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A recent work [S. Sachdev et al., Phys. Rev. B 99, 054516 (2019)] proposed a SU(2) gauge theory for optimal
doping criticality in the cuprate superconductors. The theory contains Nh Higgs fields transforming under the
adjoint representation of SU(2), with Nh = 1 for the electron-doped cuprates and Nh = 4 for the hole-doped
cuprates. We investigate the strong-coupling dynamics of this gauge theory, while ignoring the coupling to
fermionic excitations. We integrate out the SU(2) gauge field in a strong-coupling expansion and obtain a lattice
action for the Higgs fields alone. We study such a lattice action, with O(Nh ) global symmetry, in an analytic
large-Nh expansion and by Monte Carlo simulations for Nh = 4 and find consistent results. We find a confining
phase with O(Nh ) symmetry preserved (this describes the Fermi-liquid phase in the cuprates), and Higgs phases
(describing the pseudogap phase of the cuprates) with different patterns of the broken global O(Nh ) symmetry.
One of the Higgs phases is topologically trivial, implying the absence of any excitations with residual gauge
charges. The other Higgs phase has Z2 topological order, with “vison” excitations carrying a Z2 gauge charge.
We find consistent regimes of stability for the topological Higgs phase in both our numerical and analytical
analyses.

DOI: 10.1103/PhysRevB.101.205124

I. INTRODUCTION

A previous study of a (2+1)-dimensional cuprate gauge
theory, developed in Ref. [1], fractionalized the spin-density-
wave (SDW) order parameter by going to a rotated refer-
ence frame in spin space and obtained a theory of Higgs
fields with multiple (Nh) flavors which are charged under
an emergent local SU(2) gauge field. The Higgs fields also
transform under the lattice space group and time reversal;
consequently, these symmetries can be broken in the Higgs
phase. It was found that the symmetry-breaking transitions
associated with these Higgs fields lead to a variety of order
parameters—constructed as gauge-invariant bilinear or trilin-
ear combinations—which are consistent with the symmetry-
breaking patterns observed in experiments on cuprates near
optimal doping. Further, upon considering electronic degrees
of freedom coupled to the Higgs fields, a rather natural
description of the pseudogap phase emerged [1].

In this paper, we wish to consider the strong-coupling
dynamics of the SU(2) gauge theory in more detail. Apart
from the Higgs phase where the Higgs fields are condensed,
there can also be a confining phase where there are no
excitations associated with the Higgs fields, and the elec-
tronic degrees of freedom resume normal Fermi-liquid behav-
ior. Hence, in this description, the pseudogap is associated
with the Higgs phase, and Fermi liquid with the confined
phase. [We note a recent study of (2+1)-dimensional SU(2)
gauge theory with scalar fields [2]: in this work, the scalars
transformed as fundamentals of the gauge SU(2), rather
than the adjoint representation in our case. This difference
is important and leads to different structures in the phase
diagram.]

Moreover, the pseudogap/Higgs phase can have a topo-
logical structure beyond that associated with broken global
symmetries. This structure is associated with any gauge group
left unbroken by the Higgs condensate [3] and is also tied to
the pattern of broken global symmetry. It was found that de-
pending upon parameters, the Higgs condensate could break
the SU(2) gauge symmetry down to U(1) or Z2. The U(1)
gauge field confines in 2+1 dimensions, and so the U(1) case
is ultimately topologically trivial. However, the Z2 case leads
to Z2 topological order [4,5], with deconfined excitations
carrying Z2 electric and magnetic gauge charges. Specifically,
the Z2 magnetic charges are carried by vortex configurations
(“visons”) in the Higgs fields, while the Z2 electric charges
are carried by gapped spinons excitations.

We note that an earlier study [6] of a (2+1)-dimensional
SU(2) lattice gauge theory with a single (Nh = 1) adjoint
Higgs field also considered the case where the Higgs phase
breaks the SU(2) down to U(1) [7]. In this case, the confining
and Higgs phases were found to be continuously connected,
and the theory has only one phase and no phase transition.
However, in our case, the topologically trivial Higgs phase
does break global symmetries for Nh > 1, and so even the
trivial Higgs and confining phases remain separated by a
phase transition.

The objective of the present work is to study the strong-
coupling dynamics of the (2+1)-dimensional SU(2) gauge
theory with Nh > 1 adjoint Higgs fields. For simplicity, we
will generalize the space-group symmetries of the model
of Ref. [1] to O(Nh). We will also neglect the coupling to
Fermi-surface excitations here, but address this issue in a
forthcoming work. We will begin with a lattice discretization
of the action of Ref. [1], and integrate out the SU(2) gauge
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field to obtain the following lattice action for the Higgs fields
alone:

S0 = − J

2Nh

∑
〈i j〉

Ha�(i)Ham(i)Hb�( j)Hbm( j)

+ u1

2Nh

∑
i

Ha�(i)Ham(i)Hb�(i)Hbm(i). (1)

Here, i labels the sites of a cubic lattice and Ha�(i) is the real
Higgs field, with a = 1, 2, 3 the SU(2) adjoint gauge index,
and � = 1 . . . Nh the flavor index. Note that S0 is invariant
under local SU(2) gauge transformations, but only under
global O(Nh) flavor rotations. We also find it convenient to
impose a fixed length constraint on every lattice site i,∑

a�

H2
a�(i) = Nh. (2)

The action S0 comprises a gauge-invariant hopping term J
that is quartic in Higgs fields, as well as a quartic potential
u1 inherited from the original model.

