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MnV2O4 in the spinel structure is known to exhibit coupled orbital and spin ordering and its Raman spectra
show interesting anomalies in its low-temperature phase. With a goal to explain this behavior involving coupled
spins and phonons, we determine here the spin-phonon couplings in MnV2O4 from a theoretical analysis of its
phonon spectra and their dependence on spin ordering and electron correlations, obtained from first-principles
density functional theoretical calculations. Using these in an analysis based on a Landau-like theory, we uncover
the mechanism governing the Raman anomalies observed in its low-temperature phase.
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I. INTRODUCTION

Correlated electronic systems with spinel structure have
seen a surge in interest of late, due to inherently rich physics
involving frustrated magnetism, orbital ordering, charge or-
dering, etc. Fascinating physical phenomena emerge from
the coupling between various degrees of freedom such as
spin, orbital, and lattice, in the presence of both geometric
frustration and Coulomb correlation [1–6]. The competition
among different degrees of freedom manifests itself in several
structural and magnetic transitions accompanied by orbital
ordering in these systems [7–10]. These compounds, having
the generic formula AB2O4, consist of two distinct cation sites:
the A site is tetrahedrally coordinated with neighboring O sites
while B site is octahedrally coordinated with O ligands [11],
as shown schematically in Fig. 1(a). Geometrically frustrated
magnetic spinels provide a fertile playground for exploration
of interplay between these degrees of freedom [12,13].

MnV2O4 is a member of the AB2O4 family, which has the A
site (Mn+2, S = 5/2) magnetic but not orbitally active, while
the B site (V+3, S = 1) is both magnetic and orbitally active.
The combined effect of magnetic and orbital degrees brings
in rich and complex physics. This compound undergoes a
magnetic transition from the paramagnetic (PM) to collinear
ferrimagnetic (FiM) phase at TN1 = 57 K, followed by a struc-
tural transition (cubic → tetragonal) together with a second
magnetic transition at TN2 = 54 K, where noncollinear FiM
spin ordering sets in [10,14,15].

Earlier, the controversies mostly centered around the or-
dering of orbitals of V and stimulated an upsurge of research
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in this system [10,15,16]. Various possible scenarios were
proposed for the orbital order based on the symmetry of
the tetragonal phase and the type of dominant interactions
[10,15]. In a recent theoretical study [17], A-type antiferro-
orbital ordering has been observed at the V sites where one
t2g electron occupies the dxy orbital at every V site and other
electron occupies dxz and dyz orbitals alternately along the
c direction. These findings are in good agreement with the
experimental measurements in MnV2O4 [10].

Though much attention has been given to the electronic
properties, the phonon-related phenomena and their coupling
with other degrees of freedom remained unexplored. How-
ever, a few fascinating experiments performed in the recent
past indicate that phonons play an important role at the
microscopic level. Takubo et al. [18] investigated Raman
scattering of MnV2O4 and observed that several peaks evolve
in the Raman spectra below TN2. They showed a peculiar
polarization dependence of Bg modes and tried to explain it
with Mott excitation phenomena. However, the appearance
of an experimental intensity peak with XY polarization was
not supported by their analysis. Their mode assignment of
the Raman-active peaks in the tetragonal phase was based on
the I41/amd space group, whereas the space group symmetry
of MnV2O4 is I41/a [10]. Later, an inelastic light scattering
study of the temperature and magnetic field dependencies
of one- and two-magnon excitations in MnV2O4 revealed
that spin-lattice coupling is indeed significant in its low-
temperature phase [19]. Additionally, anomalous temperature
dependence of the peak intensity was observed which was
attributed to a strong coupling between magnetic and vibra-
tional excitations in MnV2O4.

In view of the significant effects of phonons in this system,
we have investigated the spin-phonon coupling across the
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Brillouin zone (BZ), along with Raman scattering to under-
stand the polarization dependence of Bg modes from density
functional theory (DFT) calculations. The paper is organized
as follows. In Sec. II, we briefly discuss the methodology
used to calculate phonons and related properties. In Sec. III,
first, we discuss the structural properties in detail and calculate
phonon modes at the � point of the BZ. Next we present an
analysis of Raman scattering intensities of the Bg mode. Later,
we study the effects of spin-phonon coupling and calculate the
coupling term at different high-symmetry points of the BZ and
compare our results with experimental data. Finally, we give
a brief summary and outlook in Sec. IV.

