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Mobile orbitons in Ca2CuO3: Crucial role of Hund’s exchange
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We investigate the Cu L3 edge resonant inelastic x-ray scattering (RIXS) spectra of a quasi-1D antiferromagnet
Ca2CuO3. In addition to the magnetic excitations, which are well-described by the two-spinon continuum, we
observe two dispersive orbital excitations, the 3dxy and the 3dyz orbitons. We carry out a quantitative comparison
of the RIXS spectra, obtained with two distinct incident polarizations, with a theoretical model. We show that
any realistic spin-orbital model needs to include a finite, but realistic, Hund’s exchange JH ≈ 0.5 eV. Its main
effect is an increase in orbiton velocities, so that their theoretically calculated values match those observed
experimentally. Even though Hund’s exchange also mediates some interaction between spinon and orbiton, the
picture of spin-orbit separation remains intact and describes orbiton motion in this compound.
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I. INTRODUCTION

The importance of Hund’s exchange and the multiorbital
character of the states lying close to the Fermi level go hand
in hand in the correlated electron systems [1]. In addition
to “Hund’s metallicity” in itinerant systems [2], there are
Mott-insulating transition-metal compounds with almost de-
generate orbitals, which can show spin and orbitally ordered
ground states [1,3]. Interestingly, the spin and orbital order
in these compounds often follows a special kind of comple-
mentarity rule, typically known as the Goodenough-Kanamori
rule [4,5]: the bond with a dominant alternating orbital (ferro-
orbital) correlation shows ferromagnetic (antiferromagnetic)
correlation, respectively.

Consequently and especially once the typically strong
Jahn-Teller effect is included, various transition metal ox-
ides or fluorides show strongly anisotropic magnetic ordering
[6]—probably the most famous example is the cubic LaMnO3

with its ab planes (chains along the c axis) showing ferromag-
netic (antiferromagnetic) order [7,8].
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The Goodenough-Kanamori rules are intimately related
to Hund’s exchange. The crucial observation is that Hund’s
exchange is responsible for the ferromagnetic correlations
suggested by the Goodenough-Kanamori rules for alternating
orbital order. Without it, the singlet and triplet “virtual” states
occurring in the spin-orbital (“Kugel-Khomskii”) exchange
processes along an alternating-orbital bond, illustrated in
Fig. 1, would have the same energy—cf. Ref. [8] for detailed
examples. This would yield the same amplitude for the two
exchange processes and would thus remove all energy gain
from a ferromagnetic alignment relative to the antiferromag-
netic (AFM) one.

Despite the fundamental importance of Hund’s exchange
for the ground-state ordering, little is known about its sig-
nature in dispersive collective orbital excitations (orbitons).
Such excitations were observed in quasi-1D copper oxides
with almost decoupled S = 1/2 antiferromagnetic chains
[9–11] as well as in quasi-2D iridate Sr2IrO4 [12,13]. In a
Mott-Hubbard insulator, the orbiton moves via superexchange
processes that are rather similar to the ones underlying the
Goodenough-Kanamori rules, see the sketch Fig. 1. Interpret-
ing this as an orbiton hopping, the situation of an orbiton
moving through an antiferromagnet was then described with
a minimal t-J model, in perfect analogy to a hole in the same
background [14]. However, this—quite successful—treatment
requires the orbiton hoppings on ferro- and antiferromag-
netically aligned bonds to be equal, while Hund’s exchange
implies that they are not.
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FIG. 1. A cartoon picture of the two possible spin-orbital ex-
change processes along a bond with two distinct orbitals occupying
the nearest neighbor sites. Whereas in the limit of vanishing Hund’s
exchange JH the amplitude of such processes is solely ∝t1t2/U (with
t1 and t2 being the nearest neighbor hoppings between respective
orbitals and U the Coulomb repulsion element on the same orbital),
in a “realistic” case it also depends on JH/U and is larger (smaller)
for the parallel (antiparallel) spin alignment as presented on the
bottom (top) panels, respectively. This not only explains the origin
of one of the Goodenough-Kanamori rules (see Sec. I) but also the
dependence of the orbiton velocity on the spin correlations as well as
its overall increase with Hund’s exchange, as discussed in detail in
this paper.

The question of Hund’s exchange becomes particularly
salient in the 1D case, where the picture of spin-orbital
separation was based on the above analogy to a hole: whereas
an orbiton always strongly couples to the elementary spin
excitations of an antiferromagnet, it can effectively separate
from the spin excitation (“spinon”) in a similar manner as
a “holon” separates from the spinon when a single hole
is introduced into a 1D antiferromagnet [15]. The fate of
spin-orbit separation in the presence of Hund’s exchange was
only recently addressed theoretically [16]. Fractionalization
into spinon and orbiton was predicted to persist, even though
Hund’s exchange was concluded to mediate interactions be-
tween them. However, experimental information on the im-
pact of Hund’s exchange on the orbiton propagation and spin-
orbital separation is so far missing.

In this paper, we present a systematic and detailed high-
resolution resonant inelastic x-ray scattering (RIXS) study at
the Cu L3 edge on the quasi-1D spin S = 1/2 antiferromag-
netic Heisenberg chain Ca2CuO3. We assess the importance
of Hund’s exchange in modeling the experimentally observed
orbital excitations and conclude it to be necessary for a
quantitative description. To this end, we firstly discuss the
experimental methods and present the main RIXS spectra
in Sec. II. We start the discussion with analyzing the spin
excitations in great detail, see Sec. III A. Next, we introduce
an appropriate spin-orbital model in Sec. III B and com-
pare the experimental and theoretical results in Sec. III C,
paying particular attention to the role of the finite Hund’s
exchange in obtaining the results which well-describe the
experiment. The paper is summarized in Sec. IV and sup-
plemented by three Appendices A, B, and C, in which
details about Ca2CuO3 and of the theoretical model are
discussed.