We now define a gauge-invariant order parameter which is
a second-rank traceless tensor in the global O(Nh) symmetry,

Q�m(i) = Ha�(i)Ham(i) − δ�m

Nh
Han(i)Han(i). (3)

This order parameter will diagnose the broken symmetries
across the phase diagram. The Z2 topological order is more
subtle to extract directly: we provide evidence for it in the
context of the large-Nh expansion of S0, and the pattern of
symmetry breaking in the Monte Carlo (MC) study.

We will study the effective lattice action S0 using both a
large-Nh saddle-point analysis and numerical MC simulations.
We will establish that the competition between the two terms
in S0 in Eq. (1) allows for the three phases discussed above:

(i) Confining: The Higgs field is fully “disordered” and the
global O(Nh) symmetry is preserved. This corresponds to the
overdoped Fermi liquid in the cuprates.

(ii) Trivial Higgs: The Higgs condensate breaks the SU(2)
gauge symmetry down to U(1), which ultimately confines.
The O(Nh) symmetry is broken down to O(Nh − 1). This is
a possible pseudogap phase for the cuprates and is separated
from the confining phase above by a phase transition because
of the broken symmetry.

(iii) Topological Higgs: The Higgs condensate breaks the
SU(2) gauge symmetry down to Z2, and there is Z2 topologi-
cal order. For Nh > 3, the global O(Nh) symmetry is broken to
O(3) × O(Nh − 3). This is also a possible pseudogap phase.

The reader will notice that for the special case of Nh = 4 of
interest to us, the patterns of symmetry breaking in the trivial
and topological Higgs phases are the same: O(4) is broken
down to O(3) in both cases. Nevertheless, as we shall show,
it is possible to distinguish these cases by more carefully
studying the manner in which O(4) breaks down to O(3). Also,
for the cases of Nh = 2, 3, the topological Higgs phase has no
symmetry breaking; nevertheless the topological Higgs phase
remains distinct from the confining phase because of its Z2

topological order.
The outline of the paper is as follows: Section II details

the strong-gauge coupling expansion employed to obtain the
lattice action for the Higgs field alone, S0 (1). In Sec. III,

we rewrite the effective action S0 using Hubbard-Stratonavich
decoupling fields, and subsequently solve the saddle-point
equations in the limit of Nh → ∞. In this large-Nh description,
we produce the phase diagram of the model, which hosts the
confined phase, as well as the trivial and topological Higgs
phases. In Sec. IV, we turn to a numerical MC analysis of the
effective action S0 (1), with the physically relevant Nh = 4.
We employ two observables to diagnose the various phases.
Finally, we discuss our results in Sec. V.

II. STRONG-COUPLING EXPANSION

We sketch the details of the strong-coupling expansion,
which also allows us to review the model studied originally
[1]. We consider a theory of real Higgs fields Ha�, where a =
1, 2, 3 is the SU(2) adjoint gauge index, while � = 1 . . . Nh is
the flavor index. We will arrive at a theory for this Higgs field,
which is a discrete-time analog of the Schwinger boson theory
of antiferromagnets.

A. Lattice model

The strong-gauge coupling expansion demands that we
work on the lattice. The lattice form of the Euclidean
action/Lagrangian is (see, e.g., [8])

S = a3
∑

i

{
(3κ + s)Tr[Ĥm(i)Ĥm(i)]

− κ
∑

μ

Tr[Ĥm(i)Ûμ(i)Ĥm(i + aêμ)Û †
μ (i)]

+ c0[Ham(i)Ham(i)]2

+ c1

{
Hal (i)Ham(i)Hbl (i)Hbm(i) − 1

Nh
[Ham(i)Ham(i)]2

}

+ β
∑
μ>ν

(
1 − 1

2
Tr Ĝμν (i)

)}
, (4)

where κ = 4/a2, β = 4/(ga2)2, and a is the lattice spacing;
summation is over the elementary unit cell, whereby êμ =
{êx, êy, êτ }; trace is over gauge indices, and summation over
flavors m is implied. The Higgs field, gauge field link, and
Yang-Mills plaquette operators are given by

Ĥm(i) = Ham(i)τ a, (5)

Ûμ(i) = eiaAaμ(i)τ a
, (6)

Ĝμν (i) = Ûμ(i)Ûν (i + aêμ)Û †
μ (i + aêμ + aêν )Û †

ν (i + aêν ),

(7)

where τ a are Pauli matrices, with normalization Tr[τ aτ b] =
δab/2. The gauge link and plaquette operators follow the
usual lattice-gauge transformation laws [8]. From Eq. (7), we
see that the Yang-Mills plaquette operator Ĝμν (i) is just the
parallel transport around the elementary unit cell.

B. Strong-coupling expansion

Due to strong coupling g → ∞, the kinetic Yang-Mills
action is neglected and then each gauge link, Ûμ(i), is an
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FIG. 1. Diagrammatic representation of the strong-gauge cou-
pling expansion. Operators D̂, P̂ correspond to the double Higgs and
Higgs plaquette. We see that D̂ does not require any gauge plaquette
terms � at leading order, while the P̂ requires two gauge plaquettes
at leading order. Definitions are shown on the right-hand side.

independent random SU(2) matrix. We choose to parameter-
ize each such link by the three Euler angles θ̄ = {θ, ψ, φ},

U (θ̄ ) = cos θ σ̂0 + i sin θ sin ψ cos φ σ̂1 + i sin θ cos ψ σ̂2

+ i sin θ sin ψ sin φ σ̂3. (8)

At strong coupling, we may treat the random Higgs-hopping
term Tr[Ĥm(i)Ûμ(i)Ĥm(i + μ̂)Û †

μ (i)] as a perturbation, even
though this is not formally an expansion in 1/g2. Expanding
the partition function in this hopping term generates terms
such as∫

[DU ]Tr[σaU (θ̄ )σbU
†(θ̄ )] ≡ 〈Tr[σaU (θ̄ )σbU

†(θ̄ )]〉U = 0.

