angle from a major crystal
axis. Since the metallic Cd2Re2O7 has no local moments, the
magnetization is dominated by the Pauli paramagnetism and
orbital magnetism of the itinerant 5d electrons. In contrast to
the SHG measurements, the toque is sensitive to even-parity
OPs. We demonstrate that the torque measurement is a pow-
erful tool to investigate OP symmetries of phase transitions.

II. METHODS

The magnetic torque is measured by a piezo-
microcantilever technique [18]. The cantilever chip is
composed of an atomic force microscope cantilever and a
reference lever [Fig. 2]. A single crystal is attached to the
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FIG. 1. (a) Crystal structure of Cd2Re2O7.Tetrahedra formed by
four Re atoms with bonds in three phases I, II, and III. Each bond
color indicates the same length and red arrows show the displace-
ments of the Re atoms. In phase I with space group Fd 3̄m, all the
tetrahedra are equivalent but two different tetrahedra are formed in
phases II (I 4̄m2) and III (I4122). (b) Unit cell (red region) in phases
II and III. Three c-axis- oriented domains are formed. (c) Photo of
the torque magnetometry, where a single crystal is attached on the
back of a piezo-microcantilever. The major crystal axes in phase I
are also indicated. The crystal axes are aligned along the cantilever
within the accuracy of several degrees.

cantilever with silicone grease. The signal VAB is detected
by a lock-in amplifier with a frequency of ∼15 Hz, using a
homemade bridge circuit. The experiments were performed
with a 4He gas flow cryostat and a 15 T superconducting
magnet. The cantilever chip is precisely rotated in the cryostat
by a stepping motor. The background signal arising from
the cantilever bending by the sample gravity is numerically

FIG. 2. Schematic of the circuit diagram for torque measure-
ments. The voltage VAB, corresponding to the sample torque, is
detected by a lock-in amplifier.

subtracted. This background subtraction can be easily done
because of a sin(θ ) dependence at zero field.

III. RESULTS

The torque curves have been measured in magnetic fields
rotated in three different planes; H in (001), (11̄0), and (111)
planes in the notation of the phase I structure. Figure 3
presents the torque curves as a function of the field angle

FIG. 3. Torque curves as a function of the field angle θ for H
in (11̄0) plane. The data are taken from 250 to 10 K with a step of
2.5 K at 14.5 T. Each curve is shifted for clarity.
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FIG. 4. Torque curves for H in (11̄0) plane at (a) 170 K, (b)
110 K, and (c) 10 K. Each curve is completely reproduced by the
summation of twofold (τ2) and fourfold (τ4) terms.

θ at various temperatures for H in (11̄0). Above Ts1 (phase
I), we obtain a small sinusoidal torque signal. Below Ts1

(phase II), the torque is enhanced and then largely deformed
at ∼120 K. As temperature further decreases, the torque curve
has a strong twofold symmetry but the amplitude is reversed.
No significant differences are found between the zero-field-
and field-cooling processes. To elucidate the torque curve
symmetry, we fit the torque curves with a functional form,

τ (θ ) = τ2sin[2(θ − θ2)] + τ4sin[4(θ − θ4)]. (1)

All the torque curves are completely reproduced by Eq. (1)
as shown in Fig. 4; the curves can be decomposed into twofold
sin(2θ ) and fourfold sin(4θ ) terms. The obtained amplitudes
(τ2 and τ4) and phases (θ2 and θ4) are presented in Figs. 5(a)
and 5(b), respectively. For comparison, the static magnetic
susceptibilities (χstatic ) measured by a conventional supercon-
ducting quantum interference device at 7 T are presented in
Fig. 5(c).

We obtain small τ2 and τ4 values in phase I, which are
consistent with very small anisotropy of χstatic. Below Ts1, the
absolute amplitudes of τ2 and τ4 steeply increase, suggesting
significant changes of the 5d electronic states. In the inset
of Fig. 5(a), the close-up of τ2 and τ4 near Ts1 is presented.
The temperature dependence can be fitted with a function
(1 − T/Ts1)β below Ts1. We obtain β by a least-mean-square
fit for all the samples as shown below; β = 1.1 ± 0.1 for τ2

FIG. 5. (a) τ2 and τ4, (b) θ2 and θ4 obtained by fitting the torque
curves with Eq. (1). Inset shows the closeup of τ2 and τ4 around
Ts1. Solid curves indicate τ2 ∝ (1 − T/Ts1) and τ4 ∝ (1 − T/Ts1)1/2

for Ts1 = 202 K. (c) Static magnetic susceptibility χstatic measured
at 7 T.

and β = 0.55 ± 0.07 for τ4. The fitting results reasonably
lead us to conclude that β = 1 for τ2 and β = 0.5 for τ4. We
note a steep decrease of the phase θ2 at Ts1, which will be dis-
cussed later. Below Ts1, both the phases θ2 and θ4 seem nearly
zero. At Ts2, we clearly observe steep changes of τ2 and τ4,
showing a first-order phase transition. The strange behavior of
θ2 at ∼105 K arises from an artifact of the curve fitting. The
χstatic values at all the field directions decrease with decreasing
temperature [Fig. 5(c)]. Anisotropic behavior is evident below
Ts1, consistent with the large changes of τ2 and τ4. We see a
small jump at Ts2 for H // [100]. Figure 6 presents the torque
curves at various fields for T = 195 K (phase II). By fitting
the curves with Eq. (1), we obtain the field dependences of
τ2 and τ4 at 195 and 100 K (phase III). The solid curves
indicate H2 and H4 dependences, which reasonably reproduce
the experimental data of τ2 and τ4, respectively.