II. EXPERIMENTAL METHODS

A. Samples

Together with Sr2CuO3, Ca2CuO3 (from now on Ca21)
represents one of the best prototype of the quasi-1D spin
1/2 AFM strongly anisotropic Heisenberg chain [17]. The
dicalcium cuprate shares the common crystal structure of
the better studied Sr2CuO3[17–19] and it is characterized
by having quasi-1D CuO3 chains of corner-sharing CuO4

plaquettes along the crystallographic b axis. Regarding the
electronic properties, the strong on-site Coulomb U repulsion
results in a ground state with one localized hole per Cu ion,
located in the 3dx2−y2 orbital. Because of that, its 3d bands
structure shows a Mott-Hubbard gap. The Ca21 films used for
this work were grown by pulsed laser deposition, using a λ =
248 nm KrF excimer laser. We chose as the substrate for the
film deposition a 5 × 5 mm2 LaSrAlO4 (LSAO) (1 0 0), since
it has a crystal structure (K2NiF4-type) similar to Ca2CuO3

and compatible in plane lattice parameters. On LSAO (1 0
0), the Ca21 grows along the c-axis and the CuO3 1D chain
lies in the ab plane along the b axis [see Fig. 2(c)], with
chain oxygen at corner sharing CuO4 plaquettes. The Ca21
target for the film deposition was prepared by standard solid
state reaction: stoichiometric mixtures of high-purity CaCO3

and CuO powders were calcined at about 800◦C in air for 20
hours, then pressed to form a disk and heated in air at 950 ◦C
for 24 h. The distance between LSAO substrate and the target
was 2.5 cm. The substrate holder was kept at T = 600 ◦C
during the deposition at an oxygen pressure of 0.1 mbar,
and cooled down to room temperature at the same pressure.
High-quality, totally detwinned, c-axis oriented films were
grown with thickness about 30 nm (see Appendix A).

B. RIXS Measurements

RIXS [20] measurements were carried out at the beamline
ID32 [21] of the ESRF (the European Synchrotron). The en-
ergy of the incident beam was tuned to the maximum of the Cu
L3 absorption peak (∼931 eV) in order to fulfill the resonance
condition. The polarization of the incident light was set either
parallel (π ) or perpendicular (σ ) to the scattering plane. For
all the measurements discussed below, the scattering angle 2θ

was fixed at 149.5◦ in order to maximize the momentum trans-
fer. The sample temperature was kept fixed at 20 K. To explore
how the dimensionality of Ca21 affects the RIXS spectra, we
were able to rotate by 90◦ the azimuthal angle so that either
the bc or ac planes of the sample were parallel to the scattering
plane, as shown in Figs. 2(c) and 2(e), respectively. Once the
scattering plane is defined, by rotating the angle perpendicular
to it (θ ) we were able to change the in-plane transferred
momentum q‖, defined as the projection of the momentum
transfer onto the CuO2 layers. From now on we will refer to
the transferred momentum values in terms of reciprocal lattice
units (r.l.u.) 2π/a, 2π/b and 2π/c. We acquired RIXS spectra
along the two high-symmetry directions [0 1] [Figs. 2(a)–2(c)]
and [1 0] [Figs. 2(d) and 2(e)] in the first Brillouin zone. Note
that, due to the orthorombicity of the crystal structure, these
two directions are not equivalent. In fact, when the scattering
occurs in the bc plane, the CuO3 chains lie in the scattering
plane; on the other hand, if the scattering plane is parallel
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FIG. 2. Raw RIXS spectra of Ca2CuO3 measured along the [0 1] direction with π (a) and σ (b) polarization of the incident light; right
panels show a close-up view of the RIXS intensity maps in the dd excitations energy range. (c) Sketch of the scattering and experimental
geometry adopted to measure the spectra shown in (a) and (b) together with the crystal structure of CuO3 chains of Ca21. (d) RIXS spectra
and close-up view of the orbital excitations measured with π polarization along the direction perpendicular to the CuO3 chains ([1 0]). (e)
Experimental geometry adopted for the data presented in (d). In (c) and (e), the Ca atoms have been removed for clarity.

to the ac plane, the chains are perpendicular to it. These
considerations on the different geometries have an important
impact and significant repercussions on the physics of 1D
systems, as we will explain in more details in Sec. III.

The spectra displayed in the waterfall plots of Fig. 2 can be
decomposed into several features. The peaks at ∼0 energy loss
represent the quasielastic scattering (which includes diffuse
elastic and phonons); up to −0.5 eV all the spectra reveal
the presence of dispersing spin excitations and between −1.5
and −3.5 eV the spectra are dominated by orbital excitations,
which correspond to the final states with the Cu hole in the
other 3d orbitals. The assignment of each orbital energy and
symmetry has been done by fitting the experimental spectra
with only three peaks whose relative intensity was assigned
following the RIXS cross sections calculated in a pure ionic
picture [22].

