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We investigate the stability of xy orbital ordering and the nature of the magnetic longitudinal excitations in
Ca2RuO4. To this end, we employ the local-density approximation + dynamical mean-field theory approach,
in combination with many-body perturbation theory. We show that the crossover to a nonperturbative spin-orbit
regime—-in which xy-like orbital ordering is to a large extent quenched—only takes place when the crystal
field is sizably reduced with respect to its actual value in Ca2RuO4. In the small crystal-field splitting limit, the
spin-orbit interaction favors the metal-to-insulator transition. We find that the effects of the spin-orbit interaction
remain perturbative even for the less distorted Ca2−xSrxRuO4 with 0 < x < 0.2 (S-Pbca phase) and for the S∗

phase. We show that, nevertheless, a Higgs mode at ω ∼ 50 meV is compatible with xy-like orbital ordering in
Ca2RuO4.
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I. INTRODUCTION

The spin-wave spectra of the Mott insulator Ca2RuO4 have
been recently measured by several groups using the inelastic
neutron scattering technique [1–3]. The interpretation of the
experimental data remains controversial, however. Although
consensus accumulates that magnetic excitations can be de-
scribed by a phenomenological effective S = 1 Heisenberg-
like model with anisotropic terms [1–9], the character of the
effective spins, the microscopic origin of their interactions,
and the actual nature of the magnetic excitations are still
debated.

Magnetism in Ca2RuO4 was at first discussed in terms of
the Ru4+ local-moment picture, i.e., in the weak spin-orbit
coupling limit, although with sizably reduced local magnetic
moments [10–14]; such local moments originate from the t4

2g
electronic configuration, since eg states are well separated
via the cubic crystal field. Later, an alternative scenario was
proposed in which the spin-orbit interaction is key [15,16].
In this picture, magnetism is of the Van Vleck type; it stems
from the t4

2g spin-orbit ground state, which has total angular
momentum Jtot = 0. This Van Vleck scenario is, however,
difficult to conciliate with recent findings. One of the sig-
natures of the Jtot = 0 ground state is the equal occupation
of the three t2g orbitals [17]. Theoretically, however, xy-
like orbital ordering was obtained via the local-density ap-
proximation + dynamical mean-field theory (LDA + DMFT)
approach [5], even in the presence of spin-orbit interaction
[6,7]; the associated electronic configuration is approximately
xy2xz1yz1, which is at odds with a Jtot = 0 ground state. This
conclusion is supported, besides other experiments [14,18–
20], by recent angle-resolved photoemission spectroscopy
measurements [21], which show excellent agreement with
LDA + DMFT calculations.

Even though it is likely that the Jtot = 0 scenario does not
apply, the hypothesis of excitonic behavior, on the other hand,
remains popular for the description of spin waves [3,4,8,9,22]
in Ca2RuO4. This is in particular due to the recently reported
[3] putative Higgs-like mode, found via inelastic neutron-
scattering at ω ∼ 50 meV. Other neutron-scattering experi-
ments, on the other hand, did not succeed in detecting such
a signal [2]; instead, they reported a longitudinal mode at
ω ∼ 30 meV in Ca2Ru0.99Ti0.01O4, ascribed to two-magnon
excitations. To further complicate the discussion, theoretical
results [2,6,7] show that the transverse pseudo-Goldstone
modes, detected in all neutron-scattering experiments, can be
well described within the xy-like orbital-ordering scenario—
-treating the spin-orbit interaction as a perturbation. The cor-
rect theoretical picture, however, ultimately relies on the sta-
bility of xy-like orbital-ordering with respect to small lattice
distortions and the size of the associated crystal-field splitting.
Furthermore, even if xy-like orbital ordering is very robust, it
has not been fully clarified if it is or isn’t compatible with a
Higgs-like mode at ω ∼ 50 meV.

In the present paper, we address these questions. We
find that the reduction in crystal-field splitting necessary to
substantially quench xy-like orbital ordering (and thus enter
the nonperturbative spin-orbit regime) is large. A crossover
does take place when the crystal-field splitting is reduced
to about half the original value, everything else staying the
same. Inside this nonperturbative regime, the spin-orbit in-
teraction favors the metal-insulator transition, differently than
in the very large crystal-field limit [6]. For Ca2RuO4 itself,
we thus confirm that the effects of the spin-orbit coupling
can be accounted for by treating the spin-orbit interaction
in many-body perturbation theory. We find that, in addition,
spin-orbit effects remain perturbative even in the case of the
much less distorted Ca2−xSrxRuO4 with 0 < x < 0.2 (S-Pbca
phase [14]) and in the so-called S* phase, recently identified
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in a current-stabilized semimetallic state [23]. We show that,
nevertheless, xy-like orbital ordering is compatible with ω ∼
50 meV Higgs-like modes.

The paper is organized as follows. In Sec. II, we describe
in short the model and methods adopted. We use a combi-
nation of the LDA + DMFT approach and many-body per-
turbation theory. The quantum-impurity solver employed in
DMFT calculations is the interaction-expansion continuous-
time quantum Monte Carlo method, in the implementation of
Refs. [5,6]. We calculate spin-wave spectra via a generalized
Holstein-Primakoff (HP) transformation and hard-core boson
(HCB) approach [24]; the latter includes intrinsic Higgs-like
amplitude modes. In Sec. III, we present the results; the
conclusions are summarized in Sec. IV. In the Appendices,
we provide relevant technical details.

