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We establish an important duality correspondence between topological order in quantum many-body systems
and criticality in ferromagnetic classical spin systems. We show how such a correspondence leads to a classical
and simple procedure for characterization of topological order in an important set of quantum entangled states,
namely the Calderbank-Shor-Steane (CSS) states. To this end, we introduce a particular quantum Hamiltonian
which allows us to consider the existence of a topological phase transition from quantum CSS states to a
magnetized state. We study the ground state fidelity in order to find nonanalyticity in the wave function as
a signature of a topological phase transition. Since hypergraphs can be used to map any arbitrary CSS state
to a classical spin model, we show that fidelity of the quantum model defined on a hypergraph H is mapped
to the heat capacity of the classical spin model defined on dual hypergraph H̃ . Consequently, we show that a
ferromagnetic-paramagnetic phase transition in a classical model is mapped to a topological phase transition in
the corresponding quantum model. We also show that magnetization does not behave as a local order parameter
at the transition point while the classical order parameter is mapped to a nonlocal measure on the quantum side,
further indicating the nonlocal nature of the transition. Our procedure not only opens the door for identification
of topological phases via the existence of a local and classical quantity, i.e., critical point, but also offers the
potential to classify various topological phases through the concept of universality in phase transitions.

DOI: 10.1103/PhysRevB.101.205118

I. INTRODUCTION

One of the most important problems in condensed matter
physics is to characterize the different phases of matter which
are related to various kinds of order present in physical sys-
tems. The quantum counterpart of this problem is in particular
interesting and has attracted much attention over the past
decades [1]. While most well-known orders are classified
based on symmetry properties of the system, there are phys-
ical systems with a topological order [2–9] associated with
topological properties of the system instead of symmetries.
In particular, topological order has a nonlocal nature in a
sense that there is no local order parameter to characterize
a topological phase transition under a symmetry-breaking
mechanism. Consequently, unlike symmetry-breaking phases,
characterizing topological phases has remained a challenging
problem to this date [10–13].

Furthermore, topological order, due to its nonlocal nature,
has been also an important concept in quantum information
theory. It is specifically important in quantum error correction
as a way to overcome the decoherence problem in quantum
computers. Using general quantum error-correcting codes,
specifically Calderbank-Shor-Steane (CSS) codes [14–17],
one usually needs an active protocol for error correction.
However, due to the topological nature of certain CSS codes,
they exhibit self-correction [18–21], thus protecting informa-
tion in a natural way. Generally, topological nature of various
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CSS codes makes them an immediate candidate for fault-
tolerant quantum computing [22–27]. Therefore, being able to
ascertain whether an arbitrary CSS code is topological or not
is of fundamental importance particularly in their feasibility
as quantum memory. One standard method is to identify
measures such as topological entanglement entropy [28] or
gap stability [29]. While such measures can well capture
certain physical aspects of topological order, they nonetheless
have a nonlocal nature. Therefore, a practical procedure for
characterizing topological order for an arbitrary CSS quantum
state by such measures remains a challenging problem [11].

On the other hand, during the past decade certain interest-
ing maps from quantum entangled states, specially topological
ones, to partition functions of classical spin models have been
introduced [30–32] which have led to new developments in
quantum information theory as well as statistical mechanics
[33–38]. In the light of such mappings, one may explore the
consequences of the existence of a phase transition in the
classical spin models for the corresponding quantum entan-
gled states. In particular the nonanalytic behavior associated
with classical phase transitions should have important ramifi-
cations on the quantum side [39,40].