The torque results for H in (001) at various temperatures
are presented in Fig. 7(a). All the curves are also reproduced
by Eq. (1). The amplitudes and phases are shown in Figs. 7(b)
and 7(c), respectively. Below Ts1, both the absolute amplitudes
rapidly increase with decreasing temperatures. At around
Ts2, we see small jumps in τ2 and τ4. We note that τ2 ∝
(1 − T/Ts1) and τ4 ∝ (1 − T/Ts1)1/2 below Ts1, as shown by
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FIG. 6. (a) Torque curves at various fields (4 ∼ 14.5 T) for H in
(11̄0) at 195 K. (b) Field dependences of τ2 and τ4 at 195 K (phase II)
and 100 K (phase III). Solid curves indicate τ2 ∝ H 2 and τ4 ∝ H 4.

solid curves in the inset of Fig. 7(b). The torque curves at
various fields for T = 180 K (phase II) are presented in Fig. 8.
Both τ2 and τ4 seem to follow H2 and H4 dependences,
respectively, as shown by solid curves.

The torque curves for H in (111) are presented in Fig. 9
(a), all of which can also be reproduced by Eq. (1). The
results are shown in Figs. 9(b) and 9(c). The τ2 and τ4 values
are enhanced below Ts1, and then jumps are evident at Ts2.
We see that τ2 ∝ (1 − T/Ts1) below Ts1 [inset of Fig. 9(a)]
whereas the behavior of τ4 is not clear because of the small
signal. We see drastic changes of the phases θ4 at Ts1 and
θ2 at Ts2. Figure 10(a) shows the torque curves at 150 K.
We see that the obtained τ2 and τ4 in Fig. 10(b) follow H2

and H4 dependences, respectively, as shown by solid curves.
In this way, we observe very consistent behavior in all the
rotations, τ2 ∝ (1 − T/Ts1) and τ4 ∝ (1 − T/Ts1)1/2 below
Ts1, and τ2 ∝ H2 and τ4 ∝ H4 in phase II. The free energy due
to the magnetic field, ∼ χstaticH2 is an order of 0.1 K at 15 T,
which is much smaller than kBTs1 or the SO coupling strength
(∼70 K) [6]. Therefore, the magnetic energy will cause no
significant change to the phase transitions.

IV. ANALYSES AND DISCUSSIONS

A. Phase I

In phase I, the free energy F of the electronic state can
be expanded into a polynomial of the magnetic field H =
(Hx, Hy, Hz ), in which each term is classified into the IR �

of the point group Oh,

F (H ) = F0 +
∑

n

∑
�

c(n,0)
� χ

(n)
� (H ). (2)

Here, F0 is the energy at zero field, χ
(n)
� (H ) is a magnetic

field function of nth order term of H, corresponding to the
bases of �, and c(n,0)

� is a coefficient. The magnetization

FIG. 7. (a) Torque data at 14.5 T for H in (001) from 230 to 40
K with a step of 2.5 K. Each curve is shifted for clarity. (b) τ2 and τ4,
(c) θ2 and θ4 obtained by fitting the torque curves with Eq. (1). Inset
shows the close-up of τ2 and τ4 around Ts1. Solid curves indicate
τ2 ∝ (1 − T/Ts1) and τ4 ∝ (1 − T/Ts1)1/2 for Ts1 = 202 K.

is expressed as M = −∇H F (H )/2. In the point group Oh,
the possible IRs of χ

(n)
� (H ) up to the fourth-order of H are

listed in Table I. We should note that the even-parity IRs are
responsible for χ

(n)
� (H ). In phase I, the free energy includes

only terms with the totally symmetric IR A1g of Oh. Therefore,
the free energy up to the fourth-order terms of H can be

TABLE I. Irreducible representations of the point group Oh

responsible for the magnetic field function χ
(n)
� (H ).

Order of H Irreducible representation �

H T1g

H 2 A1g, Eg, T2g

H 3 A2g, 2T1g, T2g

H 4 2A1g, 2Eg, T1g, 2T2g
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FIG. 8. Torque data for H in (001). (a) Torque curves at various
fields (0 ∼ 14.5 T) for H in (001) at 180 K. (b) Field dependences of
τ2 and τ4 at 180 K (phase II), which are obtained by fitting the torque
curves with Eq. (1). Solid curves indicate τ2 ∝ H 2 and τ4 ∝ H 4.

expressed as

F = F0+c(2,0)
A1g

χ
(2)
A1g

(H )+c(4,0)
A1g(a)χ

(4)
A1g(a)(H ) + c(4,0)

A1g(b)χ
(4)
A1g(b)(H ).