II. MODEL AND METHOD

First we perform LDA + DMFT calculations with and
without spin-orbit interaction. To this end, we construct t2g

Wannier functions spanning the bands close to the Fermi level,
and obtain the associated LDA Hamiltonian, which includes
the on-site crystal-field plus spin-orbit term (i = i′) and the
hopping term (i �= i′),

ĤLDA = −
∑

ii′

∑
mm′

∑
σσ ′

t i,i′
mσ,m′σ ′c

†
imσ ci′m′σ ′, (1)

with m = xy, yz, xz. A key parameter in this paper is the
crystal-field splitting. We define it as the difference εCF =
ε2 − ε1, where εl are the energies of the crystal-field orbitals
|l〉CF, ordered such that εl+1 � εl . For Ca2RuO4, we find from
LDA calculations εCF ∼ 320 meV and ε2 ∼ ε3. The spin-orbit
(SO) interaction enters both in the on-site term and in the
hopping integrals; the on-site contribution, dominant, reads

ĤSO =
∑

iν

∑
mσm′σ ′

λi
νξ

iν
mσm′σ ′c†

imσ cim′σ ′ , (2)

where ξ iν
mσm′σ ′ = 〈mσ |si

ν l i
ν |m′σ ′〉 and ν labels the pseudocubic

axes; we have previously shown [6] that λz ∼ λx ∼ λy = λ ∼
106 meV. We then built the associated generalized three-band
Hubbard model, ĤLDA + ĤU with

ĤU = 1

2

∑
i

∑
mm′ pp′

∑
σσ ′

Umm′ pp′c†
imσ c†

im′σ ′cip′σ ′cipσ . (3)

The parameters Umm′ pp′ are elements of the screened Coulomb
interaction tensor. The essential terms for t2g electrons are
[25] the direct Coulomb interaction, Umm′mm′ = Um,m′ = U −
2J (1 − δm,m′ ), the exchange Coulomb interaction Umm′m′m =
J , the pair-hopping term, Ummm′m′ = J , and the spin-flip term
Umm′m′m = J . We solve the model with dynamical mean-field
theory using the interaction-expansion continuous time quan-
tum Monte Carlo impurity solver. More details on the adopted
solution method and its implementation can be found in Refs.
[5,6]. For the screened Coulomb integrals, we use U = 2.3 eV
and J = 0.4 eV, values obtained via the constrained random-
phase approximation approach (cRPA) [26] and established to
fit well-known experimental data [6,21]. Based on the LDA +
DMFT results in the paramagnetic phase, in the second step
we build the associated effective low-energy spin Hamiltonian

using many-body perturbation theory. Finally, we construct
the spin-wave spectra using two different approaches, the HP
method and the hard-core-boson (HCB) method of Ref. [24].
Details on these two methods, in the generalized form relevant
for the case of Ca2RuO4, can be found in the Appendices.

III. RESULTS

A. Stability of xy-orbital ordering

We have previously shown that in Ca2RuO4 the Mott
metal-insulator transition is mainly controlled by the change
in structure from the L-Pbca (long c axis) to the S-Pbca (short
c axis) layered perovskite structure [5]. This structural change
leads to an increase in the crystal-field splitting εCF from ∼
116 meV to ∼ 320 meV. For the S-Pbca phase, we find orbital
occupations quite close to those expected for perfect xy-like
orbital ordering [6]; the doubly occupied natural orbital is
the lowest energy crystal-field orbital, |1〉CF, which has a
very large overlap with |xy〉. We have also shown that [6] in
the presence of such a large crystal-field splitting, the spin-
orbit coupling plays a small role in the actual metal-insulator
transition itself or in determining the size of the gap. Adding
the spin-orbit interaction even somewhat reduces the gap. It
also only slightly decreases the orbital polarization, p = n11 −
(n22 + n33)/2, the order parameter for xy-orbital ordering, to
p ∼ 0.9. Its maximum value, corresponding to full xy orbital
ordering, is p = 1; for a Jtot = 0 ground state, instead, one
should find p = 0. Furthermore, the most occupied orbital
remains, even in the presence of spin-orbit coupling, very
close to xy; indeed, if we calculate the orbital polarization in
the t2g basis, pCF = nxy − (nxz + nyz )/2, we find pCF ≈ p.

The question we address here is how stable xy-orbital
ordering is under small decrease in the crystal-field split-
ting, e.g., arising from small reductions in the local static
distortions, experimental errors in their estimations, or that
can eventually be tuned by chemical or strain [27] engineer-
ing. In short, how small should εCF be to radically change
the picture, making the effects of the spin-orbit interaction
nonperturbative and pushing the system toward the Jtot = 0
ground state? To answer this question, we study the evolution
of the electronic property in a series of idealized systems in
which the crystal-field splitting εCF is progressively reduced
[28]. Calculations are performed keeping the type of distortion
(i.e., the shape of the crystal-field orbitals) frozen and merely
varying the strength of the field. The main results are sum-
marized in Fig. 1, which shows representative calculations for
the three emerging regimes: εCF = εLDA, εCF = εLDA/2, and
εCF = 0. Calculations are all performed at ∼290 K, i.e., well
inside the experimental paramagnetic Mott insulator phase,
the phase relevant for the present analysis.