In this paper, we propose and prove that the existence
of topological order in an arbitrary CSS state is identified
by a critical ferromagnetic phase transition in the classical
(dual) spin model. We therefore propose a simple mathe-
matical procedure: Criticality in the classical partition func-
tion establishes topological order in the corresponding CSS
states. This is important since it provides a classical local
measure for a quantum nonlocal phenomenon. In order to
prove this, we propose a quantum Hamiltonian model, the

2469-9950/2020/101(20)/205118(8) 205118-1 ©2020 American Physical Society

https://orcid.org/0000-0003-4805-4916
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.205118&domain=pdf&date_stamp=2020-05-13
https://doi.org/10.1103/PhysRevB.101.205118


MOHAMMAD HOSSEIN ZAREI AND AFSHIN MONTAKHAB PHYSICAL REVIEW B 101, 205118 (2020)

e

e

e

1

3

2

v

v

v

2

3

e2e3

e1

v v
2

v
3

e
4

v
4

e
4

v
4

1

1

(b)(a)

FIG. 1. (a) A simple hypergraph including four vertices denoted
by blue (dark) circles and four hyperedges denoted by pink (light)
curves. (b) Dual hypergraph of part (a).

CSS-magnetic (CSSM) model, which exhibits a transition as
a function of control parameter (β), from the magnetized state
to a CSS state. Due to the specific property of the ground
state, we show that it cannot break any (spin) symmetries.
We next show that the transition to the CSS state is indeed
characterized by a singularity in the ground state fidelity and
thus a quantum phase transition. We therefore conclude that
the quantum phase transition must be of topological nature
since it preserves the symmetry. As further evidence for the
topological nature of the quantum phase transition, we also
calculate the magnetization and show that it does not behave
as a local (symmetry-breaking) order parameter, while the
classical order parameter behaves as a nonlocal measure on
the quantum side. In effect, we provide a duality between a
(nonlocal) quantum topological phase transition and a (local)
classical ferromagnetic phase transition.

II. CSS-MAGNETIC MODEL ON A HYPERGRAPH

A stabilizer state on N qubits is a positive eigenstate of
N commutative operators belonging to the Pauli group. A
CSS state is a particular set of stabilizer states which is
stabilized by Z-type and X -type operators [16]. CSS states can
be defined on hypergraphs [41–43]. A hypergraph H = (V, E )
is a set of vertices V = {v1, v2, ..., vK } and a set of hyperedges
E = {e1, e2, ..., eN } where each hyperedge is equal to a subset
of vertices, see Fig. 1(a). A set of hyperedges are called
independent if no hyperedge is equal to collection of other
hyperedges. For each hypergraph H = (V, E ), one can define
a dual hypergraph H̃ = (Ṽ , Ẽ ) where Ṽ = {ṽ1, ṽ2, ..., ṽN }
and Ẽ = {ẽ1, ẽ2, ..., ẽK } are vertices and hyperedges of H̃ ,
respectively, and

ẽi = {ṽm|vi ∈ em in H}, (1)

where vi ∈ em in H refers to vertices belonging to the edge of
em on H . Simply put, duality interchanges vertices and edges,
see Fig. 1(b).

For a given hypergraph H = (V, E ), there is a CSS state in
the following form:

|CSSH 〉 = 1

2
M
2

∏

e∈E

(1 + Ae)|0〉⊗N , (2)

where |0〉 is the positive eigenstate of the Pauli operator Z
with N qubits living on vertices and M � N is the number
of independent hyperedges. Ae is an X -type stabilizer in the
form of

∏
i∈e Xi where i ∈ e refers to all vertices belonging

to e. Furthermore, there are K = N − M number of Z-type
stabilizers for the above state which commute with Ae [32]. A
set of hyperedges corresponding to such Z-type stabilizers are
defined as orthogonal hyperedges E∗ where the CSS state of
Eq. (2) can also be written in the following form:

|CSSH 〉 = 1

2
K
2

∏

e∗∈E∗
(1 + Be∗ )|+〉⊗N , (3)

where |+〉 is the positive eigenstate of the Pauli operator X .
e∗ is a member of the set of orthogonal hyperedges E∗ and
Be∗ is a Z-type stabilizer in the form of

