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We apply the quasiparticle self-consistent GW method (QSGW) to slab models of ionic materials—LiF,
KF, NaCl, MgO, and CaO—under electric field. Then we obtain the optical dielectric constants €.,(Slab)
from the differences of the slopes of the electrostatic potential in the bulk and vacuum regions. Calculated
€ (Slab) show very good agreement with experiments. For example, we have €,,(Slab) = 2.91 for MgO, in
agreement with the experimental value €., (Experiment) = 2.96. This is in contrast to €,,(RPA) = 2.37, which
is calculated in the random-phase approximation for the bulk MgO in QSGW. After we explain the difference
between the quasiparticle-based perturbation theory and the Green’s-function-based perturbation theory, we
interpret the large difference €,,(Slab) — €,,(RPA) = 2.91 — 2.37 as the contribution from the vertex correction
of the proper polarization, which determines the screened Coulomb interaction W. Our result encourages the
theoretical development of the self-consistent GoW approximation along the line of QSGW self-consistency, as
was performed by Shishkin, Marsman, and Kresse [Phys. Rev. Lett. 99, 246403 (2007)].
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I. INTRODUCTION

The quasiparticle self-consistent GW method (QSGW) is
one of the most reliable methods to determine the one-particle
effective Hamiltonian, which describes the independent-
particle picture or the quasiparticle (QP) picture, for treat-
ing electric excitations of materials [1-3]. Other competi-
tive methods, such as the Heyd-Scuseria-Ernzerhof (HSE)
functional [4] and the Tran-Blaha-09 functional [5], may
work well in many systems, although we may need to use
material-dependent parameters [6]. In contrast, QSGW is
virtually parameter-free and gives reliable descriptions for
a wide range of materials, not only metals and semicon-
ductors but also transition-metal oxides, type-II superlat-
tices, and 4f systems [7-10]. Since heterogeneous mix-
tures of materials are used in current technologies, it is
worthwhile to develop QSGW further as a tool to treat
the electronic structures of such materials, where meth-
ods including such material-dependent parameters are hardly
applicable.

We now summarize the idea of QSGW. First, let us
recall the GW approximation (GWA): GWA 1is a pertur-
bation method applicable to many-body Hamiltonians di-
vided as H = Hy + (H — Hy). Then we construct the bare
Green’s function as Gy = 1/(w — Hp), which is used to
give the self-energy X(r,r’, ) in the standard procedure
of GWA. In principle, we can apply GWA to any choice
of the one-body Hamiltonian Hy, such as that in the local
density approximation/generalized gradient approximation
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(LDA/GGA), or even in LDA+U. Thus the main problem
of GWA is how to determine Hy. QSGW is a method to deter-
mine Hy from the standpoint of self-consistent perturbation.
However, QSGW has a shortcoming in that it leads to
a systematic overestimation of the exchange effects. This
results in slightly larger band gaps in QSGW for materials.
Faleev, van Schilfgaarge, and Kotani [1-3] suggested that the
overestimation can be eliminated by performing improved
QSGW calculations, taking into account the enhancement of
the screening effect due to the electron-hole correlation in
the evaluation of the screened Coulomb interaction W. This
is based on the theoretical consideration combined with the
observation that the calculated optical dielectric constant €.,
in the random-phase approximation (RPA) in QSGW is ~20%
smaller than that in experiments for certain materials [3,11].
Such an improved calculation was performed by Shishkin,
Marsman, and Kresse, who included the enhancement of the
screening effect [12]. The enhancement is via the vertex cor-
rection for the proper polarization P, which determines W =
v/(1 — vP), where v denotes the Coulomb interaction. They
approximately include the lowest-order vertex correction due
to the electron-hole correlation; see Eq. (15) in Ref. [13].
Their results are theoretically quite satisfactory in the sense
that both band gaps and €, which are calculated simultane-
ously and self-consistently without parameters as in HSE, are
in agreement with experiments. For example, the calculated
values €5, = 2.96 and the band gap Eg = 8.12 eV for MgO
are in agreement with the experiments, 2.95 and 7.83 eV,
respectively. See scGW (e-h) in Table I in Ref. [12]. Further-
more, based on these theoretical analyses, we can introduce
QSGWS8O0 to avoid the very expensive computational costs
of the method by Shishkin et al.. QSGWSO0 is just a simple
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hybridization, 80% QSGW + 20% GGA, which includes the
enhancement of the screening effectively. The hybridization
in QSGW80 is very different from the hybridization in HSE,
where the mixing ratio @ between GGA and the Hartree-Fock
approximation strongly affects the final results. QSGW80
works well to describe experimental band gaps [14]. The
performance of QSGWS80 was systematically examined by
Deguchi et al. in Ref. [8], where we can see that both the
calculated band gaps and the effective masses are in good
agreement with experiments. QSGW80 is successfully used
for practical applications, such as to the type-II superlattice of
InAs/GaSb [15,16].