The panels on the left-hand side of Fig. 1 show the diagonal
elements All (ω) of the spectral function matrix for the case
εCF = εLDA. The spectral functions shown are in the natural
orbital basis, |l〉. For εCF = εLDA, the |l〉 basis is very close to
the crystal-field basis, |l〉CF. The orbital polarization p is about
its maximum value for xy-like orbital ordering (p = 1), and
pCF ≈ p. These panels therefore show that the system is in the
xy-like orbital ordering regime; there is very little difference
between the spectral functions with (bottom) and without
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FIG. 1. (Color online.) Orbital-resolved LDA + DMFT t2g spectral function in the basis of natural orbitals for decreasing crystal-field
splitting. The energy zero is the chemical potential. Full line: Natural orbital with largest overlap to the ground crystal-field state, |1CF〉.
Dashed and dotted lines: Remaining natural orbitals. Parameters: U = 2.3 eV, J = 0.4 eV, 290 K. From left to right: εCF = εLDA, εCF =
εLDA/2, and εCF = 0. Last panels on the right: εCF = 0, density-density approximation for the Coulomb interaction. In each case, we specify
pCF = n1CF1CF − (n2CF2CF + n3CF3CF )/2, the orbital polarization for xy orbital ordering, and pJ = (n3/2/2 − n1/2)/2, the spin-orbital polarization
associated with a Jtot = 0 state.

(top) spin-orbit interaction, except for a small reduction in the
value of pCF and in the size of the gap in the case with finite
spin-orbit interaction [6,7].

In the next (going from left to right) panels of Fig. 1,
we show the crossover regime. In this case, the crystal-
field splitting is one-half the LDA value, εCF = εLDA/2 ∼
160 meV, and thus only 1.5 times larger than the spin-orbit
coupling λ. One can see that, in the absence of the spin-
orbit interaction (top panel), the system is on the verge
of the insulator to metal transition. It remains inside the
xy-like orbitally ordered regime, however. The occupations
of the natural orbitals are such that n2 ∼ n3; the mostly
occupied natural orbital, |1〉, stays close to the lowest en-
ergy crystal-field orbital, |1CF〉 ∼ |xy〉, with overlap 〈1|1CF〉 ∼
0.94. The orbital polarization is p ∼ 0.82; in the crystal-
field basis, pCF ∼ 0.68. If now we switch on the spin-orbit
interaction keeping all the rest the same (bottom panel),
the situation changes drastically; the most occupied Kramers
doublet (n1 ∼ 1.84) has approximately the form |1〉σ ∼
0.885|1CF〉σ + sσ eisσ φ (0.325|2CF〉−σ − isσ 0.307|3CF〉−σ ); for
simplicity, here we dropped the small components. Thus, it
still has a large overlap with |1CF〉, but also with the total
angular momentum state | j, mj〉 = |3/2,±1/2〉. In addition, a
second Kramers doublet is occupied by 1.4 electrons, |2〉σ ∼
|3/2,±3/2〉. The third Kramers doublet has the approx-
imate form |3〉σ ∼ −0.431|1CF〉σ + sσ eisσ φ′

(0.630|2CF〉−σ +
isσ 0.637|3CF〉−σ ), approaching the |1/2,±1/2〉 state, and it is
occupied by only n3 ∼ 0.76 electrons. The orbital polarization
for xy-like orbital ordering is still large, p ∼ 0.76, but in the
crystal-field basis is already half its maximum value pCF ∼
0.44. It is useful to calculate the (normalized) order parameter
for a Jtot = 0 ground state, pJ , defined via the equation pJ =
(n3/2/2 − n1/2)/2. This parameter takes the value pJ = 1 if
the j = 3/2 state is fully occupied, and the value pJ = 0 if the
occupations are all the same (n3/2 = 2n1/2). For the structure

with full LDA crystal-field splitting, we find pJ ∼ 0.22; when
the crystal field splitting is reduced to εLDA/2 we have instead
pJ ∼ 0.39, less than half its maximum value. The crossover
occurs when pJ ∼ pCF.