∏
i∈e∗ Zi where i ∈ e∗

refers to vertices belonging to e∗. Furthermore, it is simple to
check that the above CSS state is also a nondegenerate ground
state of a quantum CSS model with a Hamiltonian in the form
of h = −∑

e∗∈E∗ Be∗ − ∑
e∈E Ae. We should note that while

we can choose the X -type stabilizers as local operators, some
Z-type stabilizers might be nonlocal. Therefore, the above
Hamiltonian might be regarded as nonphysical. However,
here we are only concerned with the existence of topological
order in the ground state of such a Hamiltonian, namely
the CSS state, and not whether such a Hamiltonian actually
represents any physical system. In other words, corresponding
to each CSS state we can construct a physical Hamiltonian by
removing nonlocal operators from the Hamiltonian of h in a
sense that there will be a degenerate ground space and the
above CSS state will be only one of the ground states of the
physical Hamiltonian. However, since topological order is a
property of the wave function, we expect to see topological
properties of the model in the above CSS state. Therefore,
the existence of topological order in such a state means that
its corresponding physical Hamiltonian will be a topological
model with a topological degeneracy in the ground state.

We introduce an extended version of a CSS model, the
CSS-magnetic (CSSM) model, corresponding to a given hy-
pergraph H = (V, E ) in the following form:

H = −
∑

e∗∈E∗
Be∗ −

∑

e∈E

Ae +
∑

e∈E

Ue(β ), (4)

where Ue(β ) = ∏
i∈e exp{−βZi} is a product operator corre-

sponding to a hyperedge e with a tuning parameter β. If we
expand this operator for a small value of β, it will correspond
to a magnetic term in the first-order approximation. Addition-
ally, the first two terms in Eq. (4) are stabilizers of a CSS
state. Therefore, it is easy to see that the ground state of the
above Hamiltonian goes through a transition from a CSS state
(β = 0) to a magnetized state, |0〉⊗N , for β → ∞. In this
way, an important problem that needs be considered is the
possibility of a quantum phase transition in this model. It is
therefore important to identify the symmetry properties of the
ground state of the CSSM model and ask if such a ground state
exhibits any singular behavior as a function of β.

To find the ground state, we re-write the Hamiltonian in
Eq. (4) in the following form:

H = −
∑

e∗∈E∗
Be∗ +

∑

e∈E

Qe(β ), (5)
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where Qe(β ) = Ue − Ae which is a positive operator. One can
check that Q2

e = 2 cosh(β
∑

i Zi )Qe and since 〈Q2
e〉 � 0, one

concludes that 〈Qe〉 � 0 for any arbitrary quantum state. This
implies that the minimum eigenvalue of Qe is zero.

On the other hand, since Ae and Ue commute with Be∗, it
is clear that [Qe, Be∗ ] = 0, and therefore, an eigenstate of Qe

corresponding to an eigenvalue of zero will be the ground state
of the CSSM. One can easily find the zero-eigenstate in the
following form:

|GH (β )〉 = 1√
Z (β )

exp{β
2

∑

i

Zi}|CSSH 〉, (6)

where Z (β ) is the normalization factor and
∑

i in
the exponential term refers to summation on all
qubits. In order to show that the above state is in
fact the ground state, first note that Ue|GH (β )〉 =

1
Z (β ) exp{− β

2

∑
i∈e Zi} exp{ β

2

∑
i 
∈e Zi}|CSSH 〉. Then, since

Ae exp{ β

2

∑
i∈e Zi} = exp{− β

2

∑
i∈e Zi}Ae, it follows that

Ae|GH (β )〉 = Ue|GH (β )〉 and therefore Qe|GH (β )〉 = 0.
It remains to find the exact form of the normalization factor.