We also exploited the unique capability of the ER-
IXS (European-RIXS) spectrometer, to perform polarization-

resolved RIXS measurements [21,23], disentangling the two
linearly polarized channels (π ′ and σ ′) of the scattered light.
The possibility of disentangling the polarization of the scat-
tered light gives us valuable insights on the nature of the
various spectral features: recently, it has been demonstrated
that this method can be useful to distinguish the various
orbital [23] and the low-energy excitations[24–27] in different
cuprate families. Eventually, we combined the data taken with
and without the polarimeter to assign all the final states as
labeled in the colormaps of Fig. 2. In Fig. 3, we show the po-
larimetric raw RIXS data of Ca21 measured with both incident
π (bottom panels) and σ (top panels) polarizations at two dis-
tinct transferred momenta values (0.26 and 0.436 r.l.u.). The
decomposed outgoing polarization-dependent channels and
the experimental error bars have been obtained following the
procedure reported in Refs. [23,24]. On top of each spectrum
we report the comparison between the absolute values of the
polarization-resolved RIXS cross sections calculated within
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FIG. 3. Polarimetric RIXS spectra measured with incident σ (top) and π (bottom) polarization at two selected transferred momenta (0.26
and 0.436 r.l.u.). On top of each spectrum we report the comparison between absolute values of the polarization-resolved RIXS cross section
calculations and the peak areas for each dd excitation. To help the reader, we use the same color code (blue for the noncrossed ππ ′ and σσ ′

and red for the crossed πσ ′ and σπ ′ channels) for both the experimental data and the histograms.

the single ion model as a function of the incident/scattered
polarizations and the peak areas for each orbital excitation.
The results are shown in the form of histograms keeping the
same color code of the experimental data. We remark the good
agreement between the calculations and the experimental
data. Most importantly, we find that the region showing the
larger dispersion in Fig. 3(a) obtained with π polarization
has a predominant dxz/yz character. The results obtained by
combining the polarimetric data and the calculations will be
used in the detailed analysis presented throughout this paper.

The overall energy resolution was ∼60 meV for the unpo-
larized spectra, while we relaxed it to ∼80 meV for the polari-
metric measurements in order to maintain an acceptable count
rate. Each RIXS spectrum shown in Fig. 2 has been acquired
in 15 min. In the case of polarization-resolved measurement,
the acquisition time was increased to 60 min in order to get

good statistics due to the lower efficiency of the polarimeter
[23].

III. RESULTS AND DISCUSSIONS

A. Two-spinon continuum

Spin excitations in quasi-1D systems have been intensively
studied in the last decades due to their importance in the
realization of the 1D Heisenberg AFM model. The anisotropic
AFM interaction of Ca21 comes from the Cu atoms within
the chains, along the b axis. The coupling along the other
crystallographic directions is negligible, making Ca21 a 1D
magnetic system with a Néel temperature of only 9 K [17]
despite the large nearest neighbor superexchange interaction
along the chains. In fact, RIXS spectra measured along the [1
0] direction do not show any dispersive spin excitations.
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FIG. 4. Momentum transfer dependence of the magnetic two-
spinon continuum of Ca2CuO3 taken with π (top left) and σ (bottom
left) polarization measured along the [0 1] high-symmetry direction.
The results of the fittings are represented by dots (energy position
of the spin excitations) while the solid lines are related to the
approximate two-spinon continuum boundary. The right panels show
the low-energy RIXS spectra at two specific transferred momenta,
which were fitted by assuming the onset of four distinct features: the
quasielastic peak (purple), a generic phonons contribution (blue), its
overtones (orange) and the spinon (green/magenta for π/σ polar-
ization). Whereas the first three features were fitted with Lorentzian
line shape, the latter was fitted with the approximated two-spinon
dynamical structure factor S(q, ω) and convoluted with a gaussian
line shape [28] in order to take into account the overall experimental
energy resolution.

A clear signature of the 1D nature of Ca21 comes directly
from the momentum dependence of spin excitations along
the [0 1] direction. Indeed, in these systems the elementary
magnetic excitations with S = 1 fractionalize into the two-
spinon continuum carrying a spin quantum number of S = 1/2

[28]. In the left panels of Fig. 4, we show the Ca21 RIXS in-
tensity maps (between 0 and 0.8 eV of energy loss) measured
with both π (top left) and σ (bottom left) polarization which
display strong dispersing spin excitations characterized by
two different periodicities in reciprocal space [29–34]: π for
the lower edge of the two-spinon continuum, 2π for the upper
edge. In the intensity maps we show the extracted energy po-
sitions of the main two-spinon peak from a preliminary fitting
procedure (dots). In order to determine the magnetic superex-
change constant (JSE), we assume that RIXS probes the spin
dynamical structure factor S(q, ω). This approximation has
been intensively used through the years in RIXS [9,20,35–38]
experiments on a large number of quasi-1D antiferromagnets.

Here we used the approximated expression of the two-spinon
dynamical structure factor reported in Ref. [28] to obtain a
value of the superexchange coupling JSE = 0.24 eV for the
present case of Ca21, which is not only close to the value
found for Sr2CuO3 [9,39] but also to the one reported for
Ca21 [40]. The results are represented by the continuous lines
shown in the left panels of Fig. 4. Furthermore, thanks to the
good quality of our RIXS spectra, we can directly compare
the RIXS line shapes with the approximated expression of the
two-spinon dynamical structure factor S(q, ω) of the S = 1/2
Heisenberg chain [28].

Regarding the line shape, the obtained intensity of our
fitting is given by the following formula

I (q, ω) = S(q, ω) ∗ G(ω), (1)

where * is the convolution and

S(k, ω) = �(ω − ωL(q)�(ωU (q) − ω)√
ω2 − ω2

L(q)
(2)

is the approximate expression for the two-spinon dynamic
structure factor reported in Ref. [28]. Here � represents
the Heaviside step function, while ωL(q) = π/2 sin(q) and
ωU (q) = π sin(q/2). Finally, the overall experimental energy
resolution is taken into account by convolving S(q, ω) with
the following Gaussian line shape

G(ω) = exp(−(ω − ω0)2/2σ 2)/(σ
√

2π ) (3)

with σ = 55 meV (overall energy resolution) and ω0 is the
peak energy. In the two right panels of Fig. 4, we show the
fitting results at two transferred momenta values, which have
been chosen by considering the fact that here the two-spinon
continuum is well separated from the other spectral features.
We would like to underline that the two-spinon contribution
to the spin dynamical structure factor is of the order of 73%
of the total (theoretical) spectral weight. Thus the amplitude
of the theoretically calculated spin dynamical structure factor
has been multiplied by an overall scaling factor (the same for
all momenta), in order to match the theoretical intensity with
the experimental data.