II. METHODS

Our first-principles calculations based on the density func-
tional theory [20,21] have been performed using plane-wave
basis, as implemented in the Vienna ab initio simulation
package (VASP) [22,23]. We have used projector-augmented
wave (PAW) [24,25] potentials in our calculations and the
wave functions were expanded in the plane-wave basis with a
kinetic energy cutoff of 500 eV. We used a generalized gradi-
ent approximation (GGA) with the Perdew-Burke-Ernzerhof
(PBE) [26] parametrization for the exchange-correlation en-
ergy functional. Total energies were converged to less than
10−8 eV to achieve self-consistency and Brillouin zone inte-
gration was sampled on a �-centered k mesh of 6 × 6 × 6. In
structural relaxation, positions of the ions were relaxed toward
the equilibrium using the conjugate gradient algorithm, until
the Hellman-Feynman forces became less than 10−3 eV/Å.

Electron correlation effects beyond GGA were incorpo-
rated for 3d electrons of Mn and V ions within the GGA +
U approximation. There are two approaches available for
GGA + U calculations: (a) a spherically symmetric [27]
scheme in which both U and J are independent, where U is the
Hubbard parameter of on-site Coulomb correlation [28] and J
is the Hund’s coupling strength, and (b) a spherically averaged
one with only one independent parameter Ueff = U − J [29],
which is clearly a special case and an approximation of the
spherically symmetric scheme (a). As the spherically averaged
scheme has been used in earlier studies with some success to
capture experimental results for vibrational properties [30,31],
we have used it here in our analysis. We note that results for
phonons can be sensitive to the choice of values of the U and
J parameters (see Sec. I of the Supplemental Material [32]),
and the spherically symmetric approach with self-consistent
choices of U and J is expected to give a more accurate
description of phonons and electron spin-phonon couplings.
We present below the results obtained within the spherically
averaged GGA + U approach with U = 5 eV and J = 1 eV
[29], assuming an A-type orbital order, which is consistent
with the I41/a space group symmetry of the low-temperature
structure of MnV2O4 [17].

The dynamical matrix and phonons were calculated
from a frozen-phonon method with atomic displacements of
±0.03 Å, as driven by the PHONOPY code [33], and Raman
scattering intensity peaks were obtained from PHONON soft-
ware [34] interfacing with DFT as implemented in the VASP
code. The phonon density of states (DOS) has been calculated
by using the tetrahedron method on a 10 × 10 × 10 k mesh.

FIG. 1. (a) Crystallographic unit cell and (b) primitive cell of
MnV2O4 compound. Oxygen octahedra (tetrahedra) around V (Mn)
ions are shown in gray (cyan-blue).

Spin-phonon couplings were determined based on the scheme
[35] used by Ray et al.

III. RESULTS AND DISCUSSION

A. Structural properties

The MnV2O4 compound, in its low-temperature phase,
has a tetragonal structure with I41/a space group symmetry.
A network of edge-shared VO6 octahedra with interstitial
MnO4 tetrahedra form a geometrically frustrated lattice in
which the mirror or glide plane perpendicular to the ab plane
is absent. The tetragonal unit cell of MnV2O4 is shown in
Fig. 1(a). The lattice constants and the atomic positions are
optimized within the GGA and GGA + U approximations to
achieve the minimum energy structure. However, one can see
imaginary frequencies in the phonon DOS [Fig. 2(a)] with the
GGA-optimized structure, which may indicate that in GGA
the assumed space group is unstable.