Further decreasing the crystal-field splitting to zero yields,
in the absence of spin-orbit interaction, a nonpolarized metal-
lic state and, in the presence of spin-orbit interaction, an
orbitally polarized bad metal/insulator. In this case, the oc-
cupied natural orbitals are close to the four states with total
angular momentum j = 3/2; more specifically, we obtain
the Kramers doublets |1〉σ ∼ |3/2,±3/2〉 with n1 ∼ 1.74 and
|2〉σ ∼ |3/2,±1/2〉, with n2 ∼ 1.54. This means that we have
an inversion of levels with respect to the half-crystal-field
case. The figure shows that the xy-like orbital ordering picture
completely breaks down, since, although n3 ∼ 0.71 is more
or less the same obtained in the case εCF = εLDA/2, n2 is
approaching n1 and A1,1(ω) ∼ A2,2(ω). This is a signature
that the system is now indeed close to an effective Jtot = 0
ground state. The order parameter pJ (T ) increases relatively
slowly with temperature, i.e., it is about pJ ∼ 0.19 at 1200 K
and about half its maximum value (pJ ∼ 0.45) at 290 K;
the effect of the spin-orbit coupling is (relatively) quickly
suppressed rising the temperature. In addition, the Jtot = 0
ground state is very sensitive to approximations, e.g., it is
already quenched by simply making the density-density ap-
proximation for Coulomb terms (right-hand panels of Fig. 1,
pJ = 0.35), in large part due to the overestimation of the
Coulomb-induced spin-orbit anisotropy enhancement in this
specific case. In the large crystal-field splitting limit, the
same approximation tends to slightly stabilize xy-like orbital
ordering with respect to the Jtot = 0 ground state, although the
effect appears weaker (e.g., δpCF = 0.04 at 290 K).

In conclusion, although the realization of the Jtot = 0
ground state basically requires zero crystal-field splitting,
and temperatures well below the onset of the S-Pbca phase,
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FIG. 2. (Color online.) Orbital-resolved LDA + DMFT t2g spec-
tral function in the basis of natural orbitals (290 K) in S-Pbca
Ca2−xSrxRuO4 (left) and in S∗ Ca2RuO4 (right). Full line: Natural
orbital with largest overlap to the ground crystal-field state, |1CF〉.
Dashed and dotted lines: remaining natural orbitals. Parameters:
U = 2.3 eV, J = 0.4 eV. The energy zero is the chemical potential.

nonperturbative spin-orbit effects start to appear earlier, when
the crystal-field splitting is about half its LDA value. Still,
this reduction is large. For Ca2RuO4, it is very unlikely that
the theoretical crystal-field splitting is overestimated by such
a large factor; our LDA + DMFT results describe indeed
very well recent angle-resolved photoemission spectroscopy
measurements [21].

Based on these results, however, spin-orbit effects could be
much more important for Ca2−xSrxRuO4 with x < 0.2, in the
region of the phase diagram where the S-Pbca phase persists.
Indeed, distortions decrease [14] with increasing x, eventually
leading to an insulator-to-metal transition [5], while we have
shown [6,7] that the bare spin-orbit couplings are basically
the same in Ca2RuO4 and Sr2RuO4. By adopting the same
approach to calculate it, for x = 0.1 we do find an LDA
crystal-field splitting of about 240 meV, using the structural
data reported in Ref. [14], with the lowest energy crystal-field
orbital still close to |xy〉. This is a reduction corresponding to
0.75 εCF, not so far from the crossover regime. Another inter-
esting candidate could be the S∗ phase [23] of Ca2RuO4. For
this structure, we find an intermediate value, εCF ∼ 290 meV.
To explore the possible realization of the nonperturbative
spin-orbit regime in these two less distorted systems, we
perform additional LDA + DMFT calculations for these com-
pounds. The principal results are shown in Fig. 2. We find
that, while the effects of the spin-orbit interaction are indeed
somewhat stronger, the changes in structural distortions are, in
both systems, still not sufficient to drive the system well inside
the nonperturbative regime. In the case of Ca1.9Sr0.1RuO4,
the compound which, among those considered here, has the
smallest crystal-field splitting, we find pJ = 0.29. This value
is only slightly larger than in Ca2RuO4. Both Ca1.9Sr0.1RuO4

and S∗ Ca2RuO4 thus remain quite close to xy-like orbital
ordering, which proves hard to quench in the insulating phase
of the layered ruthenates.

B. Transverse and longitudinal spin-wave modes

The LDA + DMFT results presented so far confirm that the
xy-like orbitally ordered picture is very robust in Ca2RuO4. It
persists when distortions are reduced by partially replacing
Ca with Sr and even in the recently identified current-induced
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modified structure. In light of all this, we thus re-examine the
spin-wave spectra. We have previously shown [6] that, in the
xy-like orbital-ordering limit, many-body perturbation theory
leads to the (minimal) low-energy S = 1 model Hamiltonian:

ĤS = 1

2

∑
js �= j′s′


 js, j′s′S js · S j′s′ +
∑
jsμμ′

S js;μDμ,μ′S js;μ′ . (4)

Here, S js;μ is the μ (μ = a, b, c) component of a spin at site
s in the magnetic unit cell j; 
 js, j′s′ is the superexchange
coupling between site i = js and i′ = j′s′; only coupling
between first and second neighbors are accounted for. Dμ,μ′

is the single-ion anisotropy tensor; in addition to the zero-
field term, the spin-orbit interaction yields small anisotropy
in the exchange couplings and a small asymmetric exchange
interaction, here neglected to keep the model minimal. The
low-energy Hamiltonian Eq. (4) gives a very good description
of pseudo-Goldstone modes [1,2,6,7]. Next we want to clarify
whether, with the same parameters, it can also account well
for the highly debated 50 meV longitudinal mode.