(3)

Note there are two χ
(4)
A1g

(H ) functions as seen below.
The magnetic torque τ (H ) is obtained from the field angle
derivative of the free energy,

τ (H ) ∝ −∂F (H )

∂θ
=

∑
n

∑
�

c(n,0)
� τ

(n)
� (H ), (4)

where τ
(n)
� (H ) = −∂χ

(n)
� (H )/∂θ and θ is an angle between

the magnetic field and a specific axis of the crystal. The field
components in three field rotations are defined as

H in (001) : (Hcos θ, Hsin θ, 0), (5)

H in (11̄0) :

(
Hsin θ√

2
,

Hsin θ√
2

, Hcos θ

)
, (6)

H in (111) :

(−√
3Hcos θ − H sin θ√

6
,

×
√

3H cos θ − Hsin θ√
6

,
2Hsin θ√

6

)
. (7)

The second and fourth-order terms of χ
(n)
� (H ) are listed in

Table II of Appendix A. We have the isotropic free energy
terms χ

(2)
A1g

(H ) = H2 and χ
(4)
A1g(a)

(H ) = H4, but the anisotropic

one, χ
(4)
A1g(b)

(H ) = (H2
x H2

y + H2
y H2

z + H2
z H2

x ).
Tables III and IV in Appendix B present the calcu-

lated τ
(n)
� (H ) with n = 2 and 4, respectively, for H in

(100), (11̄0), and (111) planes. The resultant torque sig-
nals, τ

(2)
A1g

(H ) and τ
(4)
A1g(a)

(H ) vanish for any field rotations

but τ
(4)
A1g(b)

(H ) leads to −(H4/4)sin(4θ ) for H in (001) and

−(H4/8)[2 sin(2θ ) + 3 sin(4θ )] for H in (11̄0). The results

FIG. 9. (a) Torque curves at 14.5 T for H in (111) from 240 to
20 K with a step of 2.5 K. Each curve is shifted for clarity. (b) τ2 and
τ4, (c) θ2 and θ4 obtained by fitting the torque curves with Eq. (1).
Inset shows the close-up of τ2 and τ4 around Ts1. Solid curve indicates
τ2 ∝ (1 − T/Ts1).

show that τ2 and τ4 terms with θ2 = θ4 = 0 could be observed
in phase I but are inconsistent with the experimental results.
The small torque in phase I may be induced by some local
lattice distortion of the crystal or by the anisotropic demagne-
tization effect. Although the interpretation of the torque curve
in phase I is ambiguous, our discussions on the results for
T< Ts1 are not affected.

B. Phase II

In phase II, the symmetry of the electronic state is re-
duced, associated with the structural transition (point group
Oh → D2d). It is reasonable to analyze the free energy based
on Landau theory within a molecular field approximation.
According to the Landau theory, we can describe the coupling
terms between the OP η and H in the free energy as follows,
which are sufficient in the discussion of the torque curve
symmetry:

F =
∑

m,n,�

c(n,m)
�

d�∑
i=1

f (m)
�i

(η)χ (n)
�i

(H ). (8)
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FIG. 10. (a) Torque curves at various fields (0 ∼ 14.5 T) for H in
(111) at 150 K. (b) Field dependences of τ2 and τ4 at 150 K (phase
II), which are obtained by fitting the torque curves with Eq. (1). Solid
curves indicate τ2 ∝ H 2 and τ4 ∝ H 4.

Here c(n,m)
� is a constant, d� is the dimension of an IR � of

Oh, �i is the ith component of �, n is an order of H, and m
is an order of η. The OP function f (m)

�i
(η) includes mth order

terms of η, classified by �i. Both the functions f� and χ� must
have the same IR �.

Since we observe only even order terms, τ2 ∝ H2 and
τ4 ∝ H4, we obtain possible IRs, � = A1g, Eg, T1g, or T2g

as listed in Table I. The absence of the odd order terms
shows no magnetic order, consistent with the nuclear magnetic
resonance (NMR) results [14,15]. Since η ∝ (1 − T/Ts1)1/2 in
the framework of the Landau theory, we expect τ2 ∝ η2

τ2 and
τ4 ∝ ητ4, where ητ2 and ητ4 are the OPs leading to the twofold
and fourfold torque curves, respectively. Consequently, we
can conclude that the τ2 term arises from f (2)

�i
(ητ2)χ (2)

�i
(H ),

and τ4 from f (1)
�′

i
(ητ4)χ (4)

�′
i
(H ), where � and �′ could be

different.
By comparing the anisotropy of the torque data with

the calculated results in Tables III and IV, we can deter-
mine � of χ

(n)
� (H ). First we discuss the torque data for

H // (001) in Fig. 7, where we observe τ2 ∝ H2sin(2θ )
and τ4 ∝ H4sin(4θ ) with θ2 ≈ 0 and θ4 ≈ 0 in phase II.
For instance, there are a single χ