As the compound MnV2O4 is known to be a Mott insulator,
strong correlation physics is incorporated in the calculations
within the GGA + U approximation. The calculations have
been performed for Ueff (= U − J , where U is the on-site
Coulomb interaction and J is the Hund’s exchange interaction)
ranging from 3 eV to 5 eV at the Mn and V sites. For Ueff �
4 eV, we observe no imaginary modes in the DOS [Fig. 2(b)]
and the results do not change significantly above that value.
Therefore, we present the results obtained for Ueff = 4 eV at
both sites. Atom projected phonon DOSs within GGA + U
calculations for FiM and ferromagnetic (FM) spin states are
shown in Fig. 2(c) and Fig. 2(d), respectively. To check the
dependence of phonon properties on U values, we have also
performed phonon calculations with different U values at
Mn (U = 6 eV) and V (U = 5 eV) sites (see Sec. II of the
Supplemental Material [32]). The phonon dispersion is similar
to the dispersion obtained for Ueff = 4 eV and the physics
discussed in the paper remains the same qualitatively.

In addition, we have considered collinear FiM ordering (V
spins are aligned opposite to Mn spins) instead of the non-
collinear magnetic ground state to reduce the computational
cost. However, these two magnetic states are very close in
energy as one can see from the transition temperatures [10],
and the electronic properties (e.g., orbital ordering) [17,36]
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FIG. 2. Total phonon DOS is shown for (a) GGA and (b) GGA +
U calculations in FiM configuration. Unstable modes with imaginary
frequencies (given as negative) are observed only in GGA calcu-
lations. Projected DOS of Mn, V, and O atoms within GGA + U
calculations in (c) FiM and (d) FM states.
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FIG. 3. Electronic band structure of MnV2O4 in FiM state within
(a) GGA and (b) GGA + U calculations.

remain the same for both magnetic structures. Also, within
the FiM spin configuration, the space group and the point
group symmetry of the low-temperature crystal structure are
preserved, reproducing the experimentally observed phonon
modes.

It is evident from Fig. 3(a) that the electronic band structure
of MnV2O4 shows zero band gap within GGA calculations.
On the other hand, the GGA + U calculated electronic band
structure [Fig. 3(b)] correctly represents the insulating state.
We have also shown the atom projected electronic DOS
[Figs. 4(a), 4(b)] for FiM and FM spin states within the
GGA + U approximation. In both cases, the DOS shows
the insulating state. Within the FiM spin configuration, we
obtain the value of band gap ∼2 eV [Fig. 3(b)]. However, the
calculated gap value is a bit high as compared to the activation
energy (1.46 eV) of MnV2O4 [37].

In Table I, we compare the structural parameters of the
GGA- and GGA + U -optimized structures for different spin
configurations with the experimental one. We can see that
the lattice constants, c/a ratio, and atomic positions of the
optimized structures are comparable. The MnV2O4 compound
in the tetragonal phase has C4h point group symmetry and
its primitive unit cell [see Fig. 1(b)] contains six magnetic
ions (two Mn and four V) and eight nonmagnetic O ions.
Phonons at the � point can be classified according to the irre-
ducible representations of the C4h point group of MnV2O4 as
� = 6Eu + 6Au + 6Bu + 4Bg + 4Eg + 3Ag, where the acous-
tic modes are omitted. Among them, the Bg, Eg, and Ag modes
are Raman active, while the Eu and Au modes are IR active.

B. Raman activity

In this section, we calculate the Raman spectra from
density functional theory. The irreducible representation of
Raman-active modes at the � point are listed in Table II
along with the calculated phonon frequencies. Calculated
Raman-allowed phonon modes are in good agreement with
the experiments [18].

In a Raman scattering process, an incident photon of
frequency ωl and polarization versor gl either create (Stokes
process) or annihilate (anti-Stokes process) a phonon of fre-
quency ω j and scatter to an outgoing photon of frequency ωs

and polarization versor gs. From the principle of energy con-
servation, we can write ωs = ωl ± ω j , where the (plus) minus
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TABLE I. Energy-minimized structural parameters of MnV2O4 in the FiM and FM states within GGA and GGA+U approximations.
Experimental structural parameters are given for comparison [11]. LCs = lattice constants.