B. Theoretical model for dd excitations

dd excitations in 1D systems feature the fractionalization
of spin and orbital degrees of freedom. To model the frac-
tionalization[] previous studies used an effective t−J model,
which accurately described the experimental spectra. We go
one step further and include the effect of Hund’s coupling,
which should be finite in realistic materials. Note that finite
Hund’s coupling preserves fractionalization [16,41], but hin-
ders the description with an effective t−J model and might
lead to a non-negligible interaction between orbitons and
spinons.

To verify the spinon-orbiton separation, we employ a
Kugel-Khomskii-type Hamiltonian [1], which can be written
in the following general form:

H = 2
∑
〈i, j〉

(
�Si · �S j + 1

4

)
A
(
T β

i , T α
j

)
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+
∑
〈i, j〉

K
(
T β

i , T α
j

) + 
CF

∑
i

T z
i . (4)

Here, �Si describes a spin S = 1/2 at site i and T α
i is a pseudo-

spin T = 1/2 with component α ∈ {x, y, z} to describe the
orbital degree of freedom between the ground state dx2−y2

and one of the excited orbitals dxy, dxz, and dyz (note that
the ‘nondispersive’ d3z2−r2 orbital is not taken into account in
the analysis). Bonds 〈i, j〉 take nearest neighbors into account
and 
CF is the crystal field splitting. Operators A(T β

i , T α
j )

and K (T β
i , T α

j ) only depend on the orbital degrees of freedom
and account for onsite repulsion U , Hund’s coupling JH and
nearest-neighbor hopping t1 and t2 for the ground state and the
excited orbital, respectively (see Appendix B for details). Note
that for the ferro-orbital ground state, Hamiltonian (4) reduces
to the Heisenberg model, which describes the spin excitations
discussed in the previous section.

To model the orbital excitation in the RIXS spectrum,
we calculate the orbital spectral functions O(q, ω) and the
spin-orbital SO(q, ω) with exact diagonalization and cluster
perturbation theory for each orbital separately. The exact diag-
onalization results are broadened by a Lorentzian line shape of
120-meV FWHM to account for finite size effects (for details
see Appendix B). For direct comparison with the experiment,
they have to be multiplied by the RIXS “matrix elements”
that can easily be obtained using the so-called fast collision
approximation to the Kramers-Heisenberg formula for RIXS
(for more details, see Refs. [20,22,23]). Finally, the results are
convoluted with a Gaussian function (FWHM = 60 meV) to
account for experimental resolution.

Even in the presence of Hund’s coupling, the spinon-
orbiton fractionalization is preserved [16], although it me-
diates an interaction between orbiton and spinon that can
obscure signatures of spin-orbit separation if it becomes too
strong. In fact, for finite Hund’s exchange the hopping of
an orbiton is modified, as shown in Fig. 1, by the distinct
superexchange processes for antiparallel and aligned spins.
For antiparallel spins an excited electron can move with
superexchange constant t1t2/(U − 2JH), which increases to
t1t2/(U − 3JH) in the case of parallel spins. Hence, orbital
(O) and spin-orbital (SO) excitations are distinguishable for
nonzero JH and need to be considered separately. Additionally,
a larger superexchange constant also increases the bandwidth
of the excitations (W ) as well as its dispersion. The latter is
directly connected to the orbiton velocity [14], which means
that a larger JH increases the velocity of the orbiton. In fact,
the orbiton velocity is defined as

vorb = dεorb

dk

∣∣∣∣
k=0

= 2t̃, (5)

for the (bare) orbiton dispersion, which is given by εorb(k) =
−2t̃ sin(k) [see Ref. [14] or Appendix C] with the orbiton
hopping t̃ = 2t1t2/(U ′(1 − JH/U ′)) (see Appendix C for de-
tails). Note that this intuitive picture is supported by numerical
calculations [16].

Using this picture, we derived the approximate analytic
relation between JH and W (see Appendix C)

JH =
(

U − 8t1t2
W

)
1

3
, (6)

which makes it possible to calculate JH from the bandwidth of
the excitation. This implies that a theory for spinon-orbiton
separation which ignores Hund’s coupling always overesti-
mates the hopping constant of the excited orbital t2.

C. Comparison between experiment and theory

In Fig. 2, we show the measured RIXS spectra of Ca21
in different experimental configurations. As mentioned above,
the quasi-1D nature of Ca21 has strong repercussions on the
dispersion of the spectral features seen by RIXS. This is al-
ready observed in the absence of spin excitations when spectra
are measured with the CuO3 chains oriented perpendicularly
to the scattering plane. In this configuration, we do not see
any dispersion in the dd excitations energy range (panel d
of Fig. 2). Therefore let us from now on focus solely on the
geometry in which the chains are parallel to the scattering
plane [panels (a)–(c) of Fig. 2]. This configuration is similar to
the one reported by Bisogni et al. [11], where in the quasi-1D
AFM spin-ladder CaCu2O3, the spin-orbital separation occurs
along the a direction in the dxz orbital channel.

To explain the observed orbital spectra, with their peculiar
dispersion relations, we use the theoretical model described
in detail in Sec. III B. We choose the parameters of the model
in two steps. First, we start with the parameter related to
the dx2−y2 orbital—the hopping constant t1 between the two
nearest neighbor dx2−y2 orbitals. The latter could be calculated
from to the superexchange constant JSE = 4t2

1 /U = 0.24 eV,
as obtained from the RIXS spin spectrum in Sec. III A.
Assuming that typically for the cuprates the on-site Coulomb
repulsion U = 8t1 [42], we get that t1 = 0.49 eV and U =
3.92 eV.