(2)
� (H ) function for � =

A1g, χ
(2)
A1g

(H ) = H2, two functions for Eg, χ
(2)
Eg(1)

(H ) =
H2

x − H2
y and χ

(2)
Eg(2)

(H ) = (H2
x + H2

y − 2H2
z )/

√
3, and three

functions for T2g, χ
(2)
T2g(1)

(H ) = HyHz, χ
(2)
T2g(2)

(H ) = HzHx, and

χ
(2)
T2g(3)

(H ) = HxHy (Table II). There are no χ
(2)
� (H ) functions

in other IRs. From Table III, we note that only Eg(1) gives τ2 ∝
H2sin(2θ ), consistent with the experimental results. Simi-
larly, the χ

(4)
� (H ) functions for � = A1g(b), Eg(a), and Eg(b) in

Table II lead to τ4 ∝ H4sin(4θ ) in Table IV. In this way, we
obtain the possible IRs of the OPs: � = Eg for τ2, and � =
A1g, Eg(a), or Eg(b) for τ4. The IRs T1g and T2g are excluded.

For H in (11̄0), we also observe τ2 ∝ H2sin(2θ ) and τ4 ∝
H4sin(4θ ) in Fig. 5. From Tables III and IV, we consistently
obtain that � = Eg for τ2, and A1g(b), Eg(a), or Eg(b) for τ4.
For H in (111), we observe τ2 ∝ H2sin[2(θ − θ2)] and τ4 ∝
H4sin[4(θ − θ4)] with θ2 ≈ −20o and θ4 ≈ 40o in Fig. 9. In
this rotation, arbitrary phases in both τ2 and τ4 terms could
be observed for Eg(a), depending on the domain structures
(Appendix C). An important point is that A1g for τ4 is elim-
inated because of the observation of the H4sin[4(θ − θ4)]
term. The result is consistent with the Landau theory since the
symmetry is lowered in Phase II. Consequently, we can un-
ambiguously specify the same IR, Eg for both τ2 and τ4. Here,
we should note that τ

(4)
Eg

(H ) has a H4sin(2θ ) term in addition

to H4sin(4θ ) for H in (11̄0) and (111). The H4sin(2θ ) term
is not experimentally observable, showing that the H2sin(2θ )
term in τ

(2)
Eg

(H ) is much larger.
The transition to the tetragonal unit cell at Ts1 inevitably

leads to three c-axis-oriented domains [Fig. 1(b)], which are
assigned by the rotation of the OP vectors (Appendix C).
Each domain is denoted as X (c//X ),Y (c//Y ), or Z (c//Z ).
As shown in Appendix C, the above discussions on � are not
affected by the domain structures. For instance, we can show
that any domain has a same functional form τ2 ∝ H2sin(2θ )
with � = Eg in H//(11̄0), which is consistent with the exper-
imental results. When all the domains are equally distributed,
the torque signal vanishes for � = Eg. Polarized microscope
images show the typical single domain size of ∼0.05 mm,
which is comparable to the single crystals used for the torque
measurements (∼ 0.1 × 0.1 × 0.1 mm3). Therefore, we ex-
pect an inhomogeneous distribution of the domains, which
enables us to detect the torque curves in phases II and III.
Actually, we obtain θ2 ≈ 0 and θ4 ≈ 0 for H in (001) and
(11̄0) for different samples although the amplitudes τ2 and
τ4 are sample dependent. The results clearly show that the
assignments of the IRs are not affected by the domain struc-
tures. By contrast, both the phases for H in (111) are sample
dependent since arbitrary phases are possible, depending on
the domain structure.

The torque curve analyses show the presence of two terms
in Eq. (8), f (1)

Eg (η)χ (4)
Eg (H ) giving τ4 and f (2)

Eg (η)χ (2)
Eg (H ) giv-

ing τ2. Therefore, we immediately obtain that the former
term arises from the even-parity OP ηg, f (1)

Eg (ηg) = ηg ∝
(TC − T )1/2. Since the structural change in phase II, I 4̄m2
is expressed by the OP with Eu, it is likely that the latter
term arises from the Eu OP ηu = (hu1, hu2). Their second-
order terms, 2ηu1ηu2 and (η2

u1 − η2
u2) belong to Eg, as seen in

Table VII of Appendix D and then we obtain f (2)
Eg (ηu1, ηu2) ∝

O(η2
u ) ∝ (TC − T ), consistent with the experimental re-

sults. On the other hand, the second-order terms of the OPs
(ηu1, ηu2, ηu3) with both T1u and T2u can also have the
OPs (η2

u1 − η2
u2, (η2

u1 + η2
u2 − 2η2

u3)/
√

3) belonging to Eg, as
shown in Table VIII of Appendix D. These terms can explain
the data f (2)

Eg ∝ O(η2
u ) ∝ (TC − T ).