(9)

The expectation value must vanish since it transforms non-
trivially under SU(2) transformations; the integration over
[DU ] evaluates to zero. To consider higher-order terms, it is
convenient to first define the adjoint matrix,

Uab(θ̄ ) ≡ 1
4 Tr[σaU (θ̄ )σbU

†(θ̄ )], (10)

with normalization Tr(σaσa) = 6. The nonvanishing terms in
the expansion of the Higgs hopping will need to be invariant in
the adjoint indices. We find, for example (with no contraction
over a, b indices), that

〈Uab(θ̄ )〉U = 0, (11)

〈Uab(θ̄ )Uab(θ̄ )〉U = 1
12 , (12)

〈Uab(θ̄1)Uab(θ̄2)〉U = 0. (13)

Here, θ̄1 �= θ̄2 signifies different gauge links. The nonzero
expectation value above implies that the lowest-order expan-
sion does not require a 1/g2 gauge-plaquette expansion to
compensate; see Fig. 1 for a diagrammatic representation. We
call this term the double Higgs link D̂. The contribution to the
action is then the gauge field averaged,

〈D̂〉U ∼ κ2
∑
〈i j〉

Hal (i)Ham(i)Hbl ( j)Hbm( j), (14)

which is manifestly gauge invariant. Higher-order terms, such
as the Higgs-plaquette term P̂ of Fig. 1, are derived in
Appendix A. We neglect such a term in the present analysis

since we will find that the double Higgs link D̂ is already
sufficient to generate the expected topological properties of
the underlying gauge theory.

Imposing the constraint in Eq. (2) and reexponentiating the
double Higgs link term (14), we arrive at the effective action
S0 in Eq. (1) on the three-dimensional cubic lattice.

III. LARGE-Nh LIMIT

We set up the large-Nh expansion by writing the partition
function as

Z =
∫ ∏

〈i j〉
dAab(i, j)

∏
i

dBab(i)
∏

i

dλ(i)
∏

i

dHa�(i) e−S,

S =
∑
〈i j〉

{
Nh[Aab(i, j)]2

2J
− Aab(i, j)Ha�(i)Hb�( j)

}

+
∑

i

{
Nh[Bab(i)]2

8u1
+ i

Bab(i)

2
Ha�(i)Hb�(i)

+i
λ(i)

2
[Ha�(i)Ha�(i) − Nh]

}
. (15)

For the fluctuations to be stable, the signs and factors of i have
been chosen assuming u1 > 0. But the formalism works for
both signs of u1, and we just have to rotate the contour for B
in the fluctuations for u1 < 0. We are interested in the case of
J > 0.

A. Saddle-point phase diagram

We begin by providing the results of the saddle-point
analysis—the details of which are left for Secs. III B and III C.
Comparing the free energies of the disordered, topological,
and trivial phases obtained in the saddle-point analysis, we
arrive at the phase diagram shown in Fig. 2. Noteworthily,
we find that all phase boundaries are of first order. Also
shown in Fig. 2 is the topological-to-trivial phase transition as
determined by MC simulations of the parent action S0 (1), for
which we take the physical number of Higgs flavors, Nh = 4.
Details of the identification of the phase transition from MC
simulations are provided in Sec. IV.

We now outline how the saddle-point solutions were ob-
tained; further details are provided in Appendix B.

B. Confining phase

In the confining phase, the Higgs field is fully disordered
and maintains the O(Nh) global symmetry. This places no
restrictions on the other decoupling fields appearing in the
action S in Eq. (15); here we will assume a gauge-invariant
saddle point, such that in the limit Nh → ∞, the saddle-point
fields are

Hal (i) = 0, (16a)

Aab(i, j) = δabA0, (16b)

iBab(i) = δabB0, (16c)

iλ(i) = λ. (16d)
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FIG. 2. Phase diagram. Colored regions correspond to the phases
found in the saddle-point approximation (Nh → ∞). Black empty
circles correspond to the topological-to-trivial phase transition as
found in MC simulations of the parent model at Nh = 4, and with
system size L3; L = 12. We refer to the thin strip of trivial Higgs
phase (yellow) between the confining (orange) and topological Higgs
(blue) as the “wedge.”

It follows that the propagator of the Higgs field is diagonal
in flavor and color indices and is given by

G(k) = 1

A0[6 − 2 cos(kx ) − 2 cos(ky) − 2 cos(kτ )] + m2
,

(17)
where the mass gap relates to the saddle-point fields via

m2 = λ + B0 − 6A0. (18)

In the large-Nh limit, the free-energy density F , obtained by
integrating over the Higgs fields Hal (i), is

F

Nh
= 3

[
3A2

0

2J
− B2

0

8u1

]
− λ

2
− 3

2

∫ π

−π

d3k

8π3
ln[G(k)], (19)

which relates to the partition function via Z = e−FV , where
V is the Euclidean volume. Minimizing the free energy,
the saddle-point equations determining A0, B0, and m2 are
obtained:

3
∫ π

−π

d3k

8π3
G(k) = 1, (20a)

J
∫ π

−π

d3k

8π3
cos(kx )G(k) = A0, (20b)

B0 = 2

3
u1. (20c)

There are two classes of solutions to these saddle-point
equations in the disordered phase: those with A0 = 0 and
those with A0 �= 0. In the first case, the saddle point admits
a particularly simple solution,

A0 = 0; λ̄ = 3 − B0 = 3 − 2u1

3
, (21)

from which it follows that the free energy is independent of J ,

F

Nh
= u1

6
− 3

2
(1 − ln 3). (22)

Details presented in Appendix B 1 show that the A0 �= 0
solutions always possess a higher free energy in the (J, u1)
phase diagram, and hence would only appear as metastable
states.