Before we proceed, let us discuss the robustness of the
theoretical estimates of the couplings in Eq. (4). Using the
cRPA values for the screened Coulomb interactions, (U, J ) =
(2.3, 0.4) eV we find, via second-order perturbation the-
ory in the hopping integrals, the following values for the
superexchange coupling: 
1 = 
i,i+(a±b)/2 ∼ 5.3 meV, next-
nearest-neighbor couplings 
a

2 = 
i,i+a ∼ −0.02 meV (along
a), 
b

2 = 
i,i+b ∼ 0.18 meV (along b), and the interlayer
couplings 
a

z = 
i,i+(a+c)/2 ∼ 0.8 meV, 
b
z = 
i,i+(b+c)/2 ∼

0.5 meV. The interlayer exchange couplings 
a/b
z are sizably

larger than 

a/b
2 , a sign of weak but non-negligible three di-

mensional magnetism. This result indicates that the so-called
A-centered magnetic configuration [12] has lower energy than
the B-centered configuration, in line with experiments [2,29].
Neutron-scattering data have in addition shown that a weak
Ti doping (∼1%) can reverse the situation, [2] in agreement
with the fact that the difference in the two interplane couplings

a

z and 
b
z is relatively small. In Fig. 3, we show that these

theoretical values are not very sensitive to the (unavoidable)
uncertainties in the screened Coulomb interaction couplings
(U, J ). In the figure, we compare 
i,i′ obtained using screened
Coulomb integrals calculated via the constrained local-density
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FIG. 4. The magnon dispersion of Ca2RuO4 obtained using HP spin-wave theory. Dots: Experimental points corresponding to the
maximum of intensity, taken from Fig. 3 in Ref. [1]. Lines: Theory. Ordered magnetic moments along b axis: Mb = 1. Magnetic configuration:
A-centered. Transverse magnetic intensity: Ia + Ic. Left panels: Effect of varying ε for constant γ . Right panels: Effect of varying γ for
constant ε. Special points: R = (0, 2π, π ), 2Y = (0, 2π, 0), M = (π, π, 0), Y = (0, π, 0), where all orthorhombic lattice constants are set
equal to 1 for simplicity. The mode intensity scale is given on the right of each panel.

approximation [30] (cLDA), U = 3.1 eV and J = 0.7 eV, and
via the cRPA. The exchange couplings change little in a wide
range of Hund’s rule coupling values. The parameter which
varies most with (U, J ) is the largest, 
1; however, even its
variation is small when J stays within a realistic range, in the
interval between the cRPA and the cLDA value. The hierarchy
of interactions is thus very robust; the obtained values agree
well with experimental estimates [1,2].

Let us now turn to the zero-field tensor Dμ,μ′ . This is
obtained using second-order perturbation theory in the spin-
orbit interaction. By diagonalizing Dμ,μ′ , we calculate the
local axes a′, b′, and c′; in the specific case of Ca2RuO4,
we find a hard magnetization axis ∼c and an easy plane
is ∼ab. The key elements of the tensor are thus ε > 0 and
γ > 0, where γ = Da′a′ − Db′b′ and ε = Dc′c′ − Db′b′ . The
elements of the zero-field tensor increase with the square of
the spin-orbit coupling λ. LDA + DMFT calculations yield
an effective enhancement [6,31–33] of λ. Recently, this the-
oretical prediction was confirmed by a high-resolution pho-
toemission experiment in Sr2RuO4 [34], the sister compound
of Ca2RuO4. The effective enhancement has a large Hartree-
Fock-like component (corresponding to a factor of 2 or more),
which can be taken into account via an effective spin-orbit
coupling, λeff = λ + λ. The other key factor determining
Dμ,μ′ is the specific form of the most occupied natural orbitals
in the orbitally ordered state.

Using a relatively moderate isotropic spin-orbit enhance-
ment [6], one finds ε ∼ 16 and γ ∼ 0.74 meV; furthermore,
with perfect xy-orbital ordering, the easy axis is exactly in
the ab plane. With a spin-orbit enhancement closer to the
value obtained in LDA + DMFT calculations (λeff ∼ 2λ) and
assuming the lowest energy crystal-field orbitals as the doubly
occupied state, in line with DMFT results, we have ε ∼ 25,
with the easy axis slightly tilted [2,8] along c. Small elements
of the Dμ,μ′ tensor (those ∼1 meV or smaller) are of course
very sensitive to the precise form of the occupied natural
orbital and to (small) experimental uncertainties in lattice dis-
tortions. However, we find that the dominant Dμ,μ′ parameters

and the hierarchy of interactions (hence the emerging picture)
are very robust. The picture does not change qualitatively, for
example, if we take into account that the Coulomb interaction
also enhances the spin-orbit anisotropy; for Ca2RuO4, we find
that the latter does not affect much the value of the small
parameter γ , while it enhances ε, everything else remaining
the same. In conclusion, our calculations show that, in the
full range of realistic Coulomb parameters, although the spin-
orbit interaction can be treated at a perturbative level, the
single-ion anisotropy is large, with the hard axis energy ε

larger than the dominant superexchange coupling 
1, vary-
ing within the range (15,30) meV; the in-plane anisotropy
is much smaller, with γ 	 ε, 
1, and it varies in the
range (0.5,4) meV.