GGA GGA+U GGA+U
Experimental (FiM) (FiM) (FM)

LCs a = 6.05 Å a = 6.00 Å a = 6.19 Å a = 6.20 Å
c = 8.46 Å c = 8.48 Å c = 8.60 Å c = 8.61 Å

Mn 0.000 0.750 0.875 0.000 0.750 0.875 0.000 0.750 0.875 0.000 0.750 0.875
V 0.250 0.250 0.750 0.250 0.250 0.750 0.250 0.250 0.750 0.250 0.250 0.750
O 0.997 0.474 0.737 0.999 0.478 0.739 0.993 0.474 0.739 0.993 0.474 0.739

sign is ascribed to the (anti-)Stokes process. The differential
cross section for Raman scattering in nonresonant conditions
of the Stokes process involving a phonon of eigenmode j is
given by the following equation (for a unit volume of the

(b)

(a)

FIG. 4. Total and projected electronic DOS of Mn, V, and O
atoms of MnV2O4 in (a) FiM and (b) FM states within GGA + U
calculations. DOSs on the positive Y axis represent up-spin states,
while DOSs on the negative Y axis represent down-spin states.

sample) [38,39]:

d2σ

d�dω
=

∑
j

ω4
s

c4
|gs · R̄ j · gl |2[nb(ω) + 1]δ(ω − ω j ). (1)

In this expression, nb(ω) is the Bose occupation factor and
c is the velocity of light in vacuum. The second-rank tensor
R̄ j in Eq. (1) is known as the Raman tensor associated with
the phonon eigenmode j which is given by the following
equation:

R j
αβ =

√
V h̄

2ω j

N∑
κ=1

∂χαβ

∂r(κ )
· e( j, κ )√

Mκ

(α, β = 1, 2, 3). (2)

Here, V is the unit cell volume. r(κ ) and Mκ are the position
and mass of the κ th atom, respectively, and the summation
runs over all the N atoms in the unit cell. The eigenstates and
eigenvalues of the dynamical matrix at the � point are denoted
by e( j, κ ) and ω j , respectively. In Eq. (2), the electric polar-
izability tensor χαβ is defined as χαβ = 1

4π
(εαβ − δαβ ), where

εαβ is the dielectric tensor. The tensor R̄ j is computed from
the electric polarizability tensor within the finite-difference
approach by moving the atoms of different symmetry with a
displacement of 0.03 Å [40,41].

TABLE II. Irreducible representations of the Raman-active
modes, calculated phonon frequencies (in cm−1) for FiM and FM
spin configurations in comparison with the Raman-active modes ob-
served experimentally. The second column represents experimentally
observed phonon frequencies [18]. Relative angular frequency shift
(�rel = ωFiM−ωFM

ωFiM
× 100%) due to change in magnetic ordering of the

Raman-active modes is given in the fifth column.

Expt. FiM FM �rel

Modes (T = 5 K) (GGA+U) (GGA+U) (%)

4Bg 181 184 −1.7
370 367 374 −1.9
479 440 438 0.4
585 539 538 0.2

4Eg 185 187 −1.1
257 248 3.5
451 449 0.4

570 549 550 −0.2

3Ag 319 322 −0.9
378 377 0.3

673 633 623 1.6
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FIG. 5. Calculated Raman spectrum for light in the X ′Y ′ and XY
polarization. Raman peaks with red (blue) color are observed in X ′Y ′

(XY) polarization.

In order to compare our theoretical results with the avail-
able experimental data, we have computed the intensity of the
Raman spectra of a single-crystal sample from the differential
scattering cross section as implemented in the PHONON soft-
ware [34] at various polarization configurations of the incident
and scattered light (same as the experimental ones [18]).
In our calculations, we have considered linear polarization
along the [100], [010], [110], and [11̄0] directions, which are
ascribed to X , Y , X ′, and Y ′, respectively. The temperature
dependence of the Raman spectra within the XY (polarization
direction of the incident and scattered light, respectively)
and X ′Y ′ polarization configurations has been reported ex-
perimentally, and by analyzing the intensity peaks of certain
modes, the nature of the orbital ordering in this compound
was established [18]. However, the phonon frequencies were
calculated by assuming short-range force constants for the
nearest-neighbor bonds and the modes were assigned (irre-
ducible representation) based on the I41/amd space group,
while the space group symmetry of the parent compound is
actually I41/a.