We now show that Z (β ) is the partition function of a classical
ferromagnetic spin model defined on dual hypergraph H̃ with
the following classical Hamiltonian:

Hcl = −J
∑

ẽ∈Ẽ

∏

i∈ẽ

si, (7)

where J is the ferromagnetic coupling constant and
∏

i∈ẽ si

refers to many-body interaction between binary spins belong-
ing to a hyperedge ẽ. Now, using Eq. (6), we have:

Z (β ) = 〈CSSH | exp{β
∑

i

Zi}|CSSH 〉. (8)

On the other hand, according to Eq. (3), the CSS state can be
written in terms of Z-type operators, and since Be∗ operators
commute with exp{β ∑

i Zi} and all Be∗’s stabilize the CSS
state, we will arrive at the following form for Eq. (8):

Z (β ) = 2
K
2 〈α|CSSH 〉, (9)

where |α〉 = exp{β ∑
i Zi}|+〉⊗N = 2− N

2 (eβ |0〉 + e−β |1〉)⊗N .
Indeed, such a product state of a CSS state defined on a
hypergraph H is equal to the partition function of a classical
ferromagnetic spin model defined on dual hypergraph H̃ up
to a factor 2

K
2 −N , with β being related to the temperature in

the classical model in the form of T = J
kBβ

, as has been shown
in Ref. [32]. In the following we set kB and J to unity so that
T = 1

β
.

Finally, we note that relation of the normalization factor
in our model to the partition function of a classical model is
in fact a result of specific direction of the quantum state. In
other words, the unnormalized quantum state is in the form of
exp{ β

2

∑
i Zi}|CSSH 〉. It is simple to check that if one expands

the state |CSSH 〉 in the computational basis of |0〉 and |1〉
and then applies the operator exp{ β

2

∑
i Zi}, the above state

will be a superposition of computational bases with weights
which are related to the Boltzmann weights corresponding
to different configurations of a classical spin model. It is
exactly this reason that the normalization factor is mapped to

the partition function as it is a summation of the Boltzmann
weights.

Obtaining the exact form of the ground state, we are ready
to consider the existence of a quantum phase transition in the
CSSM. First, we consider the symmetries of the ground state
in order to address the possibility of a symmetry breaking
phase transition. We first consider the β → ∞ limit where
one can see that the ground state is a magnetized state,
|00...0〉. It is clear that, in this extreme, any Z-type operator
is a symmetry operator of the ground state. However, when
we decrease β to a finite value, only the Z-type operators
which are stabilizers of the CSS state, i.e., Be∗ , remain as the
symmetries of the ground state, independent of the finite value
of β. Therefore, the only symmetry-breaking transition that
might occur in the ground state must occur at β → ∞, i.e., at
zero temperature. All other finite β ground states of the CSSM
model possess the symmetries of Be∗ operator. We conclude
that any phase transition occurring at finite β cannot be a
symmetry breaking transition and thus must be a topological
phase transition. In fact, quantum topological phase transition
is typically accompanied by long-range entanglement with-
out any symmetry breaking property. The signature of such
transitions are encoded in the ground state of the system and
are usually studied using tools of quantum information theory
such as measures of entanglement as well as fidelity [44–51].
Ground state fidelity as a function of β can encode such a
transition and thus show a singular behavior. We next calculate
such a quantity and show that is is equivalent to the heat
capacity of the classical spin model which exhibits a singular
behavior at the ferromagnetic phase transition at finite β, thus
establishing the corresponding topological phase transition in
the CSSM model.

III. GROUND STATE FIDELITY

The ground state fidelity will be a function of β and δβ.
However, since δβ is a very small quantity we can expand
fidelity in terms of δβ. We first consider the exact form of
ground state fidelity as follows:

F = 〈CSSH | exp
{(

β + δβ

2

)∑
i Zi

}|CSSH 〉√
Z (β )Z (β + δβ )

. (10)

Since the inner product term in the above relation is again
related to a partition function we will have:

F = Z
(
β + δβ

2

)
√
Z (β )Z (β + δβ )

. (11)

After a Taylor expansion for the above equation, we find the
following form up to the second order:

F (β, δβ ) � 1 − 1

8
(
∂2 ln(Z )