Let us investigate the spin-wave spectra for single-ion
tensor anisotropy parameters in the range discussed above.
Starting from the magnetic Hamiltonian Eq. (4), we calculate
the spin waves using two approaches. The first is based on
the standard HP transformation and the second on HCB spin-
wave theory. The latter [24] accounts explicitly for longitudi-
nal amplitude modes. Details on the approaches, generalized
to the specific case of Ca2RuO4, are given in Appendices. The
magnon dispersion depends on the parameters ε, γ , but also
on the Fourier transform of the magnetic exchange couplings,


s,s′
k = 1

2

∑
j>0


0s; js′eik·(R js′ −R0s ),

where R js are Ru position vectors. Its average is 
k =
−∑

s 
1,s
k σ1σs, where the weights σs distinguish the A- and

B-magnetic configurations; we find 
0 ∼ 11 meV for the A
configuration and a somewhat smaller value, 
0 ∼ 9.8 meV,
for the B configuration.

The main results are summarized in Fig. 4 (HP spin-wave
theory) and in Fig. 5 (HCB spin-wave theory); calculations
are compared to the experimental data from Refs. [1–3]. In the
limit case ε = γ = 0, the HP and the HCB spin-wave theory
yield the same transverse modes. For finite ε and γ , the two
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FIG. 5. The magnon dispersion of Ca2RuO4 obtained via HCB spin-wave theory. Dots: Experimental points showing the maximum of
intensity, taken from Fig. 2(a) in Ref. [3]. Empty circles: Experimental longitudinal modes, taken from Fig. 2(c) in Ref. [3]. Line: Theory.
For each considered parameter choice, the associated ordered magnetic moments along the b axis, Mb, is specified in the figure. Magnetic
configuration: A-centered. Left panels: Effect of varying ε for constant γ . Right panels: Effect of varying γ for constant ε. Special points:
X = (π, 0, 0), M = (π, π, 0), 2X = (2π, 0, 0), 
 = (0, 0, 0). The mode intensity scale is given on the right of each panel.

methods give qualitatively similar but not identical spectra; to
reproduce the experiments with comparable accuracy, in HCB
spin-wave theory a larger in-plane anisotropy γ is needed,
due to the different treatment of the zero-field term. To better
disentangle the effects of ε and γ , in the left panels of Figs. 4
and 5 we fix γ and vary ε, and do the opposite in the right
panels. In the case relevant here, γ 	 ε, 
0. In this regime,
increasing ε while keeping all the rest fixed has the main effect
of increasing the spin-wave bandwidth. Increasing γ for fixed
ε instead opens a gap, which increases with γ , faster in HP
than in HCB spin-wave theory.

The spectra displayed in Figs. 4 and 5 evidence two points.
The first is that the value of small parameters, which eventu-
ally determine γ , are difficult to extract from experimental
data with high accuracy, since they depend on a number
of theoretical assumptions (e.g., a small neglected term in
the Hamiltonian or the approximations implicit in spin-wave
theory), in addition to experimental uncertainties or complica-
tions. For instance, in the presence of oxygen excess, or when
Ru is partially replaced by Ti, magnetic moments can arrange
in the B-type configuration; for the latter, the theoretical spin-
wave bands are narrower, everything else staying the same.
The second (and most important) point is that, despite these

uncertainties, the pseudo-Goldstone modes are qualitatively
very well reproduced with parameters close to those we
obtain theoretically within the xy-like orbital ordering picture.
Optimal parameters are ε ∼ 25 meV, with γ between 0.5 and
1.2 meV for HP spin waves or γ ∼ 4 meV for HCB spin
waves—values all within the interval of variation theoretically
predicted.

We now turn to analyze the longitudinal modes, using the
same parameters. In Fig. 6, we split the total intensity into its
transverse components, Ia(q) and Ic(q), and its longitudinal
component, Ib(q); the easy axis here is b. We find longitudinal
modes in the energy interval (40,50) meV, as shown in the
right panel of the figure; this is also the energy window in
which the putative Higgs mode was reported [3] (circles).
The figure shows that the intensity Ib(q) 	 Ia(2X ), in line
with the fact that the mode is difficult to detect; still, in our
calculation, Ib(q) is comparable to Ic(q), and with the inten-
sity of back-folded modes. An intrinsic longitudinal Higgs-
like mode at ω ∼ 50 meV thus appears compatible with xy-
like orbital ordering, if experimentally observable despite
the low intensity; small discrepancies in intensity dispersion
are reasonable given theoretical assumption (e.g., decay pro-
cesses are here neglected), experimental uncertainties and the
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FIG. 6. Magnon dispersion (HCB spin-wave theory) for the A-type magnetic configuration. Dots: Experimental points corresponding to
maximum of intensity (from Fig. 2(a) in Ref. [3]). Empty circles: Experimental longitudinal modes (from Fig. 2(c) in Ref. [3]). Lines: Theory
(ε = 25 meV, γ = 4 meV). Special points: X = (π, 0, 0), 2X = (2π, 0, 0), M = (π, π, 0), 
 = (0, 0, 0). The mode intensity scale is given
on the right.
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FIG. 7. Ca2RuO4: Normalized magnetic intensity of two-
magnon longitudinal fluctuation Ib(q) at the ferro- (q = 
) and
antiferromagnetic zone center (q = 2X ). Parameters: ε = 25 meV
and γ = 0.5 meV, HP spin-wave theory. The results from HCB
spin-wave theory (ε = 25 meV, γ = 4 meV) at representative q
points is shown for comparison. Full lines: A-centered magnetic
configuration.

weakness of the signal discussed above. In view of the latter, it
is interesting to compare the relative intensity of the intrinsic
longitudinal mode with the one associated with longitudinal
two-magnon excitations. This is done in Fig. 7; due to the
large gap and energy of the longitudinal mode, we neglect here
absorption processes. The figure shows that the maximum
relative two-magnon intensity is comparable with that of the
intrinsic longitudinal mode, but at ω ∼ 50 meV appears lower
in comparison.