We obtain the remaining model parameters (t2 describing
the hopping between the excited orbitals, Hund’s coupling
JH and the on-site crystal field energies 
CF of the excited
orbitals, i.e., dxy, dyz, dxz) by directly comparing the second
derivatives of the theoretical results and of the experimental
spectra, see Fig. 5. The results from the ‘best fit’ of the
theoretical model to the experimental data are given in Table I.
As can be seen in Fig. 5 the experimental and theoretical
second derivative maps are in very good agreement. Let us
note in passing that the second derivative curves easily track
the peak position of the different spectral features, making the
dispersion of the orbital excitations more evident without any
type of fitting—in fact, such a method has been previously
used in the analysis of RIXS data to disentangle dispersive or-
bital excitations from the particle-hole continuum in Sr2IrO4

[12].
We note that the dispersion of orbital excitation is evident

in the spectra measured with π polarization and hardly visible
with σ (see Figs. 2(a) and 2(b) and also Ref. [9]). This
observation might be naively interpreted as a polarization
dependence of the spin-orbital fractionalization phenomenon.
Actually this apparent polarization dependence is not happen-
ing in for the pure spin excitations in the low energy scale,
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FIG. 5. Experimental [(a) and (c)] and theoretical [(b) and (d)]
“best fit” second derivative RIXS intensity maps in the orbital
excitations energy range. Top (bottom) panels show results for the
π (σ ) incoming polarization, respectively.

as widely discussed in Sec. III A: the fractionalized spinon
excitations show the same momentum dependence for both π

and σ incoming light. To unravel this puzzle we take a closer
look at the second derivative maps in the case of σ incident
polarization shown in the bottom panels (c-d) of Fig. 5. They
reveal the presence of a dispersion even for σ incoming
polarization, although it is very weak. What happens is that
with σ polarization the nondispersing dxz RIXS cross section
is much larger than that of the dispersing dyz. On the contrary,
with the π polarization the dyz excitation provides most of
the RIXS signal, leading to an apparent absence of overall
dispersion.

The theoretical RIXS spectra calculated with the best fit
model parameters from Table I are shown in Figs. 6(b), 6(e)
and 6(f). Indeed, as already suggested by the second derivative
maps of Fig. 5, one can observe a very good agreement with
the experimental RIXS spectrum shown, e.g., in Fig. 6(a).

TABLE I. “Best fit” microscopic parameters for the Kugel-
Khomskii Hamiltonian (4). For definitions see main text and Ap-
pendix. Errors are estimated by comparing the second derivatives
of the experiment with the theoretical spectra (see Appendix B for
details).

xy xz yz

JH (in units of t1) 0.8(±0.2) 1.2(±0.2) 1.2(±0.2)
t2 (in units of t1) 0.5(±0.1) 0(±0.2) 0.7(±0.1)

CF (eV) 1.87(±0.03) 2.32(±0.03) 2.45(±0.03)

FIG. 6. Comparison between the experimental and theoretical
RIXS spectra [(a) vs (b)–(d)] and the line spectra [(e) and (f)]:
(a) shows a zoom-in into the orbital part of the experimental RIXS
spectra of Ca21; (b) shows the best theoretical description (“best
fit”) of the experimental data with the model parameters listed in
Table I; (c) and (d) show results for Hund’s coupling JH = 0 with two
different values of the orbiton hopping parameters t1, t2 (W indicates
the bandwidth of the excitation, which is larger for an increased
t2); (e) and (f) show experimental as well as the theoretical line
spectra, calculated with the model parameters as used in (b)–(d) and
presented at two selected momentum transfers. The spectra in (a) and
(e) are measured with π incident polarization, while the spectra in (f)
are measured with σ incident polarization.

First, the dispersion of the lowest energy excitation (dxy) is
well reproduced in both the cases with π and σ incident
light polarization. Its momentum dependence is characterized
by 1/2 r.l.u. periodicity in reciprocal space, as also shown
in Sr2CuO3[9]. As in previous studies for Sr2CuO3, the dxz

and dyz energies are split by ∼150 meV [10]. Second, re-
garding the dxz orbital excitation, assuming t2 = 0 (due to
the negligible overlap between nearest-neighbor dxz orbitals
along the y direction of the chain) results in a non-dispersive
excitation. Third, the spin-orbital fractionalization is really
very well-visible for the dyz excitation. Thus, the momentum
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dependence of the dyz dispersion shows two strongly disper-
sive branches giving a characteristic oval shape [10,14]. This,
as discussed in detail in Appendix C, allows us to extract the
bandwidth of the excitation W ∼ 0.6 eV. The bandwidth can
then be used in Eq. (C7) to obtain Hund’s coupling to be of
the order of ∼eq1.14t1, which is in good agreement with the
above-discussed best fit procedure (compare Table I). Overall
the values of Hund’s coupling are in good agreement with
the ones typically assumed for another quasi-1D cuprate—
Sr2CuO3[10].