In this paper, we evaluate €, not in bulk calculations with
approximations such as those used in Ref. [12], but by using
slab models with a finite electric bias voltage. We treat five
ionic materials: LiF, KF, NaCl, MgO, and CaO. We put a
slab in the middle of the vacuum region in a supercell. The
electric field is applied by the effective screening medium
(ESM) method given by Otani and Sugino [17]. We obtain
€~ from the ratio of slopes of the electrostatic fields in the
slab region and the vacuum region. Our approach is based
on the self-consistent method, thus we do not need to utilize
approximations such as those used in Ref. [12]. Since we
explicitly treat the response to the bias, our method includes
higher-order effects in a self-consistent manner.

Our findings are that the calculated €5, in QSGW for the
slab models are very close to experimental values. This is in
contrast to the fact that €5, in RPA of QSGW are generally
~20% smaller than experimental values. This indicates that
the vertex correction at the level of derivative of the QSGW
self-energy should ensure that W is in agreement with experi-
ments. Our results are consistent with those shown in Table II
of Ref. [12].

We can interpret the screening enhancement, represented
by the enlargement of €, as the size of the vertex correction
for the proper polarization P. Note that the vertex correction
we evaluate is not what is defined in Hedin’s equation [18].
In that equation, we see P = —iGGT, that is, the vertex func-
tion I is for the correction to P = —iGG, where G denotes the
Green’s function. Instead, we evaluate I" for P = —iGyGoI',
where Gy is the bare Green’s function. To clarify the above
theoretical point on I', we provide an extensive discussion
in Sec. II. We explain the role of I' in the two kinds of
perturbation theories. In Sec. III, we discuss QSGW-+ESM,
which is an implementation of QSGW combined with ESM.
The QSGW+ESM for slab models should be very useful not
only for our purposes here, but also for cases in which the
usual GGA+ESM have difficulties. In Sec. IV, we present
our results for €4, which are then interpreted as the vertex
correction. In Sec. IV B, we provide a rationale of QSGW80
followed by a summary.

II. QP-BASED VERSUS G-BASED PERTURBATION

To describe our motivation in this paper, we have to clarify
the difference between quasiparticle-based perturbation (QbP)
and Green’s-function-based perturbation (GbP). QbP is based
on Landau-Silin’s QP theory, while GbP is based on Hedin’s
theory. To illustrate the difference between QbP and GbP,
we present a narrowband model in the following. The model
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FIG. 1. Band structure of a narrowband model to illustrate
the quasiparticle-based perturbation. CBM and VBM denote
conduction-band minimum and valence-band maximum. The widths
of bands B¢ and By are smaller than the band gap Eg. As in the text,
we expect well-defined QPs in this model.

represent situations in which we have a good QP picture (i.e.,
an independent-particle picture).