IV. CONCLUSION

We have studied the stability of xy-orbital ordering and the
origin of the longitudinal magnetic excitations in Ca2RuO4.
To this end, we employed a combination of LDA + DMFT
calculations and many-body perturbation theory. We have
shown that the realization of the nonperturbative spin-orbit
regime requires that the crystal-field splitting is reduced to
about one-half the LDA value, everything else staying the
same. This is a sizable reduction. We therefore confirm
that the xy-like orbitally ordered ground state is robust in
Ca2RuO4. Furthermore, we obtain xy-like orbital ordering
also in the much less distorted S-Pbca phase of Ca2−xSrxRuO4

with 0 < x < 0.2 and in the recently identified S∗ phase. It
would be very interesting to explore if further reduction of
local distortion, sufficient to enter the nonperturbative spin-
orbit regime, can be achieved via novel chemical engineering,
e.g., by replacing partially Ca with other ions such as rare
earths [35] or Ba, perhaps in combination with strain [27,35].

Although in Ca2RuO4 the spin-orbit interaction can be
treated as a perturbation, its effects are nevertheless crucial for
describing the spin-wave spectra, since it yields anisotropic
spin-interaction terms. In the xy-like orbital ordering regime,
magnetism can be described by a minimal effective S = 1
spin model with zero-field-splitting. Within experimental and
theoretical error bars, this model describes well the transverse
pseudo-Goldstone modes. By using HCB spin-wave theory,
we show that, in addition, it yields a longitudinal amplitude
mode at ∼50 meV. Its intensity is very weak compared to
the lowest energy transverse modes, but it appears larger than
the one associated with the two-magnon process at the same

energy—in the limit in which magnon-magnon scattering
and decaying processes can be neglected. While additional
experiments would be desirable for the final conclusion, our
results indicate that an intrinsic Higgs-like amplitude mode
at ω ∼ 50 meV with very weak intensity is compatible with
xy-like orbital ordering.
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APPENDIX A: HARD-CORE BOSON SPIN-WAVE THEORY

Here we describe HCB spin-wave theory [24] extended to
the case of Ca2RuO4. The single-ion tensor in Hamiltonian
Eq. (4) is described via the two parameters ε and γ as
discussed in the main text. The directional bosons are

â†
js;a = − 1√

2
(â†

js;1 − â†
js;−1),

â†
js;b = + i√

2
(â†

js;1 + â†
js;−1),

â†
js;c = â†

js;0,

with the on-site hard-core constraint

n̂ js =
∑

μ=a,b,c

â†
js;μâ js;μ = 1. (A1)

The components of a spin operator are then given by

S js;μ = −i
∑

ν,ξ=a,b,c

εμνξ â†
js;ν â js;ξ .

In the following, we assume that b is the easy axis. The
condensate HCB creation operators are defined as

b̂†
js;0 = uσsâ

†
js;c − ivâ†

js;a.

Here u and v are real numbers and u2 + v2 = 1; for conve-
nience, we set u = √

(1 − r)/2 and v = √
(1 + r)/2. The in-

tegers {σs} specify the collinear magnetic order inside the cell;
in the case of Ca2RuO4, we have {σs} = {1,−1,−1, 1} for the
so-called A-centered configuration and {σs} = {1, 1,−1,−1}
for the B-centered configuration. The orthonormal HCBs de-
scribing longitudinal (along the b axis) spin fluctuations are
then

b̂†
js;L = uσsâ

†
js;a − ivâ†

js;c,

while

b̂†
js;T = â†

js;b

are the operators for transverse hard-core modes, i.e., for
spin fluctuations perpendicular to the direction of the ordered
moment. Next we introduce the Fourier transform


s,s′
k = 1

2

∑
j>0


0s; js′eik·(R js′ −R0s ),
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where R js are Ru atom position vectors. Its site-weighted
average is 
k = −∑

s 
1,s
k σ1σs and it is positive for antiferro-

magnetic couplings. The constraint that the classical ground
state minimizes the energy yields r = (ε − γ )/4
0, so Mb =
|〈S js;b〉| = √

1 − r2. Keeping up to quadratic terms in the b̂
HCBs, the spin Hamiltonian can be rewritten as