∂β2
)δβ2, (12)

where Z (β ) is the partition function of a classical spin model
on the hypergraph H̃ . On the other hand, heat capacity of a
classical spin model is given by Cv = 1

T 2
∂2 ln(Z )

∂2β
where β is

the inverse temperature, β = 1/T . Therefore, we have shown
that the ground state fidelity of the CSSM on a hypergraph H
is related to the heat capacity of a classical spin model on dual
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hypergraph H̃ :

FH (β, δβ ) � 1 − (Cv )H̃

8β2
δβ2. (13)

Now, it is known that if a classical spin model has a second-
order phase transition at a critical temperature Tc, the heat
capacity shows a singularity at Tc where it diverges according
to Cv ∼ (T − Tc)−α where α is a critical exponent of the
classical spin model [52]. We conclude that the ground state
fidelity of a CSSM on hypergraph H shows a singularity
at a critical value of βc if its classical dual shows a phase
transition at a finite temperature of Tc = 1/βc. Therefore,
a second-order phase transition in a ferromagnetic classical
spin model establishes a quantum phase transition in the
corresponding CSSM model, and since any finite β transition
is a nonsymmetry breaking transition, it must therefore be a
topological phase transition and thus indicating the existence
of a topological phase in the CSS state. We should emphasize
that such a procedure for identification of a topological phase
transition works for any arbitrary CSS state. In the Appendix,
we have provided two particular examples in order to clarify
the usefulness of the procedure further.

IV. ORDER PARAMETER CONSIDERATIONS

Since CSS states with a well-defined thermodynamics limit
are classified as gapped quantum liquids [13], and since such
systems are known to have quantum phase transitions which
are categorized as symmetry-breaking, first-order, trivial, or
topological, we see that our method leads us to conclude
that our quantum phase transition is indeed a topological
one. However, we need to prove that our consideration of
Z2 symmetry is sufficient for the purpose of establishing a
topological phase. To this end, we look for an indicator of
topological phase transition in the CSSM in a form of an
order parameter. First, let us consider the magnetization of the
CSSM, defined as mH = 〈∑i Zi〉

N , which can be written as:

mH = 〈CSSH |(∑i Zi ) exp{β ∑
i Zi}|CSSH 〉

NZ (β )
. (14)

We now replace the operator
∑

i Zi with a derivative of
exp{β ∑

i Zi}. Then, the magnetization of the CSSM is related
to the internal energy of a classical ferromagnetic spin model
in the following form:

mH = 1

N

1

Z (β )

∂Z
∂β

= − 1

N
EH̃ , (15)

where EH̃ refers to the internal energy of a classical ferromag-
netic spin model defined on the hypergraph H̃ . On the other
hand, it is known that the internal energy of a ferromagnetic
model does not behave like an order parameter as it displays
a gradual (smooth) transition from a negative value to zero.
Therefore, it is concluded that magnetization of the CSSM
cannot be an order parameter, a fact that further implies the
topological nature of the above transition.

On the other hand, one might expect to find an order
parameter for the CSSM by considering the classical (local)
order parameter, 〈Si〉. In the mapping from classical partition
function to CSS state, each multispin interaction of

∏
i∈e Si

corresponding to the hyperedge e is mapped to a Pauli op-
erator Ze [32]. Therefore, if we perform an inverse mapping,
each spin variable Si will be equal to a product of Ze oper-
ators. Therefore, the order parameter for the quantum phase
transition in the CSSM model will be the expectation value
of suitable products of Ze operators. Note that while such an
order parameter might be difficult to calculate, one can see
that it must exist due to the nature of the inverse mapping.
Now if such a quantum order parameter is local, it must
possess Z2 symmetry, which we have argued is impossible
for our model. Therefore it must be nonlocal, thus proving
that a nonlocal order parameter exists, which is sufficient to
establish the existence of a topological phase.