Recall that there are mainly two kinds of excitations in
paramagnetic electronic systems, i.e., multiparticle excitations
and collective excitations such as plasmons. The former is
described by QPs interacting with each other. Note that
plasmons are located at high energy because of the long-
range Coulomb interaction [19]. These excitations can be
hybridized, e.g., pseudoplasmons in silver, where one-particle
excitations of 3d electrons are hybridized with plasmons.

A. Narrowband model to explain the QP-based perturbation

The QPs based on Landau-Silin’s Fermi liquid theory were
originally for metals [19]. However, the idea of QPs is rather
easily applicable to insulators. We can consider QbP based
on the QPs. To illustrate this, let us consider a narrowband
model, a paramagnetic case given by a Hamiltonian H, which
has a one-body term represented by finite numbers of Wannier
functions in the primitive cell, and the Coulomb-like interac-
tion ﬁ, where €’ is a constant. We consider a case with the
QPs shown in Fig. 1 given by the one-particle Hamiltonian Hj.

Based on the perturbation, we expect that the lifetimes of
all the electrons are infinite because the band gap Eg is large
enough to prevent all the electrons from decaying into lower-
energy electrons accompanying electron-hole pairs and holes
as well. In other words, all bands are within the threshold of
impact ionization [20]. Thus QPs described by Gy = 1/(w —
Hy) should give well-defined one-particle excitations of the
narrowband model.

This conclusion should be essentially kept even when we
fully turn on the interaction as long as the following conditions
are well-satisfied. First, excitons, which are binding states of
electron-hole pairs, should be at only slightly lower energies
than Eg. Second, plasmons should be located at high enough
energies so that they are barely hybridized with the one-
particle excitations. Under these assumptions, we have well-
defined QPs. We can consider a path of adiabatic connection
while maintaining the well-defined QPs given by Hj since the
QP spectrum is clearly separated from the other excitations.
It can be written as H, = Hy + (H, — Hy), where A is from
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zero to unity, and where H = H,_;. Note that (H, — Hy) must
contain a A-dependent one-body term.

In this narrowband model, QbP should be suitable; QPs are
interacting with each other by (H,—; — Hy). As for the proper
polarization function, we can take all the noninteracting two-
body QP excitations correctly by Py = —iGoGy. Based on
this QbP, the GoW, approximation ¥ = iGyWy, where Wy =
v/(1 — vPy), is physically justified. That is, it describes how
the motion of QPs in Gy is perturbed by the dynamical self-
interaction given by Wy in RPA. Most of the first-principles
calculations in the literature are implicitly based on this QbP,
while some of the latest literature [21,22] is based on GbP as
explained in Sec. IIC. QSGW is a method to determine H
self-consistently in QbP.

B. Vertex function I'g,p in QP-based perturbation

To improve GoW,, we may include electron-hole correla-
tion. The corrections replace Py = —iGyGy with P, where we
include the correlation via the Bethe-Salpeter equation (ladder
diagrams). That is, we include the two-body spectrum in the
proper polarization accurately. This enables us to use W =
1/(1 — vP) instead of W, resulting in the GoW approximation
as X = iGoW. In this paper, we concentrate on the GoW
approximation as in the case of scGW (e-h) in Ref. [12].
In QbP, we thus define the vertex function I'gyp for W as
P = —iGyGoI'qpp. Roughly speaking, P = PyI'qrp. We give
the numerical evaluation for this I'gpp via the evaluation of
€5 as shown in Sec. IV A.

To go beyond the ¥ =iGyW approximation here, we
need to take into account three-particle intermediate states.
However, this is not theoretically straightforward because of a
double-counting problem in that ¥ = iGyW already partially
takes into account such states. We will need to construct the-
ories of the three-particle problem without double-counting
along the lines of first-principles calculations. We do not
address this problem in this paper.

C. G-based perturbation and vertex function I'gpp

Let us consider how we can apply GbP to the narrowband
model. In contrast to Gy in QbP, the one-body Green function
G has complex meanings. We have an imaginary part of G
at high energies, representing QPs hybridized with plasmons
(plasmarons). Because of the sum rule for Im[G], the QP
parts are suppressed by the Z-factor. Thus P = —iGG do
not contain the two-body noninteracting excitations with the
correct weight, in contrast to the case Py = —iGyGy.