Finally, we would like to stress that such a good agreement
between the theoretical model (with the parameters from Ta-
ble I) and the experimental result cannot be achieved without
a finite value of Hund’s coupling, cf. Figs. 6(c) and 6(d).
For instance, if JH = 0 and we use the same values of t2 as
reported in Table I for all the three orbitals considered we do
not get a good agreement with the experimental data. It is then
only when a much larger value of the hopping parameter t2
(t2 > t1) is assumed [Fig. 6(d)] that we obtain a satisfactory
agreement with the experiment. This demonstrates that fitting
the experimental results with the theoretical model with JH =
0 requires a nonphysical, i.e., far too large, hopping t2—this
is due to the fact that the hopping t2 of the excited orbital
should not be larger than the hopping related to the ground
state orbitals (since otherwise the hybridisation would lower
the energy of the excited orbital below that of the ground state
orbital). Hence, Hund’s coupling is necessary to increase the
dispersion of the excitation, which, as noted in Sec. III B,
increases the velocity of the orbiton. Moreover, a detailed
comparison of spectral line shapes at selected transferred
momenta, see Figs. 6(e) and 6(f), shows that the fit with a
finite (and realistic) values of Hund’s rule coupling provides
a closer agreement with experiment than the fit relying on
(less realistic) large t2. The remaining differences between
theory and experiment may be due to some charge-transfer
excitations contributing to the background or to processes not
included in our model, e.g., coupling to the lattice and Jahn-
Teller effect or longer-range spin and spin-orbital exchange
processes.

IV. CONCLUSIONS

We have studied in detail the RIXS response at the Cu L
edge of the quasi-1D antiferromagnet Ca2CuO3. We observed
a clear signature of the dispersive spin and orbital 3dxy and
3dyz excitations, at first sight qualitatively resembling the ones
recently found in other quasi-1D copper oxides [9–11]. Thus
we can first conclude that also in this case it is correct to
interpret the spin (orbital) excitations in terms of the onset of
the two-spinon continuum (spin-orbital separation).

Next, we performed a detailed quantitative analysis of the
experimental data. First, in addition to the previous studies,
we exploit two distinct incident photon polarizations in our
analysis. Moreover, for both polarizations we successfully
reproduced the experimental RIXS spectra using a theoret-
ical model based on the well-established Kugel-Khomskii
Hamiltonian. Specifically, the crucial finding of this paper is
that a detailed modeling of the orbital spectrum requires a
finite Hund’s exchange JH in the Hamiltonian. Specifically,
for Ca2CuO3, we obtain that a moderate, and realistic, value

of JH � 0.5eV best explains the experimental data. Here the
main role of Hund’s exchange is to increase the velocity of
the orbiton so that the theoretically predicted one matches
well with the experimentally observed one. We note that the
assumed value of Hund’s exchange is relatively small with
respect to the calculated spin-orbital exchange constants, so
that the interaction between orbitons and spinons is not that
large and thus the spin-orbital separation picture can still
approximately describe the physics present here, cf. Ref. [16]
for details. Altogether, this means that Hund’s exchange plays
a vital role in the propagation of an orbiton.
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APPENDIX A: STRUCTURAL PROPERTIES OF THE
Ca2CuO3 THIN FILMS

The structural properties of the Ca2CuO3 (Ca21) thin
films have been determined by X-Ray Diffraction (XRD)
analysis, using a Panalytical X’Pert PRO Materials Research
four-axis diffractometer. The beam from the Cu X-ray tube
passes through a two-bounce Ge220 monochromator, which
includes a mirror; the diffracted beam is detected either by
a rocking curve attachment or by a three-bounce symmetric
analyzer crystal, used respectively for low-resolution and
high-resolution ω-2θ scans and reciprocal space maps. The
XRD characterization presented in the following is focused
on the same sample [30 nm thick Ca21 film on (1 0 0)
oriented LaSrAlO4 (LSAO) substrate] on which all the RIXS
measurements presented in the paper have been taken. We
have however tested that the results are reproducible among
several samples of the same kind.

The ω-2θ scan [see Fig. 7(a)] confirm that the film is
crystalline and c-axis oriented, without any hint of spurious
phase, or misoriented domain. The high-resolution symmetric
reciprocal space maps [see Figs. 7(c) and 7(d)] show indeed
that the Ca21 (0 0 2) reflection is aligned to the LSAO (2
0 0) reflection, i.e., to the normal direction of the substrate
(qCa21

‖ = qLSAO
‖ ). This occurrence, together with the full width

at half maximum of only ≈0.03◦ for the Ca21 (0 0 2)
reflection [see Fig. 7(b)], supports the high texture of the
film. Therefore the use of a substrate with small in-plane
mismatch δm with the film (with δm = 1 − xf/xs, and xf and xs
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FIG. 7. Symmetric XRD measurements on the
Ca2CuO3 (30 nm)/LaSrAlO4 (1 0 0). (a) The low-resolution
2θ -ω scan shows that, beside the substrate reflection, only the Ca21
(0 0 2) reflection is present, related to the c-axis growth of the film.
The absence of any other orientation or spourius phase is confirmed
by the high resolution scan (inset) performed in a shorter range
around the Ca21 reflection. (b) Rocking curve of the Ca21 (0 0 2)
reflection. [(c) and (d)] High-resolution reciprocal space maps of the
LSAO (2 0 0) and Ca21 (0 0 2) reflections. The c axis of the Ca21 is
perfectly aligned to the out of plane direction of the substrate (they
have the same q‖).

in-plane lattice parameters respectively of film and substrate,
see Table II), prevents the distortion of the CuO4 plaquettes
within the Ca21 unit cell. Such distortion, causing a buckling
of the atomic planes, is vice versa generally occurring in
perovskite thin films, when they are grown on substrates with
larger lattice mismatch [43–46]. Finally, the length of the
c-axis parameter has been estimated from the position of the
Ca21 (0 0 2) reflection: its value, q−1

⊥ = 3.262 Å, is very close
to the bulk value.