C. Higgs phases

In the ordered phases, we proceed as in Ref. [9]. More-
over, we follow Ref. [1] and note that—by the singular-value
decomposition theorem—any Higgs field can be written in
the form

Hal = O1;abWbmO2;ml , (23)

where O1 and O2 are orthogonal matrices in color and flavor
spaces, respectively, and W is a rectangular matrix with only
p ≡ min(3, Nh) nonzero elements along its diagonal, which
are all non-negative. Owing to this decomposition, we write
the Higgs field using the following ansatz:

Ha�(i) = √
NhH0aδa� + H1a�(i), (24)

where H0a is a possible nonzero, site-independent saddle-
point value, and we integrate over the additional fluctuations,
H1al (i), around the saddle point. We allow the other saddle-
point variables to depend upon the color indices by writing

Aab(i, j) = δabA0a,

iBab(i) = δabB0a,

iλ(i) = λ . (25)

In the large-Nh limit, the free-energy density F , obtained by
integrating over the H1al (i), is

F

Nh
=
∑

a

[
3A2

0a

2J
− 3A0aH2

0a − B2
0a

8u1
+ B0a

2
H2

0a

]

+λ

2

(∑
a

H2
0a − 1

)
− 1

2

∑
a

∫ π

−π

d3k

8π3
ln[Ga(k)], (26)

where the Green’s function obtains a color index, and is
given by

Ga(k) = 1

λ + B0a − 2A0a[cos(kx ) + cos(ky) + cos(kτ )]
.

(27)

We now study the saddle-point equations of (26) with respect
to H0a, A0a, B0a, and λ. [Note that we cannot just globally
minimize F because of the i’s in (15).] The saddle point of the
action with respect to the H0a gives us the three equations

λH0a = (−B0a + 6A0a)H0a, for all a, with no sum over a.
(28a)

We do not cancel out the H0a in (33) because H0a could vanish
for some a. The saddle point with respect to λ is

∑
a

[
H2

0a +
∫ π

−π

d3k

8π3
Ga(k)

]
= 1. (28b)
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Finally, the saddle-point equations with respect to A0a

and B0 are

J
∫ π

−π

d3k

8π3
cos(kx )Ga(k) = A0a − JH2

0a, (28c)

B0a = 2u1

[
H2

0a +
∫ π

−π

d3k

8π3
Ga(k)

]
.

(28d)

Note that Eq. (28) reduces to (20) when H0a = 0 and A0a,
B0a are taken to be independent of a.

We now have to solve the 10 equations (28a), (28b), (28d)
for the 10 variables H0a, A0a, B0a, and λ as a function of J and
u1. There will be two types of solutions: one in which only one
of the H0a is nonzero and the other in which all H0a are equal
to each other—this corresponds to the topological phase, as
deduced by the global and gauge symmetry-breaking patterns,
which is discussed in [1], yet we outline the argument here
for continuity of presentation. The gauge symmetry is SU(2);
condensing one Higgs flavor reduces this to a remnant U(1)
which corresponds to rotations about the axis set by the
condensed field, while all Goldstone modes are Higgsed, i.e.,
gapped. It is well established that the gapped U(1) gauge
theory is ultimately in a confining phase, yet the confinement
lengthscale depends on the details of the system. This is the
trivial Higgs phase and is achieved in the saddle point by
just one Hal �= 0. We mention that Berry phase interference
effects could act to deconfine the U(1) gauge theory [10];
we do not consider such effects in this work. Alternatively,
condensing multiple Higgs flavors, with some orthogonal
components, breaks the SU(2) gauge down to Z2 (since the
Higgs fields themselves are in the adjoint representation). This
remnant Z2 gauge theory is naturally deconfined, supporting
Z2 topological order. Condensing multiple Higgs flavors is
achieved by the saddle point with all H0a �= 0 and equal to
each other.

The true ground-state configuration will be the saddle-
point solution for which the free energy (26) is minimized. We
will now compute the saddle-point equations and free energy
for both cases.

1. Topological Higgs solutions

The topological solution can be obtained analytically. In
this phase, three classes of solutions arise; here we will present
just the dominant one, with the other two left for Appendix
B 2. For this solution, we have H01 = H02 = H03 ≡ H . By in-
spection of the saddle-point equations, the solution has A01 =
A02 = A03 ≡ A and B01 = B02 = B03 ≡ B. The solutions are
(with σ = ±)

Aσ = J

6
+ σ

1

6

√
J2 − 6J, (29a)

B = 2

3
u1, (29b)

λ̄σ = 6Aσ − B, (29c)

H2 = Aσ

J
− γ2

Aσ

(H is independent of the σ index),

(29d)

where the constant γ2 (and for later use, γ1) is defined as

γ1 =
∫ π

−π

d3k

(2π )3

1

6 − 2
∑

μ cos kμ

,

γ2 =
∫ π

−π

d3k

(2π )3

cos kx

6 − 2
∑

μ cos kμ

, γ1 − γ2 = 1

6
. (30)