In principle, this problem is corrected by including the
vertex function I'gpp in Hedin’s equation to determine the
one-particle Green’s function G(1,2) [18]. Because Hedin’s
equation is theoretically rigorous, we expect —iGGI gpp ~
Py = —iGyGy in the model; see the discussion of Sec. ITA
where Py gives a good approximation for the model. That is,
contributions related to the collective excitations and renor-
malization factors Z in —iGG should be virtually eliminated
by the factor I'gpp. However, such numerical calculations can
be computationally very demanding [23]. A similar discussion
of Z-factor cancellation is also seen when we multiply Gy
by W. That is, we should have GoW =~ GW 'gpp since QbP

correctly treats the model. Our analysis here is consistent with
Takada’s analysis based on the Ward identity [24].

QbP should be superior to GbP in materials such as
semiconductors. In contrast to GbP, QbP is quite simple and
physically convincing. We should not be confused by the
similarity of QbP and GbP. In this paper, we evaluate I'qpp. In
the following, we calculate the enhancement of the screening
effect. Then we evaluate the size of the ratio P/Py from a
comparison between calculated €., in RPA and €., in the slab
models. This ratio gives the size of Igpp.

III. QSGW COMBINED WITH THE EFFECTIVE
SCREENING MEDIUM METHOD

To calculate €,,, we put a slab in the middle of the vacuum
region in a supercell. €4, is calculated from the difference
between the slopes in the vacuum region and in the slab region
under small bias voltage. The supercell we use is detailed at
the beginning of Sec. IV. In such calculations, we can obtain
€ beyond the bulk calculation in RPA, as we explain in the
next paragraph. That is, we can obtain €, including the effect
of the vertex correction.

To explain how the effect is included, let us first con-
sider slab calculations in the case of GGA. We first perform
self-consistent calculation under zero bias. Then we perform
self-consistent calculation under finite bias (theoretically, it
should be infinitesimally small). Then we have the difference
of the electron density én(r) between the two calculations.
Simultaneously, we have a corresponding response of the one-
particle potential given as 8V (r) = [ d*r'v(r —r')én(r’) +
aﬁ:? dn(r). The last term is the difference in the exchange-
correlation (xc) potential caused by én(r) self-consistently.

That is, the derivative gx((:; contains the contribution of the
GGA

xc kernel fx. = % Under the bias, we can obtain €., from
the ratio of slopes of the electrostatic potential in the vacuum
region and in the slab region. It should contain the contribution
from fy., which is identified as the vertex correction in GGA.
This is essentially the same in QSGW. Recall that the
self-energy in QSGW, denoted as V3V (r, '), is a static
nonlocal potential replacing VXEGA. The derivative of the
one-particle potential is given as 8V (r,r') = [d*r"v(r —
r")dn(r") + sVEBSW(r, r'), where the last term plays the role
£ 2 s5(r). Note that SVEW(r, v') is determined self-

an(r)
. . . . QsGW
consistently, although it is not as simply given as 3‘3/*;(” dn(r).

Our calculations include the contribution of §V.ZW(r, r’)
self-consistently as in the case of GGA. Our method is similar
to the method used to solve the Bethe-Salpeter equation in
Ref. [25].