For instance, if τ2 arises from the OP ηg with Eg,
we should observe a dominant term τ2 ∝ f (1)

Eg (ηg)χ (2)
Eg (H ) ∝

H2(TC − T )1/2. However, no observation of the τ2 ∝
H2(TC − T )1/2 term excludes f (2)

Eg (ηg) ∝ O(η2
g ) as the origin

of τ2. Since no H3 terms are observed in the whole field and
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temperature region, we should note that � = A2g, T1g, and
T2g are excluded [see Table I]. This is consistent with the
above arguments. In this way, we conclude the presence of
two distinct odd- and even-parity OPs, ηu and ηg. The free
energy up to H4 will include more terms,

F (H ) ∝ f (2)
Eg (ηu)χ (2)

Eg (H ) + f (2)
Eg (ηu)χ (4)

Eg (H )

+ f (1)
Eg (ηg)χ (4)

Eg (H ) + f (2)
Eg (ηg)χ (4)

Eg (H ). (9)

The second and fourth terms are not experimentally ob-
served, suggesting that the first and third terms are pre-
dominant. It should be noted that only the coupling terms
between the OPs and field are detected in the torque mea-
surements; these terms vanish at zero field. The presence
of the f (1)

Eg (ηg)χ (4)
Eg (H ) term, whose origin is not clear, is

surprising and indicative of a peculiar transition in this SO
coupled metal. Since the f (2)

Eg (ηu)χ (2)
Eg (H ) and f (1)

Eg (ηg)χ (4)
Eg (H )

terms are observed, there will be higher order cross terms of
ηu and ηg, η2

uηgH2, η2
uηgH4, η2

uη
2
gH2, . . . giving different

temperature dependences. However, we have not observed
such cross terms within our experimental accuracy, suggesting
that the cross terms are much smaller.

As shown in Figs. 5 and 7, all the torque curves in phase
III below Ts2 are also reproduced by the τ2 and τ4 terms, both
of which are assigned as � = Eg. Since the phase transition
at Ts2 is of the first-order, τ2 and τ4 could show discontinuous
changes, likely associated with sudden changes of the domain
structure.

Since the SHG/torque measurements are blind to even-
/odd-parity symmetries, both are complementary techniques
to each other. The SHG measurements below Ts1 reveal that
the symmetries of the optical responses are explained by
a primary OP with T2u and a secondary OP with Eu [4].
Phenomenological Landau free energy analyses suggest that
another primary OP with T1g is required although it is not
detectable in the SHG measurements. The optical responses
χE and χT , respectively corresponding to Eu and T2u, are given
by χE ∝ (1 − T/Tc) and χT ∝ (1 − T/Tc)1/2 below Ts1.
Interestingly, the critical exponents β for χE and χT coincide
with those of the magnetic responses τ2 and τ4, respectively.
As mentioned above, the torque data show the presence of
two primary OPs with the even-parity Eg, and the odd-parity
Eu, T1u or T2u, but clearly denies the OP with T1g. The OPs
observed in torque experiments are coupled to magnetic field
but the OPs in SHG to electric field, which may be the reason
for the inconsistency between the two measurements.

Two possible magnetic orders, magnetic quadrupole or-
der with Eu

− and magnetic octupole order with A2g
− are

theoretically proposed [17], based on the symmetry analysis
of the SHG measurements [4]. The Eu

− order will lead to
internal fields at the Re sites but such evidence has not been
obtained in the NMR experiments [14,15]. The A2g

− order
is excluded by the torque experiments as described above.
Therefore, the magnetic multipole orders are very unlikely in
Cd2Re2O7. More recently, electric multipole orders of the Re
tetrahedral unit of Cd2Re2O7 in phases II and III are discussed
from a symmetry point of view [19,20]. In the presence of
time reversal symmetry, the IRs Eu and T2u correspond to an
electric toroidal quadrupole order, and T1u to an electric dipole
order [20]. The Eg OP is assigned to an electric quadrupole

order [20]. The torque measurements clearly show the parity
mixing at the phase transition in Cd2Re2O7. Although it is
likely that the SO coupling plays an essential role in the
phase transition as suggested theoretically [16], the parity
mixing will not be explained only by the SO coupling. Further
investigation is required to clarify the detailed mechanism of
the phase transition.

V. CONCLUSIONS

In conclusion, the magnetic torque curves in the SO cou-
pled metal Cd2Re2O7 are decomposed into two parts, τ2 ∝
H2sin[2(θ − θ2)] and τ4 ∝ H4sin[4(θ − θ4)], which are given
by τ2 ∝ (1 − T/Ts1) and τ4 ∝ (1 − T/Ts1)1/2 below Ts1. The
symmetry analyses show that the τ2 and τ4 terms arise from
two OPs with different parities, ηu with Eu, T1u or T2u [τ2 ∝
O(η2

u )] and ηg with Eg (τ4 ∝ ηg). The parity mixing shows the
presence of the peculiar phase transition in Cd2Re2O7, which
will not be explained only by the SO coupling. A significant
feature is the presence of the first-order term of the OP ηg,

f (1)
Eg (ηg)χ (4)

Eg (H ) term in the free energy. Further theoretical
investigations will be required to clarify the microscopic
mechanism of the phase transition.
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APPENDIX A: MAGNETIC FIELD FUNCTIONS

The second and fourth-order terms of magnetic field func-
tions χ

(n)
� (H ) are listed in Table II. Note that there are two

TABLE II. Magnetic field functions χ
(2)
� (H ) and χ

(4)
� (H ).