Calculated frequencies of the four Raman-allowed Bg

modes within the I41/a space group symmetry are at
181 cm−1 [Bg(1)], 367 cm−1 [Bg(2)], 440 cm−1 [Bg(3)], and
539 cm−1 [Bg(4)]. From our Raman scattering calculations,
we found finite-intensity peaks in the X ′Y ′ polarization
(Fig. 5) at two higher-frequency Bg modes [Bg(3) and Bg(4)],
while the lower modes [Bg(1) and Bg(2)] are absent. This
result agrees well with the experimental findings [18]. In-
terestingly, an intensity peak appears in XY polarization at
367 cm−1 (see Fig. 5) associated with the Bg(2) mode. This
mode is also observed experimentally at 370 cm−1 in the XY
spectrum, while earlier theoretical calculations based on the
Franck-Condon formalism predicted the absence of intensity
peaks in the same polarization [18]. According to their theory,
the Mott excitations along the in-plane V-V bond are allowed
in the XY configuration and due to the symmetric nature of
the dxy orbital, Mott transitions to the forward and backward
direction cancel the intensity [18].

We discuss the Raman peaks of the specific phonon
modes of MnV2O4 in its tetragonal phase and understand the

FIG. 6. Atomic displacements of Bg phonons responsible for the
Raman peaks associated with the four Bg modes at (a) 181 cm−1

[Bg(1)], (b) 367 cm−1 [Bg(2)], (c) 440 cm−1 [Bg(3)], and (d)
539 cm−1 [Bg(4)].

displacement patterns of the lattice vibrations obtained from
ab initio phonon calculations. Among the four Bg modes, only
three Bg modes show the finite intensity of the Raman peaks,
while the first one [Bg(1)] does not contribute to the Raman
scattering process. In Fig. 6, we have shown the displacement
patterns of these modes. The Bg(1) mode corresponds to the
stretching of the Mn ions along the c direction [Fig. 6(a)]; the
O ions barely move in this mode. We can see in Figs. 2(c)
and 2(d) that phonons associated with the vibration of Mn
ions contribute more to the DOS around that frequency range.
The Bg(2) [Fig. 6(b)] mode, responsible for the Raman peak at
367 cm−1, comes from the displacements of the O ions along
the a and b axes while the atomic vibrations of Mn ions are
negligibly small. The modes Bg(3) and Bg(4), responsible for
the Raman peaks at 440 cm−1 and 539 cm−1, respectively,
correspond to the displacements of O atoms as shown in
Fig. 6(c) and Fig. 6(d). We have clearly shown here that the
lowest frequency Bg mode emerges due to the phonons asso-
ciated with Mn ions and high-frequency Bg modes originate
from the atomic vibrations of O ions mainly. However, in all
cases, V ions do not move.

C. Spin-phonon coupling

To understand the interplay between magnetic ordering
and phonons, we determine phonons at the zone center and
zone boundaries with FiM and FM ordering, which gives
a measure of spin-phonon coupling. While any spin con-
figuration instead of FM would have been also useful for
this purpose, the space group symmetry remains the same in
these spin configurations. In Fig. 7, we show phonon spectra
along high-symmetry directions in the Brillouin zone for the
FiM and FM spin-ordered states in the tetragonal phase of
MnV2O4. In the absence of spin-phonon coupling, hardly any
change in phonon spectra is expected in the different magnetic
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FIG. 7. Phonon dispersion of FiM (red solid lines) and FM (black
dotted linens) states of MnV2O4 in its tetragonal phase.

configurations. A strong spin-phonon coupling along the zone
center and zone boundary points is however observed as the
phonon frequencies change with changing magnetic order. In
the phonon dispersion (Fig. 7), no unstable modes appear at
any point in the BZ for either magnetic order.