Our QSGW+ESM is implemented in a first-principles
package ECALJ [8,26], which is based on a mixed-basis
method, namely the augmented plane wave (APW) and
muffin-tin (MT) orbital method (the PMT method) [27-30].
The PMT method is an all-electron full-potential method that
uses not only the APW basis in the LAPW method, but also
the MT orbitals in the LMTO method simultaneously in the
expansion of eigenfunctions. It also uses the local orbital basis
[31]. In addition to the PMT method, we had implemented
the QSGW method [8,29]. In PMT, we use very localized
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untuned MTOs, which contain a damping factor exp(—«r),
where « are fixed to be 1/bohr and/or 2/bohr, together with
low-cutoff APWs (< 3 Ry). We do not need empty spheres
since the APWs can handle vacuum regions of slab models.
The charge density is represented in the following three-
component representation: “smooth part,” “true part within
MT,” and “counterpart within MT,” as in the case of the PAW
method [32]. In contrast to the other GW methods, which
require the Wannier-interpolation technique to make band
plots in the whole Brillouin zone, we can make band plots
easily without resorting to that technique [8]. In the following,
after an explanation of the general theory of ESM, we show
how to implement ESM in the PMT method.

A. The electrostatic potential in the ESM method

We apply the ESM method [17] to slab models under an
external electric field. We treat a supercell with a periodic
boundary condition where we have a slab with periodicity
in the xy plane. The slab is at the middle of the supercell.
The position in the cell is specified by r = (r|, z). The planes
at z = —zop and z = zp are the left and right ends of the
supercells. The electrostatic potential is calculated from the
charge density in the supercell assuming two electrodes are at
7 = *zg (we set 71 = 7o in Fig. 1 of Ref. [17]) to apply voltage
to the supercell. In summary, the ESM in DFT is formulated
from the total energy minimization, however this is not true
in QSGW since QSGW itself is not formulated from the total
energy minimization. After we obtain the following, we use
Eq. (2) to determine the electrostatic potential. We use it even
in QSGW.

Let us start from the energy functional of DFT in the ESM.
It is written as

E[n] = EN"[n] + E*°[n] + E®[n] + E*?[n]. e

Here, we have kinetic energy EXn[n], xc energy E*“[n],
and electrostatic energy E[n]. In addition, the last term is
the applied electrostatic term E*P[n] = f d*r VP (r)[n(r) +
nn(r)], where n(r) and nn(r) are the electron density and
the charge density of nuclei, respectively; V*P(r) is a linear
function of z, representing the external field.

In ESM, we enforce the periodicity in the supercell for
the electrostatic potential. Thus we use V*P(r)s(r) instead of
V#P(r), where we introduce a support function s(r), which
is unity for most of the regions, but it is going to be zero at
7= —z9 and z = zg. It is different from unity only near the
boundaries, z & —zq or z & 7. Thus the potential VP (r)s(r)
recovers the periodicity of the supercell. A constant can be
added to V®P(r) so that it maintains smooth periodicity over
7 = £z0. As long as we use a large enough vacuum region,
we have few electrons near the boundaries. Thus the choice of
s(r) is irrelevant.

A key in ESM is that we use the Green function v(r, r’)
for the electrostatic energy E®[n] instead of the Coulomb
interaction v(r —r’) in the usual GGA calculations. As in
Ref. [17], v(r, ") contains not only the Coulomb interac-
tion v(r — r’) but also the effects due to the polarization of
virtual electrodes, which are at z = 4z; (we use zp = z; In
our calculations here). Polarization of the slab occurs when
the electrostatic potential remains constant at the electrodes.

Corresponding to V*PP(r)s(r), we use s(r)v(r, r')s(r’) instead
of o(r, r’) in practice. Then we have the well-defined Kohn-
Sham total energy while maintaining the periodic boundary
condition for a given VP (r).

The minimization of E[n] with respect to n(r) gives the
Kohn-Sham potential V (r) as

V()= /d3r/17(r, r)[n@’) + an@)] + V¥*P(r) + V*(r).
)

Hereafter, we omit s(r) for simplicity.

In QSGW [29], we cannot derive its fundamental equa-
tion from the energy minimization. Thus the formulation of
QSGW+HESM is not exactly along the same lines as men-
tioned above. However, we can use the one-particle potential
of Eq. (2) in the self-consistent cycle, where V*(r) is replaced
by a static version of the self-energy [1]. Thus, in principle, it
is straightforward to perform QSGW-+ESM.