The free energy in this phase can be written solely in terms
of A and B, and we find

F

Nh
= 9A2

2J
− 3B2

8u1
− 1

2
(6A − B)

+ 3

2

∫ π

−π

d3k

(2π )3
ln

[
A

(
6 − 2

∑
μ

cos kμ

)]
. (31)

This is straightforward to evaluate using the relations above
(29a) and (29b). Recalling that there are two solutions in
Eq. (29), labeled by σ = ±, we have to compare the two
different values,

1

Nh
Fσ (u1, J ) = 1

24

{
−6J − 6σ [

√
(J − 6)J + 3σ ]

−36 ln

[
6√

(J − 6)Jσ + J

]
+ 4u1

}
+ c,

(32)

c ≡ −3

2

∫ π

−π

d3k

(2π )3
ln

[(
6 − 2

∑
μ

cos kμ

)]
= −2.51008.

(33)

It is easy to see that the σ = +1 root minimizes this free
energy. We note the simple result that Fσ (u1, J ) is linear in
u1 (for the topological solution); moreover, the coefficient
1/6 is the same as the disordered phase, and hence the
critical point separating these two phases is independent of
u1—although the direct transition between disordered and
topological phases is masked by the trivial phase, as shown
next.

2. Trivial Higgs solution

The trivial solution is more difficult. In this phase, we set
H01 ≡ H and H02 = H03 = 0. Once again, there are multiple
classes of solutions and we present just the dominant —
leaving the other for Appendix B 3. By inspection, we can
set A01 ≡ A1 and A02 = A03 ≡ A2, and B01 ≡ B1 and B02 =
B03 ≡ B2. We can massage the saddle-point expressions ana-
lytically to express all fields in terms of just A1,

B1 = −λ̄ + 6A1, (34a)

B2 = u1 + 1

2
(λ̄ − 6A1), (34b)

H2 = A1

J
− γ2

A1
, (34c)

λ̄ = 6A1 − 2u1

J
A1 − u1

3A1
. (34d)

Finally, we have reduced the saddle-point equations to a
self-consistent equation in the single field variable A1, which
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reads

A2(A1) = J
∫ π

−π

d3k

(2π )3

cos kx

W (A1) − 2A2(A1)
∑

μ cos kμ

. (35)

We notice one simple analytic solution: setting A2 = 0, we
get from Eq. (28d) a single polynomial equation in a single
variable A1,

1 = H (A1)2 + γ1

A1
+ 2

λ̄(A1) + B2(A1)
, (36)

which gives four roots, A1 = A(i)
1 , i = 1, 2, 3, 4. The roots can

be obtained analytically, although the expressions are lengthy.
Inserting Eq. (34) with A1 = A(i)

1 into Eq. (26), we obtain the
associated possible values of the free energy.

With the results of Secs. III B and III C at hand, it is
straightforward to compare the free energies of the different
dominant saddle-point solutions for the confining phase, the
trivial Higgs and the topological Higgs phases as a function
of J and u1; this leads to the phase diagram in Fig. 2.

IV. MC RESULTS

We perform MC simulations of the parent action S0 in
Eq. (1), with the physical value of Nh = 4. Details of the
MC updates schemes are provided in Appendix C. Here we
consider two diagnostics of the phases and transitions:

(i) The first diagnostic is based on the eigenvalues ωi > 0,
with i = 1, 2, 3, from the singular-value decomposition of
the Higgs field H0a (23). The saddle-point analysis predicts
that the trivial phase will possess inequivalent eigenvalues,
whereby ω1 > 0 and ω2 = ω3 = 0. Meanwhile, the topolog-
ical phase will have three degenerate nonzero eigenvalues,
ω1 = ω2 = ω3 > 0.

(ii) The second diagnostic is the scalar observable,

� = 1

V

∑
l,m

[∑
i

Qlm(i)

]2

, (37)

where Qlm(i) is the gauge-invariant order parameter (3).
According to the saddle-point analysis, � shows markedly
different behavior as a function of (u1, J ) for the topological
and trivially ordered configurations. Moreover, from (23), we
see that Q�m is related by global O(4) rotations to a diagonal
matrix,

Q�m = O2,�′�O2,m′m

⎛
⎜⎜⎜⎜⎝

3
4ω2

1 − 1
4ω2

2 − 1
4ω2

3 0 0 0

0 3
4ω2

2 − 1
4ω2

3 − 1
4ω2

1 0 0

0 0 3
4ω2

3 − 1
4ω2

1 − 1
4ω2

2 0

0 0 0 − 1
4ω2

1 − 1
4ω2

2 − 1
4ω2

3

⎞
⎟⎟⎟⎟⎠

�′m′

. (38)

Note that the diagonal elements equal
ω2

1(3/4,−1/4,−1/4,−1/4) in the trivial Higgs phase,
and equal ω2

1(1/4, 1/4, 1/4,−3/4) in the topological Higgs
phase. These configurations of Q�m are not equivalent to
each other and cannot be rotated to each other by a O(4)
transformation.

Taking, for example, ω1 = ω2 �= 0 and ω3 = 0, the di-
agonal elements equal ω2

1/2(1, 1,−1,−1), which implies a
symmetry-breaking pattern O(4) → O(2) × O(2); an analo-
gous case of this symmetry-breaking pattern was considered
in [11] for a different potential. From the MC simulations, we
do not find an O(2) × O(2) phase. From the large-Nh analysis,
the corresponding phase with O(Nh) → O(2) × O(Nh − 2)
appears only as a metastable phase, and has been considered
in Appendix B 2 as topological Higgs class III.