The Heisenberg spin Hamiltonian for MnV2O4 can be
written as

H = 1

2

∑
〈i j〉

Ji j �Si · �σ j − 1

2

∑
〈kl〉

J ′
kl �σk · �σl . (3)

Ji j is the AFM exchange interaction between �Si (Mn spins)
and �σ j (V spins) giving an FiM state, whereas Jkl is the
FM exchange interaction between V spins. Changes in
the exchange interactions due to the spin-phonon coupling
can be obtained by a Taylor series expansion of J with respect
to the amplitude of atomic displacements [42,43],

J (�uλ
ν ) = J0 + �uλ

ν

(∇uν
J ) + 1

2 �uλ
ν (∇2

uνν′ J
)
�uλ
ν ′ . (4)

Here, �uλ
ν is the displacement vector from the equilibrium

position of the νth ion for the λth phonon mode. J0 is the
bare spin-spin exchange coupling term, and ∇uJ relates to
the forces on atoms arising from the change in magnetic
configuration (with respect to its ground state magnetic order).
This term, which is linear in atomic displacements, gives the
lowest-order coupling between spins and phonons. As seen
in Fig. 8, these forces are equal and opposite for the pairs
of oxygen atoms and also have the full symmetry (Ag) of the
lattice. This could lead to the magnetoelastic anomaly at TN .
The shift in the phonon frequency �λ of the λth phonon mode
due to the change in the magnetic order is related to ∇2

u J
[42] (second-order coupling) by the following expression (the
reduced mass and the frequency of the λth phonon mode are
denoted by μλ and ωλ, respectively, and ûλ

ν = �uλ
ν/|�uλ

ν |):

�λ = 1

2μλωλ

∑
ν

ûλ
ν

(∇2
uν

J
)
ûλ

ν = J ′′
λ

2μλωλ

. (5)

FIG. 8. The Hellman-Feynman forces on the oxygen ions in the
FM configuration of the relaxed FiM configuration (crystallographic
unit cell). The forces are drawn with golden arrows and give the
lowest-order spin-phonon coupling.

This quantity gives an estimate of second-order spin-phonon
coupling (J ′′

λ = ∑
ν

ûλ
ν (∇2

uν
J )ûλ

ν [44]), and hence, large values

of � imply strong spin-phonon coupling. The relative change

in phonon frequency (�λ
rel = ωλ

FiM−ωλ
FM

ωλ
FiM

× 100%) [31] due to
change in the magnetic order for the � (q = 0, 0, 0) phonons,
as well as for the zone boundary phonons at the N (1/2, 0, 0),
X (0, 0, 1/2), and Z (1/2, 1/2,−1/2) points of the BZ, are
presented in Figs. 9(a)–9(d).

In Fig. 9(a), two low-frequency (181 cm−1, 367 cm−1) Bg

modes (all Bg modes are marked in red circles) show softening
of frequency due to change in spin configuration from FM to
FiM. However, two high-frequency Bg modes at 440 cm−1 and
549 cm−1 show very weak spin-phonon coupling compared
to the others. Among all the � phonons, the Bu mode at
178 cm−1 (marked by sky-blue circles) shows maximum

FIG. 9. Relative change in phonon frequency (�rel =
ωFiM−ωFM

ωFiM
× 100%) calculated at the zone center (a) � and

zone boundary points (b) N, (c) X, (d) Z.
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(a) (b)

FIG. 10. Temperature dependence of phonon modes [(a) 178
cm−1 (for �λ = −6 cm−1) and (b) 70 cm−1 (for �λ = 7 cm−1)]
obtained for three choices of m(T ) (see text). “Exp” refers to use of
experimental m(T ) [45] in our analysis [Eq. (7)] to determine ω(T )
corresponding to FiM spin ordering, and β is the critical exponent.

relative softening (∼ − 4%), while the 257 cm−1 Eg mode
(marked by green circles) shows maximum relative hardening
due to spin-phonon interaction. Among the zone boundary
phonons, the 70 cm−1 phonon mode (pink circles) [Fig. 9(b)]
at the N point of the BZ (1/2, 0, 0) shows more than 10%
hardening of frequency due to change in magnetic order from
FM to FiM and exhibits the strongest spin-phonon coupling
across the BZ.