B. ESM in the PMT method

In the PMT method, the electron density (and also
the charge density) is represented by the three-component
formalism described in Ref. [30], originally introduced
by Soler and Williams [33-35]. At first, space is di-
vided into MT regions and interstitial regions. Then elec-
tron density is represented by three components as n =
{no(r), {n) 4(r)}, {n2,,(r)}}, where a is the index of atomic
sites in the primitive cell. Following Ref. [30], this is sim-
ply expressed as n = ng ® n; © nyp. The zeroth component
no(r) is the spatially smooth functions expanded in analytic
functions, i.e., plane waves, Gaussians, and smooth Hankel
functions [29]. The first components n; ,(r) are the true
electron density within MT at R,. The second components
ny ,(r) are the counterpart, i.e., the projection of ny(r) into
the MT at R,. ng(r) and ny ,(r) are identical within MT at
R, up to a given angular momentum cutoff in their spherical
harmonics expansion.

We can obtain the charge density n” = n§® @ nf ©
n5® by adding the ion-core contribution to n. Then we apply
the multipole transformation clearly defined in Ref. [30],
yielding 7§ @ % © 5’ as shown in Egs. (28)-(30) in
Ref. [30]. The transformation results in 75" (r), ﬁ%ca" (r), and
r‘zgcav (r) all having the same multipole in each MT site at R, al-
though the physically observable density remains unchanged.
The first components ﬁlzf;zv(r), which are unchanged by the
transformation, are the sum of the ion-core charge density and
nl,a(r)'

From the smooth density ﬁ%‘""’(r), we can calculate the
electrostatic potential as Vj*(r) = f d3r'o(r, s (r') +
V#P(r). This gives a correct interstitial part of the poten-
tial Vi*(r) calculated from the charge density. The values
of V§*(r) at the MT boundaries are used to determine the
electrostatic potential within MTs.

We can apply the usual procedure to determine the electro-
static potential within MTs. In each MT, we have the first and
second components 712" (r) and /1) (r), which have the same
multipole. With the condition that the electrostatic potential
is zero at the MT boundary, we can calculate the potential
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FIG. 2. A slab (18 atoms per cell) is placed in the middle of a
supercell (60 a.u. width along the z axis, which is perpendicular to
the slab), with electrodes at the left and right ends. In the top panel,
we show V*(z, E) for E = 0.2 and 0.0 Ry. In the bottom panel, we
show their difference AV*(z). From the ratio of two slopes of AV
in the slab region (green) and in the vacuum region (violet), we obtain
€x(Slab). We achieve better numerical accuracy by using AV(z)
instead of V*(z, 0.2 Ry) directly.

generated by the difference between the first and second
components.

Thus we finally have the electrostatic potential V(r)
represented in the three-component formalism. With this po-
tential, we can perform self-consistent calculations for the slab
models.

IV. RESULTS

A. Optical dielectric constants via the slab model

In Fig. 2, we illustrate our treatments in the slab models
for five NaCl-structure ionic materials, where we use +zy =
430 a.u. We use slabs made of nine layers, with 18 atoms
in the supercell. We use experimental lattice constants of
bulk materials without relaxation of atomic positions. The
electrostatic potential V*(z, E') is the average of V*(r) in
the xy plane under the bias voltage E. We plot the cases of
E =0.2 and 0.0 Ry. We show AV®(z) =V*(z,0.2 Ry) —
V(z,0.0 Ry) in the bottom panel in Fig. 2. AV®(z, E)
changes linearly as a function of z in the vacuum region and

TABLE I. Calculated optical dielectric constant €. Values in
the column labeled “RPA” are in bulk calculations with local field
correction (LFC). Values in the column labeled “RPA(noLFC)” are
without LFC. Values in the column labeled “Slab” are calculated

from the slab models in the setting of Fig. 2. Ratios 5 = ©=(RPA)

€00 (Slab)
_ coo(Slab)—1 ; :
and y = :z(leA)fl are calculated just simply from the values of

€(QSGW, RRA) and € (QSGW, Slab).