� χ
(2)
� (H ) χ

(4)
� (H )

A1g χ
(2)
A1g

(H ) = H2 χ
(4)
A1g(a)

(H ) = H4

χ
(4)
A1g(b)

(H ) = (H2
x H 2

y + H 2
y H 2

z + H2
z H 2

x )

Eg χ
(2)
Eg(1)

(H ) = H2
x − H 2

y χ
(4)
Eg(a,1)

(H ) = H2
z (H 2

x − H 2
y )

χ
(2)
Eg(2)

(H ) = H2
x +H2

y −2H2
z√

3
χ

(4)
Eg(a,2)

(H ) = 2H2
x H2

y −H2
y H2

z −H2
z H2

x√
3

χ
(4)
Eg(b,1)

(H ) = H4
x − H 4

y

χ
(4)
Eg(b,2)

(H ) = H4
x +H4

y −2H4
z√

3

T1g χ
(4)
T1g(1)

(H ) = (H2
y − H 2

z )HyHz

χ
(4)
T1g(2)

(H ) = (H2
z − H 2

x )HzHx

χ
(4)
T1g(3)

(H ) = (H2
x − H 2

y )HxHy

T2g χ
(2)
T2g(1)

(H ) = HyHz χ
(4)
T2g(a,1)

(H ) = H2
x HyHz

χ
(2)
T2g(2)

(H ) = HzHx χ
(4)
T2g(a,2)

(H ) = H2
y HzHx

χ
(2)
T2g(3)

(H ) = HxHy χ
(4)
T2g(a,3)

(H ) = H2
z HxHy

χ
(4)
T2g(b,1)

(H ) = (H2
y + H 2

z )HyHz

χ
(4)
T2g(b,2)

(H ) = (H2
z + H 2

x )HzHx

χ
(4)
T2g(b,3)

(H ) = (H2
x + H 2

y )HxHy
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TABLE III. τ
(2)
� (H ) for each IR. τ

(2)
obs. is the observed angle dependence. From the comparison, the IR of τ

(2)
obs. is assigned to Eg. For (111),

we define two angles, θ ′ = θ − 120◦, and θ ′′ = θ + 120◦.

� H in (001) H in (11̄0) H in (111)

A1g 0 0 0

Eg(1) 2H 2sin(2θ ) 0 − 2√
3
H 2 cos(2θ )

Eg(2) 0 −√
3H2sin (2θ ) 2√

3
H 2sin(2θ )

T2g(1) 0 − H2√
2
cos(2θ ) − 2

3 H 2sin(2θ ′)

T2g(2) 0 − H2√
2
cos(2θ ) − 2

3 H 2sin(2θ ′′)

T2g(3) −H 2cos(2θ ) − 1
2 H 2sin(2θ ) − 2

3 H 2sin(2θ )

τ
(2)
obs. ∝H 2sin(2θ ) ∝H2sin(2θ ) ∝H2 sin(2θ + 40)

fourth-order field functions for � = A1g, Eg and T2g. The mul-
tiple appearance of � is classified by a and b. The degenerate
components are indexed by 1,2, and 3.

APPENDIX B: TORQUE FUNCTIONS

The second and fourth-order terms of torque functions,
τ

(2)
� (H ) and τ

(4)
� (H ) are listed in Tables III and IV, respec-

tively, which are directly compared to the experimental data
τ

(2)
obs.. The total symmetric IR A1g gives no second-order torque

signal.

APPENDIX C: OP VECTORS AND DOMAIN STRUCTURES

The Eu and Eg are doubly degenerated (two-dimensional
IRs), whose bases are represented as vectors, ηu = (ηu1, ηu2)

TABLE IV. τ
(4)
� (H ) for each IR. τ

(4)
obs. is the observed angle dependence. From the comparison, the IR of τ

(4)
obs. is assigned to Eg. For (111),

we define two angles, θ ′ = θ − 120◦, and θ ′′ = θ + 120◦.

� H in (001) H in (11̄0) H in (111)

A1g(a) 0 0 0

A1g(b) − H4

4 sin(4θ ) − H4

8 [2sin(2θ ) + 3 sin(4θ )] 0

Eg(a,1) 0 0 − 2H4

3
√

3
[cos(2θ ) − cos(4θ )]

Eg(a,2) − H4

2
√

3
sin(4θ ) − H4

4
√

3
[2 sin(2θ ) − 3 sin(4θ )] 2H4

3
√

3
[sin(2θ ) + sin(4θ )]

Eg(b,1) 2H 4sin(2θ ) 0 − 2H4

3
√

3
[2 cos(2θ ) + cos(4θ )]

Eg(b,2)
H4√

3
sin(4θ ) − H4

4
√

3
[10 sin(2θ ) + 3 sin(4θ )] 2H4

3
√

3
[2 sin(2θ ) − sin(4θ )]