V. DISCUSSIONS

The fact that quantum entangled states can be mapped
to the partition function of classical spin models has many
important consequences. One that has not attracted much
attention in the literature is the consequence of singularities
associated with criticality on the classical side. In this paper
we have taken a step in this direction and have found that if
the classical dual of a CSS state displays a critical point at
a finite temperature T , the CSS state has topological order.
We point out that evidence for such a correspondence already
exists [32]. For example, the toric codes defined on arbitrary
graphs are mapped to Ising models with ferromagnetic phase
transition. GHZ states which do not have topological order
are mapped to one-dimensional Ising models which do not
show a phase transition. Another example is graph states
without any topological order which are mapped to Ising
models in the presence of magnetic field which do not show
a phase transition. However, we have established that given
an arbitrary CSS state, one can easily identify whether its
classical counterpart has a ferromagnetic phase transition
and thus conclude that it must have topological order. This
procedure is simple and direct because the existence of a
critical point is established either by simple observation or,
in a more complicated case, by numerical simulations. Two
concrete examples of such a procedure are discussed in the
Appendix.

The problem of identifying topological phases is a chal-
lenging open problem. Our work offers some insights in this
regard. For example, previously unknown topological states
may be found by (inverse) mapping classically critical ferro-
magnetic models via hypergraphs. Also, our procedure can be
used to check some controversial aspects of the topological
nature of certain recently proposed CSS states such as X-cube
model [53]. Furthermore, the fact that symmetry-breaking
phase transition can be used to identify a symmetry preserv-
ing topological phase may have important consequences. As
pointed out above, the potential for finding a nonlocal order
parameter on the quantum side via mapping of a classical
local order parameter offers an intriguing possibility. We also
note that our CSSM model belongs to the well-known family
of stochastic matrix form decomposition [30] where their
classical-quantum correspondence has been studied for some
two-dimensional models [36]. Our results may reveal other
aspects of importance of such a family of states for studying
topological properties of quantum states.
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Another interesting possibility is the observation that fi-
delity was mapped to the heat capacity whose singularity is
characterized by the exponent α. Standard statistical mechan-
ics tells us that the divergence of heat capacity (and other
nonanalytic behavior) at the critical point are universal in a
sense that they depend only on the symmetries of the classical
Hamiltonian and not on the details of interactions, etc. Thus,
various different systems fall in the same universality class
displaying the same exponents. It is well known that the scal-
ing of quantum measures such as fidelity at the quantum phase
transition point can be related to scaling of the correlation
length and that the correlation length exponent can be used
to define universality classes [54,55]. Therefore, the potential
of applying the concept of universality, which is based on
local symmetries of the classical model, to classify various
topological phases offers an interesting prospect.

Finally, we note that the problem of topological phase
transition and its relation to a wider class of quantum phase
transitions has been studied by various authors before. Here,
we have found a mechanism, by choosing a specific perturba-
tion which preserves symmetry, to map a nonlocal quantum
phase transition to a local classical phase transition and con-
sequently use this mechanism as a diagnosis for the existence
of topological phase in an important class of quantum states.
Whether one can find similar mechanisms to embrace a more
general class of quantum states poses an interesting possibility
for future work.
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APPENDIX

In this Appendix, we consider two particular exam-
ples to show how a well-known classical ferromagnetic-
paramagnetic phase transition can reveal a topological phase
transition in a corresponding quantum CSSM model. In par-
ticular, we consider classical Ising models which have been
well studied. In particular, since the one-dimensional classical
Ising model does not show a phase transition at a finite temper-
ature we expect that the corresponding quantum model does
not show a topological phase transition. On the other hand, the
two-dimensional Ising model has a finite temperature phase
transition and there must be a topological phase transition in
the corresponding quantum model.