RPA Experiments
(noLFC) RPA Slab 7n Y [36-38]
LiF GGA 2.04 1.95 2.01 1.96
QSGW 1.73 1.67 194 0.86 1.40
KE GGA 2.16 1.96 1.94 1.85
QSGW 1.79 1.68 1.86 090 1.26
Nacl GGA 2.70 233 242 2.34
QsSGwW  2.13 1.92 231 0.83 142
MgO GGA 3.17 296 3.09 2.96
QSGW  2.50 237 291 081 1.39
ca0 GGA 3.94 3.59 3.68 3.33

QSGW  2.88 2.68 331 081 1.38

in the slab region. From the ratio of two slopes of AV in the
slab region and in the vacuum region, we obtain €, (Slab).

Our main results are €4 calculated from slab models
in QSGW, €, (QSGW, Slab), shown in Table I. Note that
€~ (Slab) contains the effect of vertex corrections based on
QDbP (see Sec. II), because changes in the self-energy caused
by the bias E are self-consistently taken into account. The
numerical reliability of our calculations is estimated to be
<1%. See the Supplemental Material for computational de-
tails [39]. In Table I, we also show bulk values €,,(RPA).
To obtain them, we first perform self-consistent calculations
in QSGW for bulk materials. Then we calculate €, in the
random-phase approximation (RPA) with/without local field
correction (LFC). We also show €4, in GGA together.

The QSGW values are in good agreement with ex-
periments. For example, €, (QSGW, Slab) = 1.94 for LiF
is in surprisingly good agreement with €, (Experiment) =
1.96. In contrast, €,,(QSGW, RPA) = 1.67 is much smaller
than €,,(QSGW, Slab) = 1.94. These are generally true
in all other materials. We see that the ratios n =
€0(QSGW, RPA)/€e5(QSGW, Slab) in Table I are ~0.8.
This is consistent with Ref. [3], where €5, for ZnO, Cu,O,
MnO, and NiO are presented. From the standpoint of esti-
mating the enhancement factors (*vertex I') of the proper
polarization, we may consider the ratios y = %. A
shown in Table I, y ~ 1.4. Since €, (QSGW, Slab) is in
very good agreement with €.,(experiment), we can say that
the vertex correction for bulk should illustrate the difference
between €., (RPA) and €4, (experiment) very well, where the
vertex correction is calculated at the level of the functional
derivative of the self-energy in QSGW; see Sec. III.

This is in contrast to the case of GGA. For example,
consider the case of LiF. The difference €., (GGA, Slab) —
€0(GGA, RPA) = 2.01 — 1.95 = 0.06 is very small. The dif-
ference originates from the xc kernel fi. in the density
functional perturbation theory. This is consistent with the
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results in Ref. [40], where the authors explicitly evaluate
fxe in GGA for bulk materials. Note that €,,(GGA, Slab) =
2.01 is slightly larger than €. (experiment) = 1.96; this is
true for all other materials. We can see that the contribu-
tions of vertex corrections fx. do not necessarily improve
agreement; €,,(GGA, Slab) yields poorer agreement with
€ (experiment) than €,,(GGA, RPA).

B. Rationale for QSGWS80

Our result in Sec. IV A shows that the vertex correction
should be included in the proper polarization P to obtain
€ 1n agreement with experiments. We have to use such P
in the QSGW self-consistent cycle. Such improved QSGW
self-consistency can be identified as a self-consistent method
in the GoW approximation on the basis of QbP. Shishkin
et al. [12] provide a method based on this idea. However,
the computational requirements of their method are too costly
for application to a wide range of materials. In fact, although
their method was applied to calculate ionization potentials
in Ref. [45], it was not satisfactory because the calculations
were performed using a combination of simple materials (bulk
calculations) and supercell calculations in GGA. Furthermore,
there is no information on how to treat transition-metal oxides
such as LaMnOs in the method of Shishkin et al. We have to
develop such an improved QSGW method that is applicable
to a wide range of materials, and this method must have
computational efficiency and theoretical validity.