To determine the twinning state of the Ca21 thin film,
as well as the film-substrate orientation relations and the
strain conditions, we have explored by both low- and high-
resolution reciprocal space maps the asymmetrical (0 1 3)
and (3 0 3) Ca21 reflections. These two reflections, associated
respectively to the b axis, where the CuO3 chains are oriented,
and to the a axis, are characterized by almost identical q⊥,
and similar q‖ values (
q‖ = 0.2 nm−1). The maps have been
taken both along the [0 1 0] and the [0 0 1] in-plane LSAO

TABLE II. The lattice parameters of our Cu21 thin films, as
determined by the XRD structural characterization, are compared
with those of the bulk Cu21, and of the LSAO substrate.

material a (Å) b (Å) c (Å)

LaSrAlO4 3.756 3.756 12.617
Ca2CuO3 bulk [47] 12.262 3.783 3.263
Ca2CuO3 film 12.288 3.758 3.262

directions. Along the [0 1 0] LSAO direction, only the Ca21
(0 1 3) reflection is present; vice versa, along the [0 0 1]
LSAO direction, the Ca21 (3 0 3) reflection is dominant [see
Figs. 8(a) and 8(b)].

The film is therefore totally detwinned: the random ex-
change of the in-plane parameters is eliminated, and the ma-
terial properties, related to the presence of CuO3 chains along
the b-axis, can be singled out. The one-dimensional nature of
the Cu21 is preserved in thin film form, down to thickness
of few unit cells. Such film-substrate orientation relationship
has severe implications on the way the strain is applied on the
Cu21 film. Along the [0 1 0] LSAO ‖ [0 1 0] Ca21 direction,
where the mismatch is negligible (δm ≈ −0.7%), the Ca21
(0 1 3) reflection is aligned to the LSAO (3 1 0) reflection:
the b-axis of the Ca21 is totally strained on the b axis of
the LSAO, compressing its bulk value down to q−1

‖ = 3.758
Å [see Fig. 8(c)]. Along the [0 0 1] LSAO ‖ [1 0 0] Ca21
direction, the mismatch is instead larger (δm ≈ 3%): here,
the Ca21 (3 0 3) reflection is misaligned with respect to the
LSAO (3 0 3) reflection [see Fig. 8(d)], since the length of the
Ca21 a-axis parameter (q−1

‖ = 12.288 Å) approaches that of
the LSAO a axis, though staying much shorter than that. The
tensile stain along the a axis compensates the compressive one
along the b axis, in agreement with the negligible change of
the c-axis parameter, observed via ω-2θ scan. The Cu21 and
LSAO lattice parameters, in bulk form as well as in our films,
are summarized in Table II.

APPENDIX B: THEORETICAL MODEL AND METHODS

Ca2CuO3 is a strong charge-transfer insulator, with one
hole in the dx2−y2 orbital. Hence spin and orbital excitations
are described by a Kugel-Khomskii Hamiltonian with the
generic form described by Eq. (4). The operators A(T β

i , T α
j )

and K (T β
i , T α

j ) describe the dynamics of the orbital degrees
of freedom and are obtained by the second order perturbation
theory from the multiorbital Hubbard model, assuming: (i)
dominant onsite Coluomb repulsion (“Hubbard” U is much
larger than the hopping between the ground state orbital
t1), i.e., omitting charge fluctuations; (ii) strong crystal field
splitting, polarizing the ground state in the lower orbital; and
(iii) one excited orbital at most. Altogether, the operators
read

A
(
T β

i , T α
j

) = 2t2
1

U

1

1 − ( JH
U

)2

(
T z

i − 1

2

)(
T z

j − 1

2

)

+ 2t1t2
U ′

1

1 − ( JH
U ′

)2 [T +
i T −

j + H.c.]

+
(
t2
1 + t2

2

)
U ′

JH
U ′

1 − ( JH
U ′

)2

[(
T z

i − 1

2

)

×
(

T z
j + 1

2

)
+ (i ↔ j)

]
(B1)
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FIG. 8. Asymmetric XRD measurements on the Ca2CuO3 (30 nm)/LaSrAlO4 (1 0 0). [(a) and (b)] Low-resolution reciprocal space maps,
along the two in-plane LSAO directions. Along the [0 1 0] direction (a) only the Ca21 (0 1 3) reflection (b axis) is present, while along the
[0 0 1] direction (b) the Ca21 (3 0 3) is the only measured reflection (a axis). Where absent, the position of the Ca21 (0 1 3) and (3 0 3)
reflections has been marked in the maps by a yellow cross. The film is totally detwinned, with the following film-substrate relations: Ca21(1 0
0)‖ LSAO(0 0 1), Ca21(0 1 0)‖ LSAO(0 1 0), Ca21(0 0 1)‖ LSAO(1 0 0). [(c) and (d)] High-resolution reciprocal space maps, along the two
in-plane LSAO directions, used to determine the length of the in-plane Ca21 parameters and the strain state.

and

K
(
T β

i , T α
j

) = − 2t2
1

U

1

1 − ( JH
U

)2

(
T z

i − 1

2

)(
T z

j − 1

2

)

+ 2t1t2
U ′

JH
U ′

1 − ( JH
U ′

)2 [T +
i T −

j + H.c.]

+ t2
1 + t2

2

U ′
1

1 − ( JH
U ′

)2

[(
T z

i − 1

2

)

×
(

T z
j + 1

2

)
+ (i ↔ j)

]
. (B2)

Here, t1 and t2 are the hopping parameters of the ground
state, i.e., between neighboring dx2−y2 orbitals, and the excited
orbital, i.e., dxy, dyz or dxz, respectively. (�Si, T α

i and all other
model parameters are defined in the main text.) As an ap-
proximation we set the inter-orbital repulsion U ′ = U − 2JH ,
as in the case of the atomic orbitals subject to a spherically
symmetric potential [48]. Note however, that a small departure
from this relation does not alter the results significantly [16].