Let us start with the one-dimensional Ising model where
classical spins live in vertices of a one-dimensional peri-
odic lattice and there is a two-body interaction between two
neighboring spins. According to hypergraph duality explained
in Ref. [32], this model is mapped to a GHZ state in the
form of 1√

2
(| + +...+〉 + | − −...−〉) which is stabilized by

X -type stabilizers in the form of XiXi+1 and a nonlocal Z-type
stabilizer in the form of B = ∏

i Zi where
∏

i refers to all
vertices of the lattice. Therefore, the corresponding CSSM
model, according to the definition in Eq. (4), will be described
by the following Hamiltonian:

H = −B −
∑

i

XiXi+1 +
∑

i

e−β(Zi+Zi+1 ). (A1)

Note that it is similar to a quantum Ising model perturbed by
a term in the form of e−β(Zi+Zi+1 ). In particular, if one rewrites
e−βZi in the form of cosh β − sinh βZi, the Hamiltonian will
find the following form:

H = cosh2 β − B −
∑

i

XiXi+1

− (2 sinh β cosh β )
∑

i

Zi + (sinh2 β )
∑

i

ZiZi+1.

(A2)

It is clear that the above Hamiltonian is not an Ising model
in a transverse field because of an additional term of

∑
i ZiZ j .

In particular, it is not a priori clear if the above Hamiltonian
can show a quantum phase transition at a finite value of β.
However, our mapping can provide a solution to the above
problem because the quantum Hamiltonian is mapped to a
one-dimensional classical Ising model which has a phase
transition at zero temperature. Therefore, according to our
procedure, we conclude that the above quantum Hamiltonian
has a phase transition point at infinite value of β.

On the other hand, our methodology can further explain
the nature of this phase transition. According to our logic the
exact ground state of the above quantum Hamiltonian will be
in the following form:

|G(β )〉 = e
β

2

∑
i Zi (| + + + ...+〉 + | − − − ...−〉) (A3)

up to a normalization factor. In particular, note that the above
state is the ground state of our model even if we remove the
nonlocal term B from the Hamiltonian. To see this better,
consider a local quantum Hamiltonian without the nonlocal
term. We will then have another (degenerate) ground state
given by:

|G′(β )〉 = e
β

2

∑
i Zi (| + + + ...+〉 − | − − − ...−〉) (A4)

up to a the normalization factor. On the other hand, using the
local quantum Hamiltonian, we see that the ground state in
the limit of β → ∞ must be the state |000...0〉. However, one
can check that the state (A3) goes to |00...0〉 while the state
(A4) does not satisfy this condition. Accordingly, a sector of
the ground subspace (|G(β )〉) is important for determining the
phase transition point in a sense that it is the ground state for
all values of β.

Now, our result shows that a symmetry breaking phase
transition occurs at infinite value of β in a sense that the
ground state is a nondegenerate magnetized state |000...0〉 at
infinite value of β which has a Z2 symmetry, and it breaks to
a degenerate space for any other finite value of β. In other
words, both states (|G〉 and |G′〉) are ground states of the local
quantum Hamiltonian at any finite value of β and also any
arbitrary superposition of them. Specifically, one can check
that the following two quantum states are also ground states of
the local quantum Hamiltonian, up to a normalization factor,
for finite values of β:

|G1(β )〉 = e
β

2

∑
i Zi | + + + ...+〉

|G2(β )〉 = e
β

2

∑
i Zi | − − − ...−〉. (A5)
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(a) (b)

FIG. 2. (a) Toric code is defined on a torus where qubits live
on edges of a square lattice. Corresponding to noncontractible loops
around the torus, nonlocal X type and Z type operators are defined.
(b) X -type and Z-type stabilizers are defined corresponding to ver-
tices and plaquettes of the lattice, respectively.

It is clear that the above quantum states do not have a Z2

symmetry, which means that in the thermodynamic limit the
Z2 symmetry of the system breaks as the system selects one
of the above quantum states. Such a phase transition occurs
as the system starts from the symmetric state of |000...0〉 and
then the β → ∞ is taken. We have therefore shown that in
such quantum model there is no topological phase transition
but a symmetry-breaking phase transition which occurs at
infinite β. This means that the GHZ state does not have
a topological order but it is a symmetry-breaking quantum
phase.