T1g(1) 0 H4

2
√

2
[cos(2θ ) + 3 cos(4θ )] H4

3
√

3
[cos(2θ ′) + 2 cos(4θ ′)]

T1g(2) 0 − H4

2
√

2
[cos(2θ ) + 3 cos(4θ )] H4

3
√

3
[cos(2θ ′′) + 2 cos(4θ ′′)]

T1g(3) −H 4cos(4θ ) 0 H4

3
√

3
[cos(2θ ) + 2 cos(4θ )]

T2g(a,1) 0 − H4

4
√

2
[cos(2θ ) − cos(4θ )] − 2H4

9 [sin(2θ ′) − 2 sin(4θ ′)]

T2g(a,2) 0 − H4

4
√

2
[cos(2θ ) − cos(4θ )] − 2H4

9 [sin(2θ ′′) − 2 sin(4θ ′′)]

T2g(a,3) 0 − H4

4 sin(4θ ) − 2H4

9 [sin(2θ ) − 2 sin(4θ )]

T2g(b,1) 0 − H4

2
√

2
[3 cos(2θ ) + cos(4θ )] − H4

9 [5 sin(2θ ′) + 2 sin(4θ ′)]

T2g(b,2) 0 − H4

2
√

2
[3 cos(2θ ) + cos(4θ )] − H4

9 [5 sin(2θ ′′) + 2 sin(4θ ′′)]

T2g(b,3) −H 4cos(2θ ) − H4

4 [2 sin(2θ ) − sin(4θ )] − H4

9 [5 sin(2θ ) + 2 sin(4θ )]

τ
(4)
obs. ∝ H 4sin(4θ ) ∝ H4sin(4θ ) ∝ H4sin(4θ − 160)
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TABLE V. Calculated torque curve ∝ f (2)
Eg (ηu)τ (2)

Eg (H ) arising from each domain in phase II with the Eu OP ηu. Three domains are denoted

by X (c//X ), Y (c//Y ), and Z (c//Z). The common coefficient C (2)
Eg

is omitted. Here, we define two angles, θ ′ = θ − 120◦ and θ ′′ = θ + 120◦

domain H in (001) H in (11̄0) H in (111)

X (α = −2π/3) η2
uH 2 sin(2θ ) −

√
3

2 η2
uH 2sin(2θ ) − 2√

3
η2

uH 2sin(2θ ′)

Y (α = 2π/3) −η2
uH 2sin(2θ ) −

√
3

2 η2
uH 2sin(2θ ) − 2√

3
η2

uH 2sin(2θ ′′)

Z (α = 0) 0
√

3η2
uH 2sin(2θ ) − 2√

3
η2

uH 2sin(2θ )

for Eu, and ηg = (ηg1, ηg2) for Eg. Below Ts1 (cubic to tetrag-
onal), three domains are formed as shown in Fig. 1(b), which
are indicated by X (c//X ),Y (c//Y ), andZ (c//Z ). We define
the OPs, ηu = (0, ηu2) in the I 4̄m2 structure (phase II) for
c//Z and ηu = (ηu1, 0) in the I4122 structure (phase III) for
c//Z . When the OP vector ηu is redefined as (ηusinα, ηucosα),
three different domains in phase II can be expressed by the ro-
tation of η, α = 0 or π for c//Z,α = −2π/3 or π /3 for c//X ,
and α = 2π/3 or −π /3 for c//Y . We should note that there
are two different domains for each c-axis domain (X, Y, or Z)
because of the broken inversion symmetry. The additional two
domains, which give the same torque curve, are transformed
into each other by an inversion symmetry, for instance, (0, ηu)
and (0, −ηu) for c//Z . In this expression, the OP functions in
Table VII are written as f (2)

Eg(1)
(ηu) = 2ηu1ηu2 = η2

u sin(2α) and

f (2)
Eg(2)

(ηu) = (η2
u1 − η2

u2) = −η2
u cos(2α).

For H//(11̄0), we obtain the torque curves τ2 depending
on the domain,

τ2 ∝
∑
i=1

f (2)
Egi

(ηu)τ (2)
Egi

(H )

= f (2)
Eg(1)

(ηu)τ (2)
Eg(1)

(H ) + f (2)
Eg(2)

(ηu)τ (2)
Eg(2)

(H )

=
√

3η2
u cos (2α)H2sin(2θ ).

In any domains (any α values), we note τ2 ∝ H2sin(2θ ),
which is consistent with the experimental results.