To obtain the first observable in the MC simulations, after
the thermalization is reached, we perform the singular value
decomposition (SVD) (23) at each site and average over the
system, giving the averaged eigenvalues 〈ωi〉. In Fig. 3, we
plot the averaged eigenvalues 〈ωi〉, and their evolution with
J for various u1. These are obtained from MC simulations
on lattices of size L3 with L = 12. The phase transition
between topological and trivial order is identified with the
large discontinuity in the eigenvalues as they transition from
nearly degenerate to nondegenerate. The corresponding phase
boundary estimate has already been plotted in Fig. 2, from

which we see qualitatively the same trend in transitioning
from the disordered or topological into the trivial phase, i.e., a
linear dependence of u1,c ∝ Jc. This agreement indicates that
1/Nh corrections do not destabilize the topological phase.

An additional feature is apparent from the eigenvalues for
u1 > 10 and J < Jc; see, e.g., J ∼ 20 in Fig. 3(d). This is
perhaps a sign of the small window (in J) of trivial phase
wedged between the disordered and topological phases—
as predicted by the saddle-point analysis and shown in
Fig. 2.

In Fig. 4, we plot the scalar � and its evolution with J for
various u1. The data are collected from simulations with L =
12. � is also calculated from the saddle-point equations by
taking the Higgs-field configuration of the trivial or topologi-
cal phases and computing at arbitrary (u1, J ). Comparing the
MC data with analytic results, we see quantitative agreement
for � deep within each of the topological and trivial Higgs
phases, i.e., away from the transition. As already observed
from the eigenvalue analysis, the precise numerical values
of the phase boundaries determined via MC simulations (at
Nh = 4) and analytically (for Nh → ∞) do not match. Hence
we cannot compare the two approaches in this vicinity. Reas-
suringly, the phase boundaries, as identified via 〈ωi〉 and �,
are indeed consistent.

We conclude this section by stating that both observables
give the same estimate for the topological-to-trivial phase
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FIG. 3. System-averaged on-site eigenvalues 〈ωi〉 of the Higgs field Hal (i) = O1;abWbm(i)O2;ml obtained via SVD. (a)–(d) correspond to
u1 = {10, 40, 60, 100}. System size L = 12.

boundary. And the combined results of (i) and (ii) paint a
convincing picture of the underlying phases and transitions.

V. DISCUSSION

We study phases of a SU(2) gauge theory with multiple
adjoint Higgs fields in 2 + 1 dimensions. Such a gauge theory
has been motivated physically as a theory for optimal doping
criticality in the cuprate superconductors [1], whereby the
confining phase corresponds to the Fermi liquid, while the
Higgs phases (both topological and trivial) are the candidates
for the pseudogap phase.

The primary motivation of the present work is to deter-
mine whether the phases of interest physically—the confining
(Fermi liquid), trivial, and topological Higgs (pseudogaps)—
are stable and survive at strong-gauge field coupling. To inves-
tigate, we employ two complementary approaches: an analytic
saddle-point analysis, which relies on a large number of
Higgs flavors (Nh → ∞), and a numerical MC analysis at the
physically relevant Nh = 4 Higgs flavors. We demonstrate that
all three phases are stable and occupy a nonzero volume in the
phase diagram. The results lend support to the SU(2) gauge
theory with multiple adjoint Higgs fields as a candidate low-
energy description of the optimally doped cuprates. Moreover,
the agreement between the Nh → ∞ saddle-point analysis
and that of the numerical Nh = 4 suggests that O(1/Nh)
corrections do not destabilize the phase diagram. This finding

also serves as a consistency check for future large-Nh analytic
studies of this model.

Aside from the original physical motivation, the present
work has established that the minimal model (1), which is
obtained from just the first-order expansion in the strong-
gauge coupling expansion (14), is sufficient to generate a
stable Z2 topologically ordered phase. We expect that such
generic minimal models will also be applicable in the context
of spin liquids.

Many open problems remain for future work, such as
the analysis of subleading corrections to our strong-gauge
coupling expansion or, ideally, a full numerical simulation
of the action in Eq. (4) taking into account the SU(2) gauge
fields. Another set of open questions, relevant in the context
of the cuprate superconductors or doped spin-liquid phases, is
related to the coupling of the Higgs fields to the electronlike
excitations around the Fermi surface. While naïve power
counting indicates that, e.g., the Higgs-field interactions in-
duced by the coupling to charge-density-wave fluctuations [1]
are irrelevant, it might still lead to nontrivial consequences: as
we will discuss in a forthcoming paper, this is related to the
fact that a systematic decoupling of these interactions requires
bilocal fields. Finally, a quantitative study of the resulting
spectral properties of the electrons, similar to what has been
done for a related theory where the elementary fermionic
fields only carry charge but no spin [12–14], remains for
future work. This could allow for a direct comparison with
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FIG. 4. Observable � as a function of J at fixed u1 = {10, 40, 60, 100} for (a)–(d), respectively. Dashed and solid black lines correspond
to � calculated from the saddle-point solutions, assuming either the trivial or topological phase, respectively. Yellow points are MC data taken
on system size L = 12.

numerics on the Hubbard model and photoemission experi-
ments on the cuprate superconductors.
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APPENDIX A: STRONG-COUPLING EXPANSION:
HIGGS AND GAUGE PLAQUETTES