As the second example, we consider the two-dimensional
Ising model on a square lattice. As it has been shown in
Ref. [32], such model should be mapped to a Toric code state
on the same square lattice. Toric code model is defined on a
torus, see Fig. 2, where X -type stabilizers of Av = ∏

i∈v Xi are
defined corresponding to each vertex of the lattice and Z-type
stabilizers of Bp = ∏

i∈∂ p Zi are defined corresponding to each
plaquette of the lattice. The Hamiltonian describing toric code
model is in the form of H1 = −∑

p Bp − ∑
v Av which has a

fourfold degenerate ground state. One of the ground states is
in the following form up to a normalization factor:

|ψ〉 =
∏

v

(1 + Av )|00...0〉, (A6)

where |0〉 in the positive eigenstate of the Pauli operator Z .
Other degenerate ground states can also be constructed by two
nonlocal X -type operators corresponding to two nontrivial
loops around the torus, which we denote by T 1

x and T 2
x as

shown in Fig. 2. Then, the four degenerate ground states will
be in the following form:

|ψi j〉 = (
T 1

x

)i(
T 2

x

) j |ψ〉, (A7)

where i, j = {0, 1}. On the other hand, the above states can
be distinguished from each other by two nonlocal Z-type
operators T 1

z and T 2
z corresponding to nontrivial loops around

the torus, see Fig. 2. Because of anticommutation relations
between nonlocal X -type and Z-type operators, it is shown
that the effect of T 1

z and T 2
z in the ground states of the toric

code model will be in the following form:

T 1
z |ψi j〉 = (−1) j |ψi j〉 , T 2

z |ψi j〉 = (−1)i|ψi j〉. (A8)

Therefore, it means that |ψ00〉 = |ψ〉 is also stabilized by
T 1

z and T 2
z . Now, turning to the Hamiltonian of the Toric code

model H1, we add operators T 1
z and T 2

z to the H1 to have a
new Hamiltonian in the form of H2 = −∑

p Bp − ∑
v Av −

T 1
z − T 2

z . It is clear that such a Hamiltonian has a unique
ground state of |ψ00〉 and there is no degeneracy for the above
Hamiltonian.

Next, the quantum CSSM model, according to definition
in Eq. (4), will be constructed by adding a term in the form
of

∏
i∈∂ p e−βZi to the H2. On the other hand, according to

our procedure, the ground state fidelity of such a model
will be mapped to heat capacity of a two-dimensional Ising
model. Consequently, since the classical two-dimensional
Ising model has a phase transition in a finite temperature, the
above corresponding CSS model will show a quantum phase
transition at a finite β. This is in agreement with the fact that
the Toric code state has topological order. The quantum phase
transition is not a symmetry breaking one but a topological
phase transition.

Furthermore, this also shows why we use nonlocal Z-
type stabilizers in H2. To this end, note that although the
Hamiltonian H2 is nonlocal, it has a common ground state
with the initial Hamiltonian H1. On the other hand, since topo-
logical order is a property of the wave function, both models
microscopically describe a topological order in their ground
state wave function. Next, when we add the perturbation in
the exponential form of

∑
v eβ

∑
i∈v Zi to H1 and H2, the state

|G(β )〉 is still the ground state of both perturbed Hamiltonians
in a sense that for β = 0, |G(β )〉 is equal to |ψ00〉 and for β →
∞ it is equal to magnetized state |00...0〉. In other words, even
for the degenerate model of H1, the quantum phase transition
occurs in the sector of the Hilbert space which includes |ψ00〉.
It means that the above quantum phase transition is not related
to the degeneracy of the ground state. It is for this reason that
we consider nonlocal terms in the Hamiltonian in a sense that
we are sure that the degeneracy does not play any role and
there is no symmetry breaking phase transition in our CSSM
models at a finite β.
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