To calculate dd-excitation spectrum probed by RIXS we
define the spectral function for orbital excitations and spin-
orbital excitations. The orbital spectral function is

O(q, ω) = 1

π
� 〈gs| T x

−k

1

ω + Egs − H − iL
T x

k |gs〉 , (B3)

where T x
k is the Fourier transform of T x

i , |gs〉 is the ground
state of Eq. (4), and L is the Lorentzian broadening to
mitigate finite-size artefacts. We set L = 0.06 eV. The spin-
orbital excitation function SO(q, ω) is defined analogously,
with T x

i replaced by Sz
i T x

i .
We calculate the excitation spectra using exact diagonaliza-

tion in combination with the spin cluster perturbation theory
[49] on a 20 site chain. Additionally, we derive in section
D an effective Hamiltonian, which yields an analytic relation
between bandwidth of the excitation and Hund’s coupling.

The best fit microscopic parameters for the Kugel-
Khomskii Hamiltonian as well as the corresponding error

range listed in Table I are obtained by direct comparison of
the second derivative RIXS intensity maps. This is illustrated
in Fig. 9 for the case of JH of dyz. Panel (a) and (c) show
the theoretical second derivative RIXS intensity maps for the
lower and upper bound of the error range, respectively. Panel
(b) shows the experimental one for comparison. Although the
shape for minimal (maximal) JH matches the experimental
one, the bandwidth is clearly too small (large). Error ranges
for other parameters and orbitals are estimated similarly.

APPENDIX C: EFFECTIVE HAMILTONIAN FOR
SPIN-ORBITAL EXCITATION

Here we derive an effective Hamiltonian, which captures
accurately the spin-orbital excitation spectrum SO(q, ω) of
Hamiltonian (4) and which can be mapped onto the t-J model.
The latter enables us to find an analytic relation between
Hund’s coupling and the bandwidth W of the excitation spec-
trum.

The ground state of Hamiltonian (4) is antiferromagnet-
ically (AF) and ferro-orbitally (FO) ordered. Hence we ap-
proximate the ground state |gs〉 at a bond 〈i, j〉 as spin-singlet
with an FO order

(C1)

The excited state for SO(q, ω) (see Fig. 10) excitation is then
given by

(C2)

Thus, we are now allowed to rewrite the parts in Hamiltonian
(4) which hinder the mapping onto a t-J model. This yields
an effective Hamiltonian of the form (4), with the modified
orbital operators

Ã
(
T β

i , T α
j

) = 2t2
1

U

1

1 − ( JH
U

)2

(
T z

i − 1

2

)(
T z

j − 1

2

)

+ 2t1t2
U ′

1

1 − JH
U ′

[T +
i T −

j + H.c.] (C3)
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FIG. 9. Theoretical [(a) and (c)] and experimental (b) second derivatives RIXS intensity maps for π incoming polarization to estimate
the error of JH for dyz orbital. (a) and (c) show minimal JH = 1.0 t1 and maximal JH = 1.4 t1 for dyz, respectively. Other parameters are kept
constant and can be found in Table I. White lines are guides to the eye.

and

K̃
(
T β

i , T α
j

) = − 2t2
1

U

1

1 − ( JH
U

)2

(
T z

i − 1

2

)(
T z

j − 1

2

)

+ t2
1 + t2

2

U ′
1

1 − JH
U ′

[(
T z

i − 1

2

)

×
(

T z
j + 1

2

)
+ (i ↔ j)

]
. (C4)

Note that the effective Hamiltonian can now be mapped onto
a t-J model [14].

The mapping on the t-J model gives analytic expres-
sions for upper and lower boundaries of the spinon-orbiton

continuum [50,51], which read

εlo(k) = 
 + J − 2
t2
1 + t2

2

U ′
1

(1 − JH/U ′)

−
{√

J 2 + 4t̃2 − 4t̃J cos(k) , k < k0

2t̃ sin(k) , k > k0
, (C5a)

εup(k) = 
 + J − 2
t2
1 + t2

2

U ′
1

(1 − JH/U ′)

+
{√

J 2 + 4t̃2 − 4t̃J cos(k) , k > k0

2t̃ sin(k) , k < k0
, (C5b)

Here, k0 is given by cos(k0) = J /(2t̃ ) and the rescaled hop-
ping and rescaled superexchange constants are given by

t̃ = 2
t1t2
U ′

1

(1 − JH/U ′)
and J = JAF

1

1 − (JH/U )2
, (C6)

respectively. The bandwidth is then given by

W = εup(k = π/2) − εlo(k = π/2) = 4t̃ . (C7)

FIG. 10. Orbital (a) and spin-orbital (b) spectral function of the full Hamiltonian (4) with the orbital operators given by Eqs. (B1) and
(B2); (c) spin-orbital spectral function of the effective Hamiltonian, i.e., the full Hamiltonian Eq. (4) but with the orbital operators replaced by
Eqs. (C3) and (C4). W indicates the bandwidth of the excitation. Parameters for the dyz orbital excitation in Ca21 are used.
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This relation can be used to extract Hund’s coupling from the
bandwidth of the excitation spectrum.

Figure 10 shows the orbital (a) and the spin-orbital (b)
excitation spectrum of the full Hamiltonian as well as the spin-
orbital (c) excitation spectrum of the effective Hamiltonian,
for parameters modeling the dyz orbital excitation in Ca21.

The effective Hamiltonian reproduces the shape as well as the
intensity of the spin-orbital excitations of the full Hamilto-
nian. RIXS measures a combination of orbital and spin-orbital
excitation, however due to the same bandwidth of O(k, ω) and
SO(k, ω) this does not affect the expression of the bandwidth
(C7).
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