We denote gauge plaquettes

�(θ̄1,θ̄2,θ̄3,θ̄4 ) ≡ Tr[U (θ̄1)U (θ̄2)U (θ̄3)U (θ̄4)], (A1)

and we find that only even powers integrate to nonzero,

〈�(θ̄1,θ̄2,θ̄3,θ̄4 )〉U
= 0, (A2)〈

�2
(θ̄1,θ̄2,θ̄3,θ̄4 )

〉
U

= 1. (A3)

Let us consider Higgs-hopping terms decorating an el-
ementary plaquette and expand in gauge plaquettes. The

lowest-order terms that are trivial in adjoint indices are

〈Uab(θ̄1)Ubc(θ̄2)Ucd (θ̄3)Uda(θ̄4)〉U = 0, (A4)

〈Uab(θ̄1)Ubc(θ̄2)Ucd (θ̄3)Uda(θ̄4) �(θ̄1,θ̄2,θ̄3,θ̄4 )〉U
= 0, (A5)〈

Uab(θ̄1)Ubc(θ̄2)Ucd (θ̄3)Uda(θ̄4) �2
(θ̄1,θ̄2,θ̄3,θ̄4 )

〉
U

= 1
16 , (A6)〈

Uab(θ̄1)Uab(θ̄1) �2
(θ̄1,θ̄2,θ̄3,θ̄4 )

〉
U

= 〈Uab(θ̄1)Uab(θ̄1)〉U

〈
�2

(θ̄1,θ̄2,θ̄3,θ̄4 )

〉
U

= 3
4 . (A7)

The final expectation value will not contribute to the expan-
sion since it will be canceled by the disconnected vacuum.
The contribution to the action is then

〈P̂〉U = 1

16

κ4

4!

2

2

β2

22

∑
〈i jkl〉∈�

Hah(i)Hal (i)Hbl ( j)

× Hbm( j)Hcm(k)Hcn(k)Hdn(l )Hdh(l ), (A8)

where P̂ is shown diagrammatically in Fig. 1. The factors
are as follows: 1/16 from average; κ4/4! from fourth-order
expansion of Higgs-gauge links; 2 from two directions around
a single plaquette; 1/2 from second-order expansion of the
gauge plaquette; and (β2/2)2 due to definition of gauge-
plaquette coupling constant. We caution the reader that the

205124-8



PHASES OF SU(2) GAUGE THEORY WITH MULTIPLE … PHYSICAL REVIEW B 101, 205124 (2020)

prefactor obtained in (A8) assumes a particular (clockwise)
orientation of 〈i jkl〉 ∈ � on the plaquettes.

APPENDIX B: SADDLE-POINT SOLUTIONS

1. Disordered with A0 �= 0

We also search for A0 �= 0 solutions. We make use of the
rearrangement

(λ̄ + B0)
1

3
− 6

J
A2

0 =
∫ π

−π

d3k

(2π )3
(λ̄ + B0 − 6A0 cos kx )G(k)

= 1 (B1)

⇒ λ̄ + B0 = 3

(
1 + 6

J
A2

0

)
. (B2)

Substituting into (20a) and (20b),

1 =
∫ π

−π

d3k

(2π )3

3

3
(
1 + 6

J A2
0

) − 6A0 + A0(6 − 2
∑

μ cos kμ)
,

(B3)

A0 = J
∫ π

−π

d3k

(2π )3

cos kx

3
(
1 + 6

J A2
0

) − 6A0 + A0(6 − 2
∑

μ cos kμ)
.

(B4)

We now manipulate

A0 = ∫ π

−π
d3k

(2π )3
3

β+(6−2
∑

μ cos kμ ) , (B5)

A2
0 = J

∫ π

−π

d3k

(2π )3

cos kx

β + (6 − 2
∑

μ cos kμ)
, (B6)

β ≡ 1

A0

[
3

(
1 + 6

J
A2

0

)
− 6A0

]
, (B7)

and solve numerically for β, using[∫ π

−π

d3k

(2π )3

3

β + (6 − 2
∑

μ cos kμ)

]2

= J
∫ π

−π

d3k

(2π )3

cos kx

β + (6 − 2
∑

μ cos kμ)
. (B8)

Finally, having obtained β as a function of J , we invert the
definition to find A0(β, J ), i.e.,

A±
0 (β, J ) = 1

36 [(β + 6)J ±
√

(β + 6)2J2 − 216J]. (B9)

We find that the A+
0 solution is inconsistent with the saddle-

point equations, and so we only keep A−
0 . For this solution,

J ∈ (6.67, 9), β ∈ (0,∞), and, therefore, 0 � A−
0 < 1. This

solution is also independent of u1.
Inspecting the free energy for class I, A0 = 0 (see main

text), and class II, A0 �= 0,

fI = u1

6
− 3

2
(1 − ln 3), (B10)

fII = u1

6
− 9A2

0

2J
− 3

2

{
1 −

∫ π

−π

d3k

(2π )3
ln

[
3

(
1 + 6

J
A2

0

)
− 6A0 + A0

(
6 − 2

∑
μ

cos kμ

)]}
, (B11)

we see (via numerical evaluation) that the difference is positive for all A−
0 (J ),

fII − fI = −9A−
0 (J )2

2J
+ 3

2

∫ π

−π

d3k

(2π )3
ln

{
3

[
1 + 6

J
A−

0 (J )2

]
− 6A−

0 (J ) + A−
0 (J )

(
6 − 2

∑
μ

cos kμ

)}
− 3

2
ln 3 > 0.