The crystals will include all these domains. It should be
noted that the torque signal for Eg vanishes if all the domains
are equally distributed. The observation of the torque signal
clearly shows that the domains are inhomogeneous. This
is the case for the other IRs except for A1g. Actually, the
signal intensity is different from sample to sample, which is
ascribed to the domain structures. As a reference, the angular
dependences of the torque curve ∝ f (2)

Eg (ηu)τ (2)
Eg (H ) arising

from each domain in phase II are listed in Table V.
For Eg, three domains are similarly defined as the angle

β in ηg = (ηgsinβ, ηgcosβ ), β = 0 for c//Z , β = −2π/3 for
c//X , and β = 2π/3 for c//Y . The angular dependences of
τ (4)(H ) are shown in Table VI. Here, f (1)

Eg(1)
(ηg) = ηg sin β, and

f (1)
Eg(2)

(ηg) = ηg cos β.
The IRs T1u and T2u have triplicate OPs indicated as

(ηu1, ηu2, ηu3). The OP vector ηu is (0,0, ±ηu) for c //
Z, (±ηu, 0, 0) for c // X, or (0, ±ηu, 0) for c // Y.
The second-order terms of ηu form bases of three differ-
ent IRs, A1g, Eg, and T2g as shown in Table VIII of Ap-
pendix D. Similarly, the Eg bases, f (2)

Eg(1)
(ηu) = η2

u1 − η2
u2 and

f (2)
Eg(2)

(ηu) = (η2
u1 + η2

u2 − 2η2
u3)/

√
3 lead to τ2 terms given in

Table V.

APPENDIX D: OP FUNCTIONS

The second-order OP functions f (2)
� (ηu) for the structural

OP ηu = (ηu1, ηu2) with Eu are listed in Table VII. Note that
their second-order terms, (2ηu1ηu2, η

2
u1 − η2

u2) belong to Eg.

TABLE VI. Calculated torque curve ∝ c(4)
Eg f (1)

Eg (ηg)τ (4)
Eg (H ) arising from each domain for the Eg OP ηg. Three domains are denoted by X

(c//X ), Y (c//Y ), and Z (c//Z). Here, we define two angles, θ ′ = θ − 120◦ and θ ′′ = θ + 120◦.

domain H in (001) H in (11̄0) H in (111)

X ηgH4

4
√

3
[12c(4)

Eg(b)
sin(2θ ) +

(c(4)
Eg(a)

− 2c(4)
Eg(b)

)sin (4θ )]

ηgH4

8
√

3
[2(c(4)

Eg(a)
+ 5c(4)

Eg(b)
) sin(2θ ) +

3(−c(4)
Eg(a)

+ c(4)
Eg(b)

)sin (4θ )]

2ηgH4

3
√

3
[(c(4)

Eg(a)
+ 2c(4)

Eg(b)
) sin(2θ ′) +

(c(4)
Eg(a)

− c(4)
Eg(b)

)sin (4θ ′)]

Y ηgH4

4
√

3
[−12c(4)

Eg(b)
sin(2θ ) +

(c(4)
Eg(a)

− 2c(4)
Eg(b)

)sin (4θ )]

ηgH4

8
√

3
[2(c(4)

Eg(a)
+ 5c(4)

Eg(b)
) sin(2θ ) +

3(−c(4)
Eg(a)

+ c(4)
Eg(b)

)sin (4θ )]

2ηgH4

3
√

3
[(c(4)

Eg(a)
+ 2c(4)

Eg(b)
) sin(2θ ′′) +

(c(4)
Eg(a)

− c(4)
Eg(b)

)sin (4θ ′′)]

Z − ηgH4

2
√

3
(c(4)

Eg(a)
− 2c(4)

Eg(b)
)sin (4θ ) − ηgH4

4
√

3
[2(c(4)

Eg(a)
+ 5c(4)

Eg(b)
) sin(2θ ) +

3(−c(4)
Eg(a)

+ c(4)
Eg(b)

)sin (4θ )]

2ηgH4

3
√

3
[(c(4)

Eg(a)
+ 2c(4)

Eg(b)
) sin(2θ ) +

(c(4)
Eg(a)

− c(4)
Eg(b)

)sin (4θ )]
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TABLE VII. Second-order OP functions f (2)
� (ηu) for Eu. Note

ηu1 = 0 and ηu2 
= 0 in phase I and ηu1 
= 0 and ηu2 = 0 in phase
III. See also Appendix C.

� f (2)
� (ηu)

A1g f (2)
A1g

(ηu) = η2
u1 + η2

u2

Eg f (2)
Eg(1)

(ηu) = 2ηu1ηu2

f (2)
Eg(2)

(ηu) = η2
u1 − η2

u2

The OP functions f (2)
� (ηu) for the OP ηu = (ηu1, ηu2, ηu3)

with T1u and T2u are listed in Table VIII. Note that their

TABLE VIII. Possible second-order OP functions f (2)
� (ηu) for

OPs (ηu1, ηu2, ηu3) with T1u and T2u.

� f (2)
� (ηu)

A1g f (2)
A1g

(ηu) = η2
u1 + η2

u2+η2
u3

Eg f (2)
Eg(1)

(ηu) = η2
u1 − η2

u2

f (2)
Eg(2)

(ηu) = (η2
u1 + η2

u2 − 2η2
u3)/

√
3

T2g f (2)
T2g(1)

(ηu) = η2uη3u

f (2)
T2g(2)

(ηu) = η3uη1u

f (2)
T2g(3)

(ηu) = η1uη2u

second-order terms, (η2
u1 − η2

u2, (η2
u1 + η2

u2 − 2η2
u3)/

√
3) be-

long to Eg.
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