H =
∑
kmss′

[
εs,s′

km b̂†
ks;mb̂ks′;m

− 1

2
s,s′

km

(
b̂†

ks;mb̂†
−ks′;m + b̂ks;mb̂−ks′;m

)]
, (A2)

where m = L, T and

εs,s′
kL =2r2
s,s′

k + 4
0δs,s′ ,

s,s′
kL =2r2
s,s′

k ,

while

εs,s′
kT = ((1 + σsσs′ ) + r(σsσs′ − 1))
s,s′

k

+
(

2
0 + ε + γ

2

)
δs,s′ ,

s,s′
kT = ((σsσs′ − 1) + r(1 + σsσs′ ))
s,s′

k . (A3)

This Hamiltonian can be diagonalized to obtain the spin-
wave dispersion ωm

k,s (s = 1, .., Ns) using the Bogoliubov
transformation matrix,⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b̂k1,m
.
.

b̂kNs,m

b̂†
−k1,m
.
.

b̂†
−kNs,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

T k,m
11 . . . . . . T k,m

1,2Ns

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

T k,m
2Ns,1

. . . . . . T k,m
2Ns,2Ns

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

β̂k1,m
.
.

β̂kNs,m

β̂
†
−k1,m
.
.

β̂
†
−kNs,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where Ns is the number of magnetic ions in the magnetic unit
cell. The T̂ matrices yield the magnetic intensities:

Ib
p,L(q) = r2

∣∣∣∣∑
s,s′

ReF bL
ss′;p(q)

∣∣∣∣,
Ic

p,T (q) = 1 − r

2

∣∣∣∣∑
s,s′

ReF cT
ss′;p(q)

∣∣∣∣,
Ia

p,T (q) = 1 + r

2

∣∣∣∣∑
s,s′

σsσs′ReF aT
ss′;p(q)

∣∣∣∣.
The matrices on the right-hand side are defined as

F dm
ss′;p(q) = T q,m

Ns+s,pT q,m
Ns+s′,p + T q,m

s,p T q,m
s′,p

+ αd T q,m
Ns+s,pT q,m

s′,p + αd T q,m
s,p T q,m

Ns+s′,p,

where αd = −1 for d = b, a and αd = 1 for d = c.
For ε = γ = 0, the parameter r = 0 and the transverse

modes are the same as in HP spin-wave theory; furthermore,
when ε = γ the longitudinal mode has k-independent energy.
The principal difference with respect to HP spin-wave theory,
besides the inclusion of longitudinal amplitude modes, is that
the effects of the zero-field splitting are treated under the
hard-core constraint Eq. (A1).

APPENDIX B: LONGITUDINAL TWO-MAGNON
FLUCTUATIONS

Here we calculate the magnetic intensities based on the HP
transformation. If b is the magnetization axis, we have

Sb
js = σs(S − b̂†

jsb̂ js),

Sc
js =

√
2S

2

[(√
1 − b̂†

jsb̂ js

2S

)
b̂ js + b̂†

js

(√
1 − b̂†

jsb̂ js

2S

)]

≈
√

2S

2
(b̂ js + b̂†

js),

Sa
js = σs

√
2S

2i

[(√
1 − b̂†

jsb̂ js

2S

)
b̂ js − b̂†

js

(√
1 − b̂†

jsb̂ js

2S

)]

≈ σs

√
2S

2i
(b̂ js − b̂†

js).

Keeping up to quadratic terms, Hamiltonian Eq. (4) becomes,
after subtracting the energy of the ground state,

H =
∑
ks,s′

[
εs,s′

k b̂†
ksb̂ks′ − s,s′

k

2
(b̂†

ksb̂
†
−ks′ + b̂ksb̂−ks′ )

]
,

where

εs,s′
k = S

(
(1 + σsσs′ )
s,s′

k + (2
0 + ε + γ )δs,s′
)
,

s,s′
k = S

(
(σsσs′ − 1)
s,s′

k − 4r
0δs,s′
)
. (B1)

We can obtain the spin-wave dispersion ωk,s (s = 1, .., Ns)
via Bogoliubov transformation. The transformation matrix T̂
yields the transverse intensities:

Ia
p,T (q) = S

2

∣∣∣∣∑
s,s′

σsσs′ReF a
ss′;p(q)

∣∣∣∣,
Ic

p,T (q) = S

2

∣∣∣∣∑
s,s′

ReF c
ss′;p(q)

∣∣∣∣.
The (relative) longitudinal two-magnon fluctuations intensity
can be then defined as the k average,

Ib(q, ω) =
〈∣∣∣∣∑

s,s′
σsσs′ReF p,p′;+

s,s′ (k; q)

∣∣∣∣
〉

k
,

where

〈X (k; q)〉k =
∑

k

∑Ns
p,p′ X (k, q)δ(ω − Ek,p − Ek+q,p′ )∑
k

∑Ns
p,p′ δ(ω − Ek,p − Ek+q,p′ )

.

The F functions are defined as

F d
ss′;p(q) = T q

Ns+s,pT q
Ns+s′,p + T q

s,pT q
s′,p

+ αd T q
Ns+s,pT q

s′,p + αd T q
s,pT q

Ns+s′,p,

F p,p′;+
s,s′ (k; q) = T k

s′,Ns+pT k
s,Ns+pT k+q

s,p′ T k+q
s′,p′

+ T k
Ns+s′,Ns+pT k

s,Ns+pT k+q
s,p′ T ′k+q

Ns+s′,p′ .
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