To connect our results with experiments [19] and to un-
derstand the observed temperature dependence of phonon
frequencies, we use Ginzburg-Landau (GL) theory. The free
energy of our spin-phonon coupled system can be written as

F = F0 + am2 + bm4 +
∑

λ

(
J ′′
λ m2v2

λ + 1

2
μλω0

2
λv

2
λ

)
. (6)

Here, a and b are the usual GL parameters, m is the FiM
order parameter, vλ is the amplitude of the λth phonon mode,
and ω0λ is the high-temperature (T � TN ) phonon frequency.
Thus, the phonon frequency will change below TN as the FiM
ordering sets in. The modified phonon frequency is

ωλ =
√

ω2
0λ + 2

μλ

J ′′
λ m2 = 2�λm2 +

√
ω0

2
λ + 4�2

λm4. (7)

Here, the positive solution has been considered, as the other
solution gives negative values of ωλ. We determine the �λ’s
from results of our DFT calculations (Fig. 9) and use them
in Eq. (7) to obtain the temperature dependence of rele-
vant phonon frequencies (Fig. 10) of the tetragonal phase of
MnV2O4 using three choices of temperature-dependent FiM
order parameter m(T ): one taken from experiment [45] and
the other two are based on an approximate model form given
by ∝ (1 − T/TN )β , with the critical exponent β = 0.5 (the
mean-field behavior) and β = 0.365 (3D Heisenberg model
[46] behavior). The experimental m(T ) used in this analysis
was recorded at magnetic field H = 3 T, which stabilizes
the FiM state of MnV2O4 at lower temperatures. It is quite
clear (Fig. 10) that the temperature dependence of phonon
frequencies arising from spin-phonon coupling obtained with

experimental m(T ) agrees rather well with experimental ω(T )
(in Figs. 1(e), 1(f) and 1(g) of Ref. [19]). This shows that the
spin-phonon coupling is primarily responsible for T depen-
dence of the relevant phonons in MnV2O4 at low temperature.

In Fig. 10(a), the phonon frequency decreases with de-
creasing temperature below TN , which is associated with the
softening of a phonon mode (�λ < 0) due to spin-phonon
coupling. Interestingly, in the Raman scattering experiments
[18,19], the intensity peak near 178 cm−1 shows anomalous
temperature dependence as the frequency decreases with de-
creasing temperature below TN . In Fig. 10(b), one can see that
the phonon frequency increases with decreasing temperature
below TN and this is associated with the hardening of a phonon
mode (�λ > 0) due to coupling between spins and phonons.
Experimentally, the temperature dependence of the Raman
intensity peak near 70 cm−1 shows a similar behavior below
the FiM transition temperature. However, these two peaks
are attributed to the magnon excitations, with Raman-allowed
symmetries [19]. They couple to phonons exhibiting strong
spin-phonon coupling. Even though 70 cm−1 and 178 cm−1

modes are not Raman active, they show significant spin-
phonon coupling. Thus, magnetic excitations couple with
these modes, and the hybrid modes appear in the Raman spec-
trum. Our results agree qualitatively with the experimental
observations and also corroborate the experimental prediction
of strong spin-lattice coupling across the BZ in this material.

IV. CONCLUSIONS

Our first-principles study of phonon dispersions in two
different magnetic orders (FiM and FM) in MnV2O4 show
notable spin-phonon coupling. We also find that in the low-
temperature tetragonal structure of MnV2O4, correlations are
necessary to eliminate unstable modes. Raman intensities for
XY and X ′Y ′ polarization reveal finite-intensity peaks in the
X ′Y ′ polarization at two higher-frequency Bg modes [Bg(3)
and Bg(4)] and a peak in XY polarization at 367 cm−1, which
is associated with the Bg(2) mode. The lowest-frequency
Bg mode is found to emerge from phonons associated with
Mn ions, while high-frequency Bg modes originate from O
ion vibration. Landau theory analysis reveals the mecha-
nism governing the low-temperature Raman anomalies of
MnV2O4. Our results agree qualitatively with recent exper-
iments [18,19] and reveal that a strong interplay between
the lattice and magnetic degrees of freedom is important for
understanding the underlying physics of MnV2O4.
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