This holds for all u1 and hence only class I is found in the
phase diagram spanned by (u1, J ).

2. Topological

a. Class II

The second class of solution has H01 ≡ H1 and H02 =
H03 ≡ H2, which gives A01 = A1 and A02 = A03 = A2 and,
similarly, B01 = B1 and B02 = B03 = B2. We reduce the
saddle-point equations to expressions in λ̄ only,

A± = 1

4
(
3 − u1

J

)
[
λ̄ ±

√
λ̄2 + 8

3u1

(
3 − u1

J

)]
, (B12)

B± = 6A± − λ̄, (B13)

H2
± = A±

J
− γ2

A±
. (B14)

Now there are two possibilities: A1 = A±, A2 = A∓. For each
case, one finds λ̄ analytically by solving

∑
a

Ba = 2u1 = 6(A± + 2A∓) − 3λ̄. (B15)

However, we find that one of A+ or A− is negative for any J ,
and hence the Green’s function is negative (since in this phase
m2 = 0) and therefore the logarithm in free energy yields a
complex value. We can safely disregard this solution.

b. Class III

Another topological solution has H01 = H02 ≡ H , and
H03 = 0. (One can also consider nonzero such that H01 �= H02,
but these do not provide real solutions.) The saddle-point
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equations can be recast in terms of λ̄,

H2 = A

J
− γ2

A
, (B16)

B = 6A − λ̄, (B17)

B3 = 2u1 − 2B, (B18)

A =
√

3
√

3J2λ2 + 24J2u1 − 8Ju2
1 + 3Jλ

2(18J − 6u1)
, (B19)

A3 = 0. (B20)

Finally we need to solve the equation in a single variable λ̄,

1 = H2 + 2γ1

A
+ 1

λ̄ + B3
. (B21)

This has multiple roots; we keep only the consistent root. This
solution possesses a higher free energy than the other phases
shown in Fig. 2 and as such corresponds to a metastable phase.

3. Trivial: Class II

There exists another set of solutions where B02 �= B03.
They are arrived at by setting A02 = A03 = 0 and the following
manipulations:

B1 = −λ̄ + 6A1, (B22)

B2,3 = 1

2
(λ̄ ±

√
λ̄2 + 8u1), (B23)

H2 = A1

J
− γ2

A1
, (B24)

1 = H2 + γ1

A1
+ λ̄

2u1
, (B25)

λ̄ = 2u1

(
1 − A1

J
− 1

6A1

)
. (B26)

Finally, solving

1 = H2 + γ1

A1
+ 1

λ̄ + B2
+ 1

λ̄ + B3
(B27)

for A1 provides four roots (as before). We do not present the
results, but we find that these do not correspond to a lower free
energy than the previous solution where B02 = B03.

APPENDIX C: MC DETAILS

1. Rewriting the action

We have the effective action (reproduced here for conve-
nience)

S0 = − J

2Nh

∑
〈i j〉

Hal (i)Ham(i)Hbl ( j)Hbm( j)

+ u1

2Nh

∑
i

Hal (i)Ham(i)Hbl (i)Hbm(i), (C1)

with fixed length constraint on each site (2). For implementa-
tion of a Wolff-cluster-type update, we find that it is essential

to rewrite the Higgs fields as a flavor vector,

Ha =

⎛
⎜⎜⎜⎝

Ha
1

Ha
2

Ha
3

Ha
4

⎞
⎟⎟⎟⎠, (C2)

such that the action is

S0 = − J

2Nh

∑
〈i j〉

[Ha(i) · Hb( j)]2 + u1

2Nh

∑
i

[Ha(i) · Hb(i)]2.

(C3)

2. Ising projection

To implement Wolff-cluster updates, we must generate an
effective Ising model. This is achieved through projecting the
Higgs flavor vector (C2) onto a randomly oriented unit four-
vector r,

Ha(i) = |Ha(i) · r|rεa
i σi + Ha(i) − (

Ha(i) · r
)
r = αa

i σi + βa
i ,

(C4)

where

εa
i = sign[Ha(i) · r]

sign[H1(i) · r]
, σi = sign[H1(i) · r]. (C5)

σi will play the role of the Ising variable, while εa
i absorbs

the different signs of the projections for the different gauge
components a. Meanwhile, the new vectors appearing in
Eq. (C4) satisfy the following conditions (by design):

αa
i · βb

j = 0, ∀a, b, i, j. (C6)

3. Ising model

Substituting the Ising projection (C4) into the action (C1)
and dropping all terms without the Ising degree of freedom
σi—since they will be constants with respect to the Wolff-
cluster updates—we obtain

SIsing = −
∑
〈i j〉

Ji jσiσ j, Ji j = J

Nh

⎡
⎣∑

a,b

(
αa

i · αb
j

)(
βa

i · βb
j

)⎤⎦.

(C7)

For the Wolff-cluster updates, the basic procedure is as
follows:

(1) Randomly generate Higgs flavor vectors Ha(i) for all
a = 1, 2, 3 and at each site (i).

(2) Randomly generate r (which is uniform across the the
lattice).

(3) Calculate the corresponding Ji j and the initial values
of σi.

(4) Perform standard Wolff updates on the σi variables, i.e.,
cluster growth with probability P(i, j) = 1 − e−2Ji j . Perform
NMC such growth steps.

(5) Recalculate Ha(i) and repeat steps (2)–(5). To maintain
ergodicity, we also employ standard local Metropolis updates.
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