With regard to efficiency, we can consider a hybridization
method between QSGW and the density functional xc [14].
In QSGW80, which is a simple hybridization (80% QSGW +
20% GGA), we can see that it works well for a wide range of
materials. Our present results support the QSGWS80 method,
which uses only 80% of the QSGW self-energy. We can iden-
tify QSGWSO0 as a simplification of the method in Ref. [12].
Reference [46] presents another approximation at the level
of QSGWSO for the vertex correction in QSGW, resulting in
similarly good agreement with experiments.

Let us examine how QSGWSO0 is justified for materi-
als calculated here. This is shown by the fact that n =
€00(QSGW, RPA) /€5, (QSGW, Slab) in Table I are approxi-
mately 80%, and they show little material dependency. Thus
we expect that QSGWS80 can mimic QSGW with the vertex
corrections. The too large screened-exchange effect is reduced
by a factor 0.8, including adding a 0.2 GGA term so as to
keep the total size of the xc term. In Table II, we show
band gaps in QSGW and QSGWS80 for materials treated
here. The band gaps are systematically too large in QSGW
in comparison with experimental values [8], while QSGW80
is in rather better agreement with experimental values. In
Ref. [8], we checked the performance of the QSGWS80 for
a range of materials. As in the case of Ref. [12], QSGWS80
is theoretically reasonable in the sense that the band gaps are
improved by using the corrected W. To go beyond QSGWS0,
we have to develop methods to take the vertex correction into
W, as was done in Ref. [12] in a simple manner. Considering
the fact that QSGWS80 works well, as shown in Ref. [8], we
may expect simple methods to represent the vertex correction

TABLE II. Calculated band gaps (eV) of bulk materials. In
QSGW80, we show self-consistent results with the hybrid xc po-
tential, 80% QSGW + 20% GGA. QSGWS80nosc specifies one-
shot calculations with the hybrid potentials after QSGW 100% self-
consistent calculations. QSGW80nosc is slightly larger because it is
not fully self-consistent under such an xc potential. See Ref. [8].

Experiments
[41-44] QSGW QSGWS80 QSGWS80nosc GGA
LiF  13.6 16.04 14.53 14.85 9.52
KF 10.9 11.78 10.53 10.82 6.43
NaCl 8.6 9.51 8.55 8.76 5.37
MgO  7.77 8.86 7.91 8.10 4.86
CaO 7.1 7.45 6.57 6.74 3.69

by a scalar factor or by a limited number of parameters. The
vertex correction can be relatively insensitive to materials,
thus we expect that some simple method might be available.

V. SUMMARY

To clarify the importance of quasiparticle self-consistency
in QSGW, we have explained the quasiparticle-based per-
turbation in Sec. II. We emphasized the importance of self-
consistency in the GoW approximation, and then we obtained
the quasiparticles (independent particles) given by Hy and the
interaction between the quasiparticles given by W. In addition,
the vertex correction in QbP was introduced.

We have performed QSGW calculations for slab models
under electric field by means of the ESM method. The cal-
culated €, are in good agreement with experimental values.
Compared with €, in the bulk calculation in the RPA, we eval-
uated the size of the vertex corrections as a functional deriva-
tive of the static self-energy in QSGW. Our results on €4,
validate the method by Shishkin, Marsman, and Kresse [12].
As a simplified substitution of their method, we examined the
performance of QSGWS80 [8] for materials treated here. The
QSGW+HESM method developed for the calculations should
be useful even for other purposes, such as bias-dependent spin
susceptibility in material theory, as well as practical device
applications and material designs.

To go beyond the usual QSGW, we should develop an
improved QSGW method in the GoW approximation, whereas
we should use accurate W by including the vertex correction.
We would then have virtually the best division of H = Hy +
(H — Hy), where H, gives the optimum independent-particle